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Aiming at solving the problem that the detection methods used in the existing helmet detection research has low detection
efficiency and the cumulative error influences accuracy, a new algorithm for improving YOLOv5 helmet wearing detection is
proposed. First of all, we use the K-means++ algorithm to improve the size matching degree of the a priori anchor box;
secondly, integrate the Depthwise Coordinate Attention (DWCA) mechanism in the backbone network, so that the network
can learn the weight of each channel independently and enhance the information dissemination between features, thereby
strengthening the network’s ability to distinguish foreground and background. The experimental results show as follows: in the
self-made safety helmet wearing detection dataset, the average accuracy rate reached 95.9%, the average accuracy of the helmet
detection reached 96.5%, and the average accuracy of the worker’s head detection reached 95.2%. Making a comparison with
the YOLOv5 algorithm, our model has a 3% increase in the average accuracy of helmet detection, which is in line with the
accuracy requirements of helmet wearing detection in complex construction scenarios.

1. Introduction

According to a series of statistical reports issued by the Min-
istry of Housing and Urban-Rural Development, compared
with 934 accidents and 840 deaths in 2018, there were a total
of 773 construction production safety accidents and 904
deaths across the country in 2019. The number of accidents
and deaths increased by 5.31% and 7.62%. In general, the
number of accidents in the construction industry is showing
a gradual increase. In the literature [1], when studying the
relationship between the use of safety protection equipment
and the number of deaths in construction sites, it was found
that 67.95% of the victims had not used or used safety protec-
tion (such as safety helmets and safety belts). Due to the weak
awareness of safety protection of construction workers, the
importance of wearing safety helmets is often ignored. At
the construction site, manual supervision is usually used to

monitor whether workers wear safety helmets [2], which
makes it impossible to manage all construction workers
promptly on the construction site and to know the move-
ment tracks of all construction workers. The use of automatic
monitoring methods helps to monitor the construction per-
sonnel and confirm the specific conditions of all construction
workers wearing helmets at the construction site, especially
when the traditional monitoring methods are time-
consuming and expensive, easy to detect errors, and are not
enough to meet the safety of modern building construction
management requirements. The use of automatic supervision
of deep learning methods is conducive to supervising all con-
struction personnel onsite.

Traditional object detection often uses an artificial selec-
tion of features and design and training classifiers based on
specific detection objects. This method is highly subjective,
complex in the design process, has poor generalization
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ability, and has great limitations in engineering applications.
In recent years, due to the fact that convolutional neural net-
works (CNN) do not use an artificial selection of features,
they have gradually been sought after by scholars in the field
of deep learning. The deep convolutional neural network has
good comprehensive performance in the field of object
detection. In 2014, Girshick et al. successfully proposed R-
CNN [3], fast R-CNN [4], and faster R-CNN [5], which were
verified in the PASCAL VOC2007dataset, respectively, and
gradually improved the experimental effect. The method of
extracting feature frames by these models gradually changes
from selective search to regional proposal network (RPN),
thus getting rid of the traditional manual feature extraction
method. In 2015, Redmon and others proposed a one-stage
object detection model YOLO [6], which abstracted the
detection task as a regression problem for the first time,
avoiding the cumbersome operation of dividing the detec-
tion task into two steps in the R-CNN series. In 2016, Liu
et al. proposed the SSD [7] detection algorithm, which intro-
duced a multiscale detection method, which can effectively
detect groups of small targets. In 2017, Lin et al. proposed
the RetinaNet [8] dense detector, which solves the problem
of extreme foreground and background imbalance encoun-
tered during training by reshaping the standard entropy loss.
In 2017, Redmon and others proposed the YOLOv2 [9]
detection model, which selected a new basic model
Darknet-19 to achieve end-to-end training. In 2018, Red-
mon et al. proposed YOLOV3 [10] based onYOLOV1 and
YOLOV2. In this model, the FPN method was adopted to
integrate three different sizes feature maps to accomplish
detection tasks, which significantly improved the detection
effect of small-size targets. In April 2020, Bochkovskiy pro-
posed YOLOv4 [11], which uses PANet instead of FPN used
in YOLOv3 as the path aggregation method; at the same
time, the backbone network uses CSP Darknet53, which sig-
nificantly enhances the detection accuracy of the network. In
June 2020, Glenn proposed YOLov5 [12], which designed a
new focus structure and added it to the backbone network
to achieve a new benchmark for the perfect combination of
speed and accuracy.

Because of the rapid rise of computer vision in the direc-
tion of object detection, more and more researchers are
focusing on combining deep learning with practical applica-
tion scenarios. For example, Chen et al. [13] improved the
SSD model by adding an inception module before the pre-
diction layer to achieve rapid and accurate detection of small
vehicles. Tian et al. [14] used DenseNet to optimize the low-
resolution layer in the feature layer of the YOLOv3 network
and applied the improved YOLOv3 to the detection of
anthrax lesions on the surface of orchard apples to achieve
real-time detection. Dashun et al. [15] applied the improved
RetinanNet network to the field of pedestrian detection and
realized the rapid detection of multispectral pedestrians.
Zhong et al. [16] used the LocNet positioning module to
replace the boundary regression module to improve the fas-
ter R-CNN model and applied it to multidirectional text
instance detection. Zhang et al. [17, 18] used the residual
network (reset) in the prediction part to encode the input
features of the image and chose to increase the deconvolu-

tion layer to change the MMDetection network model in
the process of feature information decoding, to achieve a
higher crowd in dense scenes. And it can be seen that deep
learning has become a popular research direction, and it
has become the mainstream field in combination with actual
application scenarios.

Safety helmet detection is one of the application areas of
object detection. So far, many researchers at home and
abroad have conducted several related investigations on
safety helmet detection. In 2013, Kelm [19] and others
designed a mobile radio frequency identification (RFID)
portal to check the compliance of construction workers
wearing safety protective equipment. However, the recogni-
tion area of the radio frequency identification reader is lim-
ited. It is only recommended that the helmet be close to the
worker, but it cannot be confirmed whether the helmet is
worn correctly. In 2014, Liu [20] and others used a combina-
tion of support vector machines and skin color detection to
achieve helmet detection. In 2016, Rubaiya [21] and Silva
[22] and others combined the histogram of gradient
(HOG) algorithm with the frequency domain-related infor-
mation in the image for human detection and then used
the circular Hough transform (CHT) to detect the helmet.
In 2017, Li [23] and others used the vibe algorithm to locate
the human body position, followed by the embossing algo-
rithm to detect the worker’s head and finally combined the
HOG algorithm and SVM to realize the helmet wearing
detection. In 2018, Wu et al. [24] used Hu moment invariant
(HMI), color histogram (CH), and local binary pattern (LBP)
to extract the characteristics of different color helmets and
then constructed a hierarchical support vector machine
(H-SVM) for safety cap wearing detection. Due to the
complex environment, the detection accuracy of helmet wear-
ing detection is low at this stage, which is quite different from
the management requirements in actual building construction.

In this paper, two types of targets for construction
workers wearing helmets and those not wearing helmets
are the detection tasks, and more than 7,000 pictures are col-
lected from the Internet for preprocessing to construct a hel-
met detection dataset. Select the YOLOv5 network model as
the main body, and first, use the k-means++ algorithm to
cluster the target anchor box to obtain a bounding box suit-
able for the target, so that the model can converge faster.
Secondly, a new DWCA module is designed and integrated
with the features of the backbone network to strengthen
the attention to enhance the attention of the detection target
and improve the ability to resist background interference.
According to the final experimental results, the average
detection accuracy (mAP) of the DWCA-YOLOv5 detection
model has been significantly improved, and it can effectively
detect the unsafe behavior of workers on the construction
site not wearing helmets.

2. Related Work

2.1. YOLOv5 Algorithm Principle. YOLOv5 is a new-
generation target detection network of the YOLO series. It
is a product of continuous integration and innovation based
on YOLOv3 and YOLOv4. Secondly, YOLOv5 has achieved
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better results in PASCAL VOC and COCO object detection
tasks; so, this article uses the YOLOv5 detection network to
detect the construction workers’ helmet wearing.

The YOLOv5 object detection network official gave four
network models: YOLOv5s, YOLOv5m, YOLOv51, and
YOLOv5x. The three models of YOLOv5m, YOLOv51, and
YOLOv5x are the products of continuous deepening and wid-
ening based on YOLOv5s. The YOLOv5 network structure is
divided into four parts: input, backbone, neck, and prediction.
YOLOv5 adds Mosaic data enhancement in the data input
part; focus structure and CSP structure are used in the back-
bone; the FPN+PAN structure is added to the neck; the pre-
diction part improves the bounding box loss function from
CIOU_Loss to GIOU_Loss; YOLOv5 targets many in the
postprocessing process of object detection. The screening of
the target anchor frame adopts a weighted NMS operation.

Compared with YOLOv4, YOLOv5 has a new focus
structure in the backbone network, which is mainly used
for slicing operations. In the YOLOv5s network model, an
ordinary image with a size of 3 × 608 × 608 is input into
the network, and after a focus slice operation, the feature
map with a size of 12 × 304 × 304 is converted, followed by
the ordinary convolution operation of 32 convolution ker-
nels. It is finally converted into a feature map with a size of
32 × 304 × 304. Different from the YOLOv4 network model
that only uses the CSP structure in the backbone network,
the YOLOv5 network model has designed two new CSP
structures. Taking the YOLOv5s network model as an exam-
ple, the backbone network uses the CSP1_1 structure and
the CSP1_3 structure, and the neck uses the CSP2_1 struc-
ture to enhance the feature fusion between networks. The
network structure of YOLOv5s is shown in Figure 1.

2.2. DWCA Moduel. The traditional channel module is ded-
icated to constructing various channel importance weight
functions. For example, SEnet [25] obtained a significant

effect improvement by calculating channel attention with
the aid of a 2D global pool and with a small computational
overhead. However, SENet only considers the encoding of
information between channels and ignores the importance
of position information, which is essential for capturing
the structure of objects in vision tasks. Coordinate attention
[26] has achieved significant performance improvement by
encoding the interchannel relationship and long-term
dependence. ECANet [27] proposed a method that does
not take dimensionality reduction measures to achieve
cross-channel local interaction and a method that automat-
ically adapts to select one-dimensional ordinary convolu-
tion, thereby achieving performance improvement. CBAM
[28] and BAM [29] reduce the channel input dimension of
the tensor and secondly use convolution to calculate spatial
attention to use position information. However, convolution
can only capture local relationships, but not what is needed
for modeling long-term dependence on visual tasks.

To solve the above problems, we designed a new atten-
tion mechanism based on previous work, which integrates
the position information in the feature space into the chan-
nel attention, so that the network can participate in a larger
area and at the same time avoid a lot of model parameters
overhead. The structure diagram of DWCA mechanism is
shown in Figure 2.

To reduce the lack of relevant location information
caused by two-dimensional global sharing, we use two one-
dimensional global aggregation operations to decompose
the channel attention into two aggregated features along
with the vertical and horizontal directions and then aggre-
gate the obtained features into two independent directional
perception features map. To promote the module to capture
the remote spatial interaction with precise location informa-
tion, this paper decomposes the global pooling according to
formula (1) and transforms it into a one-to-one dimensional
feature encoding operation. The specific operation process is
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Figure 1: Network structure diagram of YOLO v5s.
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as follows: first, use a pooling kernel of size (H, 1) or (1, W)
to encode the single dimension and horizontal and vertical
coordinates of input X. Therefore, the cth channel of the
output with a height of h can be seen below, and the details
are shown in formula (2).

Zc =
1

H ×W
〠
H

i=1
〠
W

j=1
xc i, jð Þ: ð1Þ

In the formula, Zc is the output related to the cth chan-
nel, H is the height of the input X, and W is the width of
the input X.

Zh
c hð Þ = 1

W
〠

0≤i<W
xc h, ið Þ: ð2Þ

In the formula, Zh
c ðhÞ is the specific output of the cth

channel where the height is h, and W is the width of the
input X.

By analogy, the specific output of the cth channel with
width w can be seen below, see formula (3) for details.

Zw
c wð Þ = 1

H
〠

0≤j<H
xc j,wð Þ: ð3Þ

In the formula,Zh
c ðwÞ is the output of the cth channel at

the width w, and H is the height of the input X.
By extending the above two features to the transforma-

tion of the aggregation of the two spatial dimensions, the
direction-aware feature map is obtained, followed by
CONCAT operation, and then use the shared 1 × 1 conven-
tional convolution transformation function to transform it,
such as the formula (4) shown.

f = δ F1 zh, zh
h i� �� �

: ð4Þ

In the formula, f ∈ RC/r×ðH+WÞ is an intermediate feature
map, which encodes the spatially related information in the
vertical and horizontal directions, δ is a nonlinear activation
function, and [·, ·] represents the splicing operation along
the spatial dimension.

Then, follow the spatial dimension, and f is transformed
into two independent tensors f h ∈ RC/r×H and f w ∈ RC/r×W ,
using two effective depthwise separable convolution trans-
forms f h and f w and then transforms the tensors f h and
f w with the same number of channels into input X, as shown
in formulae (5) and (6).

gh = σ Fh f h
� �� �

, ð5Þ

gw = σ Fw f wð Þð Þ: ð6Þ
In the formula, gh and gw are the attention weights to be

expanded, σ is the Sigmoid function, and r is the reduction
ratio of the number of channels.

Finally, the entire DWCA module can be expressed as
follows, see formula (7) for details:

yc i, jð Þ = xc i, jð Þ × ghc ið Þ × gw
c jð Þ, ð7Þ

2.3. Improve the YOLOv5 Algorithm

2.3.1. K-Means++ for Target Frame Optimization. Perform
K-means dimensional clustering on the general target detec-
tion dataset COCO to obtain the initial a priori anchor frame
parameters of YOLOv5. However, because the target types of
the COCO dataset have 80 categories, the helmet detection
types in this article only have two categories, which cannot
be to meet the actual needs of helmet wearing detection, and
the size of the a priori frame needs to be redesigned. Com-
pared with the size of the anchor frame designed only relying
on human prior knowledge, for the helmet wearing dataset, we
select the K-means++ algorithm to performmultidimensional
clustering on the marked target frame, resulting in different
numbers and sizes. As far as possible, the accurate matching
between the a priori anchor frame and the actual object is
achieved, thereby further improving the accuracy of helmet
detection. In the clustering process, the average intersection
ratio (IoU) corresponding to the number of centers of differ-
ent clusters is shown in Figure 3.

Observing Figure 3, we can get that when the number of
prior anchor box clusters is 0 to 9, the average intersection
ratio shows a rapid upward trend, but when the number of
a priori anchor boxes is 9 to 12, the average intersection ratio
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Figure 2: DWCA model network structure.
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increases gradually gentle. To balance the calculation accu-
racy and efficiency, 9 a priori anchor frames are finally
selected and equally distributed to 3 prediction branches of
different sizes. The determined a priori anchor frame sizes
are normalized as shown in Table 1.

Table 2 illustrates the pros and cons of the model’s per-
formance. Among them, the clustering method of a priori
anchor box is changed from K-means algorithm to K
-means++ algorithm, mAP has a certain improvement, and
the improved YOLOv5 algorithm changes due to the net-
work structure and the detection accuracy. There is also a
big improvement. At the same time, selecting the K
-means++ clustering method and the improved YOLOv5
model is 3.2 percentage points higher than the original
YOLOv5 algorithm. The average accuracy of the self-
made helmet wearing detection dataset reaches 95.9%,
which can accurately detect whether the construction per-
sonnel wears a hard hat.

2.3.2. DWCA Module Fusion Design. For small target detec-
tion tasks, as the sum of the model network layers gradually
increases, the feature information of small targets that can be
collected gradually decreases. So, it is easy to cause the net-
work model to false detection and miss detection of small
targets. The DWCA module itself is to integrate the location
information of the feature space with the channel features so
that the network can grasp the “key points” of the target fea-
tures during the training process. However, under specific
circumstances, which position of the DWCA module to per-
form feature fusion in the network model is effective is still a
question to be studied.

In this paper, the DWCA module is merged into differ-
ent positions of the network model, and the detection results
are studied. According to the structure of the YOLOv5s net-
work model, this paper will integrate the DWCA module in
the three areas of the backbone network, the neck, and the
prediction module of YOLOv5s. Since the DWCA module
is to enhance the relationship between channel information
and channel information in the feature space, our embeds

the DWCA module into each feature fusion area in the above
three parts, thereby generating three new types based on the
YOLOv5s algorithm. Network model is as follows: DWCA-
YOLOv5s-backbone, DWCA-YOLOv5s-neck, and DWCA-
YOLOv5s-prediction. Figure 4 shows the specific location
where the DWCA module is integrated into the network.

In Figure 3(a), the DWCA module is integrated at
CSP1_3 (i. e., the feature fusion) in the backbone network
of YOLOV5s. In Figure 3(b), the DWCA module is inte-
grated behind the CONCAT layer on the neck of YOLOV5s.
In Figure 3(c), the DWCA module is integrated, respectively,
before the convolution of each prediction in YOLOV5s.
Table 3 shows the experimental results of whether the
DWCA module is integrated with three different positions.

By visualizing the output of the same channel of the
three fusion-designed networks, as shown in Figure 5 (only
the channel output of the same feature map is visualized),
the experimental results show that, compared to fusing the
DWCA module into the network neck and network

Table 2: Effect evaluation of different models on the test set.

Detection model Clustering method
AP50/%

mAP/%
Hat Person

Original YOLOv5 K-means 93.3 91.7 92.7

Original YOLOv5 K-means++ 94.4 92.8 93.6

Improved YOLOv5 K-means 95.5 94.6 95.1

Improved YOLOv5 K-means++ 96.5 95.2 95.9

Table 1: Prior anchor box scales.

Feature map scale
Anchor box size

Anchor 1 Anchor 2 Anchor 3

Small scale (11.09,18) (21.5,30.8) (30.8,43)

Middle scale (38.1, 60) (52.3, 73.6) (63,103.3)

Large scale (89.2, 135) (120, 207.5) (209.4, 324)
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prediction part, fusing DWCA into the backbone network
can effectively strengthen the semantic information of the
feature layer on the instance and pay more attention to
the target hidden in the lower layer, which is easy to
ignore. The texture information and contour information
can effectively improve the network’s attention to small
targets.

3. Experimental Results and Analysis

3.1. Dataset Construction. In the detection direction, the
dataset required by experiments has always been an essential
basic condition. The safety helmet dataset that has been
open sourced is only SHWD (SafetyHelmetWearing-Data-
set). In this dataset, the category label data of not wearing
a helmet is mainly derived from the SCUT-HEAD dataset.
The SCUT-HEAD dataset is used by students in classroom
scenarios monitoring diagrams or photos taken, so the data-
set is not a standard construction site scene dataset, which
does not meet the detection requirements of actual building
construction scenarios. To solve this problem, this article
self-made a helmet wearing detection dataset in construction
scenarios. The main process of constructing this dataset
includes data collection, screening, and processing.

3.2. Data Collection. The images required for the dataset in
this article mainly come from the surveillance video framing
of the construction site, self-collecting on the construction
site, and Internet crawling. The collected data includes two

types of pictures of workers wearing and not wearing hel-
mets in different environments, different resolutions, and
different construction sites. Multiple sets of interference pic-
tures are added to the dataset, such as construction workers
wearing baseball caps and safety helmets. Construction
workers with hats placed on the table or in hand, construc-
tion workers wearing bamboo woven hats, etc., increase the
diversity of the dataset, thereby enhancing the robustness
of the network. The sample map of the dataset collected this
time is shown in Figure 6.

3.3. Data Screening and Processing. The pictures collected
from the surveillance video of the construction site are
divided into frames or crawled on the Internet. Many of
the pictures do not contain the construction personnel as
the research object. They can be regarded as background
pictures and have no practical significance for the study of
this article. The picture data is confirmed as the background
is deleted. This paper conducts a preliminary screening of
the collected image and selects the images that meet the
requirements as the annotation dataset.

Preprocess the data, convert the images that meet the
requirements into.jpg format, and use the labeling tool
labellmg to manually label each image, and the construction
personnel in the image i under wearing a helmet (hat) and
not wearing a helmet (person) These two categories are
labeled, as shown in Figure 7; after processing, a correspond-
ing XML tag file is formed, which contains the four

Table 3: Comparison of results of different detection models.

Network model P/% R/% Model parameters/M mAP/%

YOLOv5s 76.4 92.5 7.26 92.7

DWCA-YOLOv5-backbone 82.5 95.4 7.27 95.9

DWCA-YOLOv5-neck 70.9 93.7 7.26 91.6

DWCA-YOLOv5-prediction 72.5 92.8 7.27 92.4
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Original image DWCA-YOLOv5s-backbone DWCA-YOLOv5s-neck DWCA-YOLOv5s-prediction

Figure 5: Model heat map comparison.

(a) Put on the table (b) Hand held (c) Hand held (d) Hand held

(e) Hand held (f) Baseball cap (g) baseball cap (h) Normal sample

(i) Bamboo braided hat (j) Police_cap (k) Normal sample (l) Sunhat

Figure 6: Safety helmet sample image.
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coordinates of the target in the frame and the given category
(PASCAL VOC format).

The final dataset obtained in this paper has a total of
7076 images. Among them, the specific information of
whether to wear a helmet in the dataset can be seen in
Table 4. And the dataset contains a variety of construc-
tion scenes, which can more fully reflect the actual con-
struction scenes. The final dataset is subdivided into

training and validation in line with the 9 : 1 division ratio.
The number of training set pictures in the final 7076 pic-
ture dataset is 6,370 pictures, and there are 706 pictures
in the test set.

3.4. Experimental Environment. During the experiment,
this article has high requirements for the configuration
of the operating environment, and GPU acceleration is
required for the experiment. Table 5 shows the configura-
tion instructions for the experiment operating environ-
ment of this article. The model building, training, and
result testing are all completed under the PyTorch frame-
work, using the CUDA parallel computing architecture
and at the same time integrating the cuDNN acceleration
library into the PyTorch framework to accelerate com-
puter computing capabilities.

Figure 7: Safety helmet wearing status mark.

Table 4: Dataset category allocation.

Target
category

Training set a
target number

A test set the
target number

Total number
of labeled
targets

Wearing
helmets
category

81836 11316 93152

Not wearing
helmets
category

98187 12021 110208

Table 5: Experiment operating environment.

Category Entry Version

Hardware
configuration

System Ubuntu 18.04

GPU GeForce RTX 2080 Ti

Software
configuration

CPU
AMD Ryzen 7 3800X

8-Core

Python version 3.8

Deep learning
framework

Pytorch

CUDA 10.0

Table 6: Comparison of experimental results of multiple detection
algorithms.

Detection model
AP50/%

mAP/%
Hat Person

Faster RCNN 80.8 42.2 61.5

SSD 78.8 68.2 73.5

YOLOv3 89.12 80.7 84.9

YOLOv3 + SPP 90.5 86.3 88.4

YOLOv5m 94.8 93.1 93.9

YOLOv5l 95.1 93.5 94.3

YOLOv5x 95.6 94.3 95.0

YOLOv5s 93.3 91.7 92.7

Ours 96.5 95.2 95.9
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4. Result Analysis

4.1. Evaluation Index. In object detection, detection accuracy,
and recall, the average accuracy rate (mAP) is the basic index
to test the training model’s overall stability and performance.
This article also uses the above evaluation indicators to detect
helmet wearing model performance that is evaluated.

Apply the above evaluation indicators to the stability test of
the helmet detection model and then the detection results of
whether the construction worker wears a helmet are compared.
Among them, TPhat (true example), FPhat (false positive exam-
ple), TNhat (true negative example), and FNhat (false negative
example) are key indicators used to describe accuracy. Specifi-
cally, TP refers to the sum of workers who did not wear helmets
and whose test results were correct within the monitoring
range of the construction site. FP indicates the sum of workers
who wear helmets but are mistakenly detected, TN indicates
that results are completely correct, and FN indicates the sum
of workers who did not wear helmets but were mistakenly

detected as wearing helmets. The calculation process of accu-
racy rate and recall rate is shown in formulae (8) and (9).

APhat =
TNhat + TPhat

TNhat + TPhat + FPhat
, ð8Þ

Recallhat =
TPhat

FNhat + TPhat
, ð9Þ

Precisionhat =
TPhat

TPhat + FPhat
: ð10Þ

Precisionhat represents the ratio of real cases (TPhat) to the
sum of real cases and false real cases (TPhat+FPhat), and the
sum of real cases and false real cases is the total number of hel-
mets; Recallhatrepresents the sum of real cases(TPhat)and real
cases and false counterexamples (TPhat + FNhat). The ratio of
true cases and false counterexamples is the actual number
of helmets.

(a) Detection of strong light construction scene

Missed Detection

(b) Detection of construction scenes occluded by steel bars

Missed

Error

Detection

(c) Detection of targets of different sizes

Missed

Missed

Detection
Detection

(d) Detection of long-distance construction scenes

Figure 8: Comparison of test results of model parts under different construction scenarios.
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AP refers to the average value of all precisions obtained
under all possible recall rates. The average precision of the
mean is the average of the AP value in all categories, and
the calculation formula is shown in (3).

mAP =
1
C
〠
c∈C

AP cð Þ: ð11Þ

4.2. Result Analysis. This article uses the YOLOv5 algorithm
for helmet wearing detection. To verify that the algorithm
proposed has better results, the same number of test sets is
used under the same configuration conditions, and several
popular object detection networks at this stage are used for
comparative experiments: faster RCNN, SSD, and YOLOv3.
Among them, SSD and YOLOv3 are single-stage detection
algorithms, and faster RCNN is a two-stage detection algo-
rithm. The experimental results are evaluated using two
evaluation indicators AP50 and mAP. The experimental
results are shown in Table 6.

Observing Table 6, we can know that the DWCA-
YOLOv5 algorithm can significantly improve the accuracy
of detecting whether a worker is wearing a helmet. The aver-
age accuracy of the DWCA-YOLOv5 algorithm in this paper
can reach 96.2% for the construction personnel who wear
the helmet correctly and 95.1% for the construction person-
nel who do not wear the helmet. mAP (mean average preci-
sion) can reach 95.7%. Compared with faster RCNN and
SSD, our model detection results are better. Compared with
YOLOv3 and YOLOv5, the algorithm in this paper has a cer-
tain improvement in AP50 and mAP. This shows that the
DWCA-YOLOv5 algorithm has an excellent performance
in the accuracy of detection and detection of helmet wearing,
and it can ensure the accuracy of helmet detection in a com-
plex construction environment.

In addition, to more intuitively see the detection gap
between different algorithms, this paper also collected 158
pictures of the construction work site as a test set. In this test
set, we use YOLOv5 and our model to test separately. Some
of the detection results are shown in Figure 8 below.

From Figure 8, we can observe that the operator who
wears the helmet correctly is marked with a red frame, and
the operator who does not wear the helmet is marked with
a light green frame. Figure 8(a) shows the detection in a
strong light construction scene. In comparison, the detection
accuracy of the original YOLOv5 algorithm is much lower
than our algorithm; Figure 8(b) shows the detection of small
targets in the construction scene where steel bars are
shielded. After observation, the original model missed a con-
struction worker wearing a helmet who was behind the steel
bars; Figure 8(c) shows the detection of targets with different
sizes. The target size in close range is larger, and the target
size in distant range is smaller. Our model has detected all
the targets, while the original model missed the small targets
in distant range and mistakenly detected steel pipes as two
construction workers wearing safety helmets; Figure 8(d)
shows the detection of small targets in a long-distance con-
struction scene. The comparison shows that the original
YOLOv5 model has missed detection of long-distance small

helmets, and our model has a better detection effect. The
original YOLOv5 model misses this situation. There are
many inspections, but our model performs better. It can be
seen from the detection comparison in the abovementioned
various construction scenarios that the improved YOLOv5
model is better for the detection of safety helmets in a com-
plex operating environment.

5. Conclusions

This paper proposes an improved YOLOv5 helmet wearing
detection method. First, use the K-means++ method to per-
form dimensional clustering on the dataset of the self-made
construction operation scene; secondly, so as to capture
more detailed information, the DWCA attention mechanism
is combined with the backbone network. According to the
comparison of the final experimental results, our model
can obtain high detection accuracy, which can meet the
detection accuracy of helmets in the current complex operat-
ing environment. In the future, we will explore ways to keep
the model detection accuracy as much as possible while
reducing the weight of the model.
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