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Wireless Sensor Network (WSN) is widely used in precision engineering, which requires strict data accuracy. Therefore, it is of
practical value to evaluate the reliability of WSN data. Considering the complexity of the real environment, the sensor is bound
to be affected by the disturbance factors. Currently, the research result of WSN data disturbance is not ideal. Because the results
of reliability analysis are not necessarily credible under a disturbance environment. Thus, it is necessary to judge the reliability
of sensor nodes in the disturbance environment. Therefore, disturbance analysis is introduced. In this paper, the temporal
correlation and spatial correlation of measured data of WSN nodes are taken as reliability indicators. Through the disturbance
analysis method to simulate the disturbance in the working process of nodes, a data reliability evaluation model of WSN nodes
is proposed, which is based on the evidence reasoning (ER) rule in the disturbance environment. Based on the wireless sensor
experiment of the Intel Berkeley research laboratory, the rationality of the model is explained in this paper. ER rule considering
disturbance provides an effective method to analyze the reliability of WSN data.

1. Introduction

Sensors are mainly used for real-time monitoring of complex
monitoring areas, to grasp the attribute data of the regional
environment. They play an essential role in the environment
[1], food [2], industry [3], and other fields. The characteris-
tics of large quantity, wide range, limited energy, complex
environment, and network stability are possessed by WSN
nodes [4, 5]. Because of these characteristics, sensors are eas-
ily disturbed by environmental factors, network problems,
and node failures. The data collected by sensors is not
completely reliable, which may cause incalculable losses in
engineering practice or combat tasks. Therefore, it is of great
significance to analyze sensor nodes’ data reliability and
adaptability under disturbance conditions.

To solve the problem of WSN data reliability, many
scholars have given different research methods. From the per-
spective of sensor failure analysis, Gao et al. [6] proposed a
new distributed and adaptive trust measurement method for
MANET. Direct trust is calculated through inter-node com-
munication, energy, and recommendation methods in this
method. In addition, the propagation distance of the trust
degree is considered to calculate the indirect trust degree,
which greatly improves the ability to distinguish malicious
nodes. He et al. [7] proposed a reliability evaluation method
based on a hierarchical BRB (Belief Bule Base), which analyzed
WSN reliability evaluation from internal failures and external
attacks; Peng et al. [8] proposed a detection method based on
sensor network time series data, which uses the degree of dif-
ference between the calculated test data and the normal
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interval to determine the source of the fault; In the above
method, the aspects of detecting malicious nodes and sensor
failures are analyzed. Thesemethods have better analysis results
when the data changes drastically. However, for insignificant
data fluctuations, satisfactory results cannot be achieved.

From the perspective of improving the reliability of infor-
mation transmission, Zhang et al. [9] proposed an energy-
balanced routing method based on forwarding perception
factors. In this method, the selection of the transmission
node is carried out by analyzing the weight of the transmis-
sion path and the forward energy density. By studying the
method of selecting cluster heads in traditional clustering
algorithms, it is easy to cause problems of poor network sta-
bility and reliability. Ge et al. [10] proposed a new passive
multi-hop clustering algorithm. Zhang et al. [11] proposed
an effective data clustering method based on compressed
sensing by analyzing the advantages of compressed sensing
technology in wireless sensor network data aggregation.
Zhang et al. [12] proposed a new method of tensor heteroge-
neous integration learning data loss estimation based on
fuzzy neural networks to solve the situation of data loss and
abnormality. Alipio et al. [13] proposed a reliable transmis-
sion protocol with RT-CaCC cache-aware congestion control
mechanism, using cache management strategies to alleviate
data packet loss in the network. Sharma D et al. [14] dis-
cussed the influence and interdependence of different node
heterogeneity on routing decisions. They improved the reli-
ability of WSN in various scenarios. In the above method,
the reliability of the sensor is improved from aspects such
as optimizing the data transmission strategy. And these
methods reduce the loss or distortion of data in the process
of transmission. However, from the perspective of sensor
data change, the effect is not satisfactory.

The network partition is divided by the distance from the
node to the base station. From the perspective of optimizing
network routing protocols, Liu et al. [15] proposed a new
unequal cluster routing protocol that considers energy bal-
ance. Zhang et al. [16] proposed a new routing protocol
QG-OLSR by improving the quantum genetic strategy and
combining optimized link-state routing. After that, consider-
ing the two properties of frequent network topology replace-
ment and poor communication link reliability in the vehicle
ad hoc network, a new adaptive routing service algorithm
was proposed [17]. The shortcomings of dynamic source
routing protocol in mobile ad hoc networks are analyzed
and optimized. Liu et al. [18] proposed a new dynamic source
routing protocol based on genetic algorithm-bacterial forag-
ing optimization. During mobile edge computing, node
movement and node energy caused link failures, and network
delays caused by failures were discovered. Chen et al. [19]
proposed a multi-path routing protocol based on link life-
time and energy consumption prediction. Xiang et al. [20]
proposed two new reliability indicators: generalized terminal
reliability and average generalized terminal reliability and
optimized the design of WSN. The above methods are ana-
lyzed from the perspective of optimizing network routing
methods. However, the processing of sensor data is lacking.

In the above discussion, the reliability of WSN is mainly
focused on various routing protocols, topology design or net-

work coverage, fault diagnosis, and connectivity optimiza-
tion. However, the above research ignores that the main
function of WSN is to monitor the target and collect attribute
information. And the real-time data reliability evaluation is
critical and vulnerable to disturbance. Moreover, WSN real-
time data has the characteristics of unsupervised. However,
the general unsupervised learning methods are vulnerable
to extreme point interference. They cannot adequately con-
sider the impact of disturbance on WSN, such as data-
based clustering methods and knowledge-based analytic
hierarchy process. Therefore, for the reliability evaluation of
WSN data, it is necessary to consider multiple reliability
characteristics based onWSN data. However, due to environ-
mental disturbance, and the assessment involves qualitative
and quantitative information and its uncertainty. The above
methods have no good effect on this problem.

D-S evidence theory [21] and ER algorithm [22] are fur-
ther developed into ER rule [23]. In practical application, the
evidence is not completely reliable. Therefore, to make the evi-
dencemore in line with the actual situation, the concept of evi-
dence reliability is introduced into ER rule to reflect the
reliability of evaluation information [21]. In ER rule, weight
and reliability are fully considered. Experts’ subjective experi-
ence and objective data are combined to describe the data with
belief distribution. It has significant advantages in dealing with
information uncertainty [24]. And the whole process is inter-
pretable. Data features are extracted to evaluate WSN data’s
reliability without supervision, which can effectively solve the
above problems. Due to their strong handling capacity in
terms of uncertainty and the characteristics of considering
the weight and reliability of evidence, ER rules are widely used
in many fields, such as evaluation and decision-making. For
example, Zhao et al. [25] proposed an on-line security evalua-
tion method based on ER. This method fuses the state of “his-
tory”, “present” and “future” of the system to evaluate the
comprehensive security level of the system. Zhou et al. [26]
extended ER rule to the MADM problem in a group
decision-making environment. The interval weight and reli-
ability of experts and evidence are fully used to evaluate the
service life of electric vehicles. In this paper, the measured data
of WSN is taken as the research object. And ER rule is applied
to the reliability evaluation of WSN data. Considering the dis-
turbance environment’s influence on the evaluation process,
the method of WSN data reliability evaluation under the dis-
turbance environment is proposed based on ER rule.

The remainder of this paper is organized as follows. In
Section 2, a feasibility analysis of WSN data reliability is pre-
sented to determine the whole evaluation process. In Section
3, the working mechanism model of WSN is constructed to
describe a series of methods used from the determination of
evaluation indicators to the final analysis of evaluation
results. The model’s effectiveness is validated by experiments
and case studies in Section 4. The conclusion is reported at
the end of this paper.

2. Description of the Problem

WSN is easily affected by disturbance factors because of its
operational characteristics. Therefore, disturbance factors
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can cause data anomaly or even loss, such as environmental
countermeasures and network failure. Moreover, the evalu-
ation results are not credible in different interference envi-
ronments. The abnormal monitoring data can reflect the
influence of disturbance on sensor nodes. Corresponding,
the monitoring data are reflected through the disturbance
analysis whether we want to adapt sensor nodes to a partic-
ular environment. This provides ideas for the follow-up
experiments. Disturbance analysis was first proposed by
Ho and applied to discrete event dynamic systems.
Through the experimental method, a disturbance sample
trajectory is added to the original data to analyze the sys-
tem performance indicator’s sensitivity to a critical param-
eter [27]. Therefore, this paper simulates the uncertainty
from the perspective of monitoring data in the actual envi-
ronment. The reliability evaluation model of sensor nodes
data is established in the disturbed environment based on
ER rules. This model is used to quantify the adaptability
of sensor nodes to different disturbances, so as to analyze
the reliability of sensor data. Combine the problems that
may occur in the actual project, and make the following
summary:

Problem 1. Construct an evaluation indicator system. Many
factors can reflect the reliability of sensor node data. A rea-
sonable evaluation indicator system is the basis of accurate
evaluation of node data reliability.

S = x1,⋯, xi,⋯, xIf g ð1Þ

where S is the indicator system. xi is the ith indicator. And I is
the number of indicators.

Problem 2. The reliability evaluation model of sensor nodes
data is constructed based on ER rule under disturbance envi-
ronment. Based on considering the indicator weight and reli-
ability, all indicator information can be fused by ER rule to
evaluate the data reliability of sensor nodes. Besides, the reli-
ability of data collected by sensor nodes is related to the
degree of disturbance. To better simulate the actual work
scene, this paper proposes the following model:

Y tð Þ =Ψ z tð Þ,w, r, σ, Δz tð Þ½ � ð2Þ

where zðtÞ is the indicator data at time t. w is the weight
of the indicator. r is the reliability of the indicator. σ is the
disturbance intensity. ΔzðtÞ is the disturbance variable that
the indicator data receives at time t. Ψð•Þ is the nonlinear
function corresponding to the model and YðtÞ is reliability
evaluation result under the influence of disturbance at
time t.

In this paper, the non-disturbance case is taken as a par-
ticular case of the above model. In other words, disturbance
intensity σ and disturbance variables ΔzðtÞ are not consid-
ered. The following formula is obtained:

y tð Þ = Γ z tð Þ,w, r½ � ð3Þ

where Γð•Þ is the nonlinear function corresponding to the ER
rule. yðtÞ is the reliability evaluation result at time t without
disturbance.

Problem 3. The reliability of sensor nodes is analyzed for the
disturbed environment. The adaptability of sensor nodes is
different for different disturbance environments. If the
impact of disturbance on the data exceeds a specific range,
that is, the sensor nodes cannot normally work in this envi-
ronment. And the reliability of sensor data is affected. There-
fore, other features of WSN need to be adjusted. The formula
can be expressed to quantify the adaptability of sensor nodes
to disturbance environment as follows:

S Δz tð Þð Þ =ϒ y tð Þ, Y tð Þ, Δz tð Þ½ � ð4Þ

where SðΔzðtÞÞ represents the disturbance factor of the indi-
cator data at t times affected by the disturbance variable Δz
ðtÞ. It can be used to measure the adaptability of WSN nodes
in a disturbed environment.

The whole evaluation process is shown in Figure 1:

3. Model Implementation Process

3.1. Determine the Evaluation Indicator System. From the
perspective of monitoring data, the reliability of sensor node
data is evaluated. The factors reflecting the reliability of node
data are determined. And a reasonable evaluation indicator
system is constructed. Due to the complexity of the environ-
ment and the limitation of node health, there are many indi-
cators that can reflect sensor node data reliability. For
example, the values of environmental attributes measured
by the same node will not fluctuate significantly in a short
time, which is based on the characteristics of WSN. This rep-
resents the node’s time correlation; since the monitoring
environment is similar between different nodes in the neigh-
borhood, the measured environmental attribute values
should be similar and have the same changing trend. This
represents the spatial correlation of the nodes. In this paper,
temporal correlation and spatial correlation are used as the
evaluation indicators to evaluate sensor node data [28]. Tak-
ing temperature data as an example, the temporal correlation
and spatial correlation of temperature data are extracted to
evaluate sensor node data reliability.

3.1.1. Time Correlation. In probability statistics, the standard
deviation is usually used to measure the degree of statistical
distribution, which reflects the degree of dispersion of data
within a group. Because the temperature data measured by
sensor nodes in a short time should not have the characteris-
tics of large fluctuations. Therefore, the method of calculating
the standard deviation of data in a time period is used to
reflect the time correlation of the node in this paper:

Am
i tð Þ = ami t − n + 1ð Þ,⋯, ami t − 1ð Þ, ami tð Þ½ � ð5Þ

Among them, ami ðtÞ represents the raw data of node m
about indicator xi at time t. Am

i ðtÞ represents the n −Dimen
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sional sensor data set about indicator xi collected by node m
in a sliding time window ½t − n + 1, t�.

ξ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n‐1〠

n−1

k=0
ami t − kð Þ − Am

i tð Þ
h i2

vuut ð6Þ

where ξ is the standard deviation corresponding to data set
Am
i ðtÞ. Am

i ðtÞ =∑n−1
k=0a

m
i ðt − kÞ/n is the mean value of n −Di

mensional data in set Am
i ðtÞ.

3.1.2. Spatial Correlation. The monitoring environment is
similar between different nodes in the neighborhood. The
measured environmental attribute values should be similar
and have the same changing trend. Therefore, in this paper,
absolute error is used to reflect data proximity between dif-
ferent nodes. Besides, the Pearson correlation coefficient is
used to reflect data trends among nodes. This is regarded as
the spatial correlation of nodes.

(1) Pearson Correlation Coefficient. Pearson correlation coef-
ficient [29] is used to express the statistical indicator of the
close relationship between variables in a period. The correla-
tion coefficient is expressed as follows:

χl,m tð Þ = cov l,mð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var lð Þ var mð Þp ð7Þ

where the range of correlation coefficient χl,mðtÞ is ½‐1, 1�.
1 means that two variables are entirely linearly related. -1
means that the two variables are completely negatively
correlated. The closer the data is to 0, the weaker the
correlation and 0 means that the two variables are not
related.

var mð Þ =
∑n−1

k=0 ami t − kð Þ − Am
i tð Þ

h i2
n − 1

Am
i tð Þ = ∑n−1

p=0a
m
i t − pð Þ
n

ð8Þ

where var ðmÞ represents the variance corresponding to
the sensor data set Am

i ðtÞ. Am
i ðtÞ represents the mean

value of the n −Dimensional data in the set Am
i ðtÞ.

It is known that adjacent node l,m obtains n −Dimensi
onal data sets of Al

iðtÞ and Am
i ðtÞ at time t, respectively. The

covariance cov ðl,mÞ of the data set of nodes l,m is calculated
as follows:

cov l,mð Þ =
∑n−1

k=0 ali t − kð Þ − Al
i tð Þ

h i
ami t − kð Þ − Am

i tð Þ
h i

n − 1
ð9Þ

Belief distribution of
evidence 

Weight evidence

w

Evidence reliability

r

Expert knowledgeIndicator system 
S = {x1, ..., xi, ..., xI}

Indicator data 
Z (t)

Perturbation coefficient 
S (Δz (t)) = γ [y (t), Y (t), Δz (t)]

Reliability analysis of sensor node data
under disturbance 

Y (t) = Ψ [z (t), w, r, 𝜎, Δz (t)]

Reliability analysis of sensor node
data without disturbance
y (t) = Γ [z (t), w, r]

2

1

3

Add disturbance to
indicator data

Figure 1: Data reliability evaluation of sensor nodes considering perturbation.
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(2) Absolute Error. Absolute error is used to calculate the
proximity of node data to other nodes in the neighborhood.
The calculation formula is

Φm tð Þ = Am
i tð Þ − Ai tð Þ

��� ���

Ai tð Þ =
∑Q

q=1A
q
i tð Þ

Q − 1 q ≠mð Þ
ð10Þ

where ΦmðtÞ represents the absolute error between node m
and other nodes in a certain time window ½t − n + 1, t�.
AiðtÞ represents the average value of indicator xi collected
by all nodes in the neighborhood, except node m. There are
Q nodes in this neighborhood.

3.2. Evaluation Indicator Weight and Reliability Calculation.
Before using ER rule to fuse indicator data, we need to get the
weight of evidence and reliability parameters. In this paper,
the coefficient of variation method and the distance-based
method is used to determine indicator weight and data reli-
ability [30]:

3.2.1. Indicator Weight. The indicator weight represents the
relative importance of the indicator information in the reli-
ability evaluation of wireless sensor networks. The coefficient
of variation method gives the indicator weight by judging the
relative change range of the indicator data. Let the weight of
the indicator be w1, w2, w3. The indicator weight is

wi =
vzi

∑n
i=1vzi

, n = 3ð Þ ð11Þ

Among them, vzi = szi /zi, szi is the samplemean square error

of index xi in timeH, szi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ðH − 1Þ∑H

h=1ðziðhÞ − ziÞ2
q

. ziðhÞ
represents the data of the indicator xi at time h . zi is the
sample mean value. zi = 1/H∑H

h=1ziðhÞ. vzi is the change
range of the indicator. In WSN, due to the characteristics
of its own stability, the larger the change range of the indi-
cator, the greater the ability of the indicator to reflect abnor-
mal data, and the greater the weight, which meets the actual
requirements.

3.2.2. Indicator Reliability. Indicator reliability is used to rep-
resent the ability of indicator data to describe the real charac-
teristics of wireless sensor networks, which is an objective
attribute. It can be expressed by the average distance of indi-
cator data. The reliability of the indicator is assumed to be r1,
r2 and r3, respectively. From a distance-based method, the
following results are obtained:

di,h = zi hð Þ − zij j ð12Þ

Di,h =
1
H

〠
H

h=1
di,h =

1
H

〠
H

h=1
zi hð Þ − zij j ð13Þ

where ziðhÞ represents the data of the index xi at time h. zi is
the average value of all index data in time H. di,h is the dis-

tance between ziðhÞ and zi. Di,h is the average distance of all
test data. The indicator reliability is:

ri =
Di,h

max di,h
ð14Þ

In the above formula, di,h is used to represent the volatil-
ity of the test data. Based on the analysis of the wireless
sensor network’s stability characteristics, the greater the fluc-
tuation, the lower the reliability, and the smaller the ri.

3.3. Indicator Data Standardization. Standardization of indi-
cator data is the basis for evaluation issues. When the data is
unified, the synthesis of indicators is meaningful. According
to the analysis of historical engineering test and the under-
standing of WSN working mechanism, the indicator refer-
ence level and reference value are determined by experts.
Then, according to the reference level and reference value,
we use the rule-based information transformation method
[23] to transform the indicator data into belief distribution.
The belief degree pi,j of the input value can be calculated as
follows:

pi,j =
hi,j+1 − zi,j
hi,j+1 − hi,j

, hi,j ≤ zi,j ≤ hi,j+1, j = 1,⋯, J − 1

pi,j+1 = 1 − pi,j, hi,j ≤ zi,j ≤ hi,j+1, j = 1,⋯, J − 1
pi,k = 0, k = 1,⋯, J ; k ≠ j, j + 1

8>>>><
>>>>:

ð15Þ

where hi,jði = 1, 2,⋯, I ; j = 1, 2,⋯, JÞ is the reference value
of indicator xi. J represents the number of reference values,
and hi,j+1 ≥ hi,j. zi,j represents the input data of indicator xi.

3.4. Reliability Evaluation Method of Sensor Node Data Based
on Evidential Reasoning Rules in a Disturbed Environment

3.4.1. Basic Structure of Data Reliability Analysis for Wireless
Sensor Nodes considering Disturbance. Based on standardiz-
ing indicator data and calculating its weight and reliability,
ER rule is used to fuse indicator data and parameters. It is
used to calculate the data reliability of sensor nodes at a spe-
cific time. According to the calculation formula of ER rule,
the implementation process of ER rule is analyzed in detail.
Suppose that a node collects T pieces of data, and each piece
of information has I indicators. The input data is ziði = 1,
⋯, IÞ, which is represented as evidence eiði = 1,⋯, IÞ. The
frame of discernment is composed of N evaluation level Hn
ðn = 1,⋯,NÞ, namely Θ = fH1,⋯,HNg. After data stan-
dardization, the evidence can be expressed as the following
form of belief distribution:

ei = Hn, pn,i
� �

, n = 1,⋯,N ; Θ, pΘ,i
� �� � ð16Þ

where pn,i is the belief degree of the evaluation scheme evalu-
ated as evaluation level Hn under evidence ei. pΘ,i represents
the belief degree of the ith indicator relative to the discern-
ment framework Θ, namely global ignorance, and satisfies 0
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≤ pn,i ≤ 1,∑N
n=1pn,i ≤ 1. The weight of evidence is wiði = 1,

⋯, IÞ, which satisfies 0 ≤wi ≤ 1 after normalization. The reli-
ability of the evidence is riði = 1,⋯, IÞ, and it satisfies 0 ≤ ri
≤ 1. Then its mixed weighted belief distribution form is:

mi = Hn, ~mn,ið Þ,∀θ ⊆Θ ; p Θð Þ, ~mp Θð Þ,i
� 	n o

ð17Þ

where PðΘÞ is a power set. ~mn,i represents the mixed
probability quality of the ith indicator under level Hn,
and satisfies:

~mn,i =
0, Hn =∅

crw,imn,i, Hn ⊆Θ,Hn ≠∅

crw,i 1 − rið Þ, Hn = P Θð Þ

8>><
>>:

ð18Þ

where ∅ is an empty set. crw,i = 1/ð1 +wi − riÞ is the nor-
malization coefficient. mn,i is the basic probability quality
of the ith indicator under level Hn, and mn,i =wipn,i.

Each indicator is used to describe some aspect of the
physical environment. The data of each indicator of a
node can be obtained by Equation (15) and its belief dis-
tribution can be expressed by Equation (16). The final reli-
ability evaluation result is obtained by fusing the indicator
information through ER rules. The combined belief pθ,eðIÞ
of θ is determined by the following formula for I piece
of evidence:

m̂n,e kð Þ = 1 − rkð Þmn,e k−1ð Þ +mp Θð Þ,e k−1ð Þmn,k
h i

+ 〠
A∩B=θ

mA,e k−1ð ÞmB,k
ð19Þ

m̂p Θð Þ,e kð Þ = 1 − rkð Þmp Θð Þ,e k−1ð Þ ð20Þ

mθ,e kð Þ =
0,Hn =∅

m̂n,e kð Þ
∑D⊆Θm̂D,e kð Þ + m̂P Θð Þ,e kð Þ

,Hn ≠∅

8><
>: ð21Þ

pθ,e kð Þ =
0,Hn =∅

m̂n,e kð Þ
∑D⊆Θm̂D,e kð Þ

8><
>: ,Hn ⊆Θ,Hn ≠∅ ð22Þ

Among them, k = 1, 2,⋯, I, pθ,eðkÞ represents the
belief degree of the first k indicators to the evaluation
level Hn after fusion and meets the requirements of
mn,eð1Þ =mn,1 andmpðθÞ,eð1Þ =mpðθÞ,1. Through the above
iterative algorithm, the comprehensive evaluation results
are obtained:

e Ið Þ = Hn, pn,e Ið Þ
� 	

, n = 1,⋯,N , Θ, pΘ,e Ið Þ
� 	n o

ð23Þ

Let the utility of evaluation level Hn be uðHnÞ. The
expected utility of the evaluation scheme is calculated
by the utility-based method [23].

u = 〠
N

n=1
u Hnð Þpn,e Ið Þ + u Θð ÞpΘ,e Ið Þ ð24Þ

where u is the expected utility of the evaluation, which
can be used to describe the data reliability of wireless
sensor networks.

However, some factors will affect the reliability of data
collection and analysis, and reduce the real scene’s applica-
tion quality. Such as network fluctuations, environmental
confrontation, and other factors. Therefore, we consider
introducing disturbance effects in the data. As shown in the
figure below:

In Figure 2, the first part is the original sample of data
reliability evaluation, with two pieces of evidence ei (input
data is zi) and ej as examples. The ER rule is used to fuse
the two parts of evidence. The data reliability evaluation
result of the node can be obtained, which is recorded as
PMðziÞ. Where PMðziÞ means the utility of data zi, which
is essentially the same as expected utility u. In the second
part, the disturbance samples are considered. Based on the
original sample, the input data of evidence ei becomes evi-
dence ðzi + σΔziÞ. Where σ is the disturbance intensity.
Δzi is the disturbance variable. The reliability evaluation
result of node data is obtained under the condition of dis-
turbance, which is recorded as PMðzi + σΔziÞ. The belief
distribution of evidence ei is obtained under disturbance
situation by Equation (15).

ei = Hl ,
zi + σiΔzi − hl+1

hl − hl+1


 �
, Hl+1,

hl − zi − σiΔzi
hl − hl+1


 �
, Hk, 0ð Þ

� 

ð25Þ

Among them, k ∈ ½1,N� and k ≠ l, l + 1.
The other indicators are known. And the rule-based

method is used to transform it into the form of belief distri-
bution. According to ER rule, sensor nodes’ data reliability
considering disturbance can be obtained by fusing the indica-
tor information. To further analyze the adjustment ability of
nodes to different disturbance signals and measure the

ER rule

ER rule

zi

Si

Evidence ei

Evidence ei

Evidence ej

Evidence ej

PM (zi)

PM (zi+𝜎Δzi)
+

1

2

𝜎Δzi

Figure 2: WSN node data reliability model considering
perturbation.
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adaptability of nodes to disturbance environment, distur-
bance factor Si is proposed:

Si =
PM zi + σΔzið Þ − PM zið Þ

Δzi
ð26Þ

If Si < jεj, it means that the impact on the node is accept-
able in this environment. The node can complete the job suc-
cessfully. ε is the maximum error of the disturbance factor.

3.4.2. Inference Process of Data Reliability Analysis of Wireless
Sensor Nodes considering Disturbance. In the last part, the
mathematical model has been established for the implemen-
tation of the evidence reasoning rule considering distur-
bance. In this section, the general method of the model is
analyzed in detail. The original data is added disturbance.
According to Equation (26), if σ = 0 or Δzi = 0, then uðzi +
σΔziÞ = uðziÞ, we get SðΔziÞ = 0, which means the distur-
bance is invalid. The implementation of ER rule follows
exchangeability, that is, the combined order of evidence will
not affect the final result. Based on this feature, the implemen-
tation of ER rule-PA is divided into four steps, as shown in
Figure 3. The following is the reasoning process of ER rule-PA.

Step 1: By fusing ðI − EÞ piece of evidence with invalid dis-
turbance, we get the result eðI − EÞ as shown in Equation (23).

Step 2: The first disturbance evidence e1 ′ is fused with the
result of the first step to get eðI − E + 1Þ. And the expected
utility uðz1 + σΔz1Þ under disturbance and the expected util-
ity uðz1Þ without disturbance are calculated, respectively.

Step 3: The disturbance factor SðΔz1Þ is calculated
according to Equation (26).

Step 4: The second and third steps are repeated to fuse the
residual disturbance evidence with eðI − E + 1Þ. And the dis-
turbance factors are calculated in turn.

4. Case Analysis

The validity of the above model is verified in this chapter. By
analyzing the indicator of sensor node data, ER rules are used
to evaluate sensor node data reliability. Moreover, sensor
nodes’ network stability and environment antagonism are
introduced as the main disturbance factors. The influence
on sensor nodes is considered in a disturbed environment.

4.1. Background of the Experiment. The experimental data of
this paper comes from the wireless sensor experiment of the
Intel Berkeley research laboratory. In this experimental sce-
nario, some modules are installed in sensor nodes, such as
temperature sensing, humidity sensing, light sensing, etc.
The experimental environment can be real-time monitored
to obtain the temperature, humidity, light intensity, and
other environmental data of the target environment. As
shown in Figure 4. In this paper, through the measured data
collected by the sensor, 169239 pieces of data are sampled as
experimental data from four adjacent nodes in WSN within
30 days. However, due to the different time interval of data
collection, and useless data, the experimental data is proc-
essed. After processing, each node has 3030 pieces of data, a
total of 12120 pieces of data, in which each environmental

Evidence: eE+1, eE+2, eE+3

ER rule

ER rule

PA

...

...

ER rule

ER rule

PA

PA

Step 1

Step 2

Step 3

Step 4

Weight: wE+1, wE+2, ... , wI
Reliability: rE+1, rE+2, ... , rI

e (I–E)

e (I–E+1), u (z1), u (z1+𝜎Δz1)

e (I–E+2), u (z2), u (z2+𝜎Δz2)
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S (Δz1)

S (Δz2)

S (ΔzE)

Figure 3: Reasoning process of ER rule-PA.
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data is the average value of sampling within 10 minutes. Con-
sidering the space, temperature data are used as the main
experimental data for evaluation in this paper.

4.2. Indicator Data. Node 1 is used as an example in this
paper. In Figure 5, the temperature data of node 1 and the
average temperature data of other nodes in the neighborhood
are shown without disturbance. Considering the actual work-
ing state of each node in the sensor, the temperature thresh-
old is set according to the actual temperature. Once the
temperature data of the node exceeds the threshold at a par-
ticular time point, and the threshold cannot be corrected.
Then it can be judged that the node is faulty, and the node
is not considered. From the analysis of Figure 1, it can be con-
cluded that the temperature data of node 1 has a high degree
of coincidence with the data of neighboring nodes. And there
are obvious differences in a few time points. Moreover, the
temperature of node 1 increased sharply after 2844 t.

4.3. Data Reliability Evaluation of Wireless Sensor Networks
Based on ER Rule under Disturbed Environment

4.3.1. Data Reliability Analysis of Wireless Sensor Networks
without Disturbance. Based on the model proposed in Sec-
tion 3.4, the data reliability of sensor nodes is evaluated.
According to the expert experience and the sensor’s working
mechanism, the evaluation level is set as “high”, “medium”,
and “low”. Therefore, the discernment frame is Θ = fðH1, h
ighÞ, ðH2,mediumÞ, ðH3, lowÞg. And the reference values

50

51

52 53

54

49

48

47
46

45

44
43

40

4142

39 37
35

33

34 32 30 28 26
25 24

27

23

22

20
21

19

18

1413

12
11

10

9

7

8 15
16

17

29
31

3638

1

2
3

4

65

Server

Elec Copy

Kitchen

Lab

Storage

Conference

Office Office PhoneQuiet

Figure 4: Distribution map of wireless sensors at Intel Berkeley Research Lab.
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Figure 5: Temperature comparison between node 1 and other nodes.

Table 1: Indicator evaluation level and reference value.

H1 H2 H3
Standard deviation 0 0.5 1.5

Absolute error 0 0.5 2

Correlation coefficient 1 0.7 0
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are set as shown in Table 1. The “medium” reference value of
standard deviation and the absolute error is the mode of the
eigenvalue. And the “low” reference value is set to the maxi-
mum number. The reference value of correlation coefficient
is divided by reasonable partition, according to the correla-
tion level and expert knowledge.

Disturbance analysis is an experimental method by add-
ing a disturbance sample trajectory on the basis of the origi-
nal data. It is used to analyze the sensitivity of the system
performance indicator to a critical parameter. In this paper,
the undisturbed situation of indicator data is analyzed as fol-
lows. Suppose that the time sliding window is 1 hour. And
the unit is h. Therefore, 3030 sets of data are set to 505 6-
dimensional vectors. The time dependence of temperature
is obtained by Equation (5) and (6). And the space depen-
dence of temperature is obtained by Equation (7)-(10). The
data is transformed by a rule-based method as shown in
Equation (15). Then the data is transformed into the form

of belief distribution as shown in Equation (16). The follow-
ing is an example of belief transformation: Suppose that the
correlation coefficient of indicator temperature is 0.9 at time t,
p1,1ðtÞ = ð0:9 − 0:7Þ/ð1 − 0:7Þ = 0:67p1,2ðtÞ = 1 − ð0:9 − 0:7Þ/
ð1 − 0:7Þ = 0:33, p1,3ðtÞ = 0. Therefore, the belief distribution
of Equation (16) can be expressed as:

ei tð Þ = H1, 0:67ð Þ, H2, 0:33ð Þ, H3, 0ð Þf g ð27Þ

The weights of standard deviation, absolute error and
correlation coefficient are w1, w2 and w3, respectively. And
the reliability is r1, r2 and r3, respectively. In the following,
we use the coefficient of variation method as shown in Equa-
tion (11) to obtain the weights of the indicators, which are
w1 = 0:38, w2 = 0:41 and w3 = 0:21, respectively. According
to the Equation (12)-(14), the indicator reliability is r1 = 0:7
, r2 = 0:67, r3 = 0:71. The reliability of node 1 is evaluated
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Figure 6: Reliability evaluation results of No. 1 node in WSN.
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by using ER rules as Equation (19)-(23). And the evaluation
results are shown in Figure 6:

It can be seen from the above figure that the data reliabil-
ity of node 1 is mostly concentrated in “high” reliability in the
process of environment detection. The second is “medium”
reliability. And “low” reliability is less, mainly distributed
after 481 H. The above analysis is consistent with the real sit-
uation of the sensor. The overall situation remained in the
good state.

Among them, uðH1Þ = 1, uðH2Þ = 0:5 and uðH3Þ = 0 are
set. As shown in Figure 7, the expected utility of reliability
is calculated by using the utility-based method as shown in
Equation (24).

In Figure 7, the expected utility of the reliability evalua-
tion results of node 1 ranges from 0.5 to 1. And this belongs

to the middle and high levels. Among them, the reliability of
a few instantaneous time points is less than 0.5. It can be seen
from Figure 7 that the reliability decreases after 474 h. After
481 h, the node reliability decreases and remains below 0.5.
This indicates that the node has failed.

To verify the effectiveness of the method, the points with
partial reliability lower than 0.5 will be selected and com-
pared with Figure 5. The time points of abnormal fluctua-
tions in the node temperature data are accurately identified
by using this method. As shown in Figures 8 and 9.

In Figure 8, abnormal data and reliability of nodes are
displayed in normal working time. For example, the temper-
ature difference and the temperature change trend of the
nodes in the neighborhood are quite different at 516 t. And
the corresponding node reliability is lower than 0.5 at 86 h.
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In Figure 9, temperature data and reliability are displayed at
the time of node failure. After 2844 t, the temperature data of
node 1 is very different from the average temperature data of
other nodes. Corresponding, the reliability began to decrease
after 474 h. After 481 h, the reliability is less than 0.5.

After 2844 t, the difference of temperature data gradually
decreased and then increased over a period of time in
Figure 9. This is because the evaluation result of 474 h is the
average evaluation result of data change in the period of
2838 t to 2844 t. Therefore, compared with other time in the
critical interval, the evaluation result here is better. It indi-
cates that the node is invalid. The evaluation results are con-
sistent with the actual situation. The validity of reliability
evaluation results is proved.

4.3.2. Reliability Analysis of Sensor Node Data under
Disturbance. After analyzing the data reliability of sensor
nodes by ER rules, the real-time state of sensor node reliabil-
ity can be observed. But the disturbance of external factors to
sensor nodes is not considered. In addition, through the anal-
ysis of the sensor’s working model, it is found that it will
inevitably be affected by various factors. In this section, we
evaluate the reliability of sensor nodes based on the above-
mentioned data reliability evaluation model considering dis-
turbance. The disturbance variable is added to the nominal
trajectory to simulate the node’s working state affected by dif-
ferent factors. And the disturbance of different intensity is
set. The disturbance variable is the sensor node’s actual data
relative to the perception information in an undisturbed
environment. It has the following characteristics:

(1) The generation of disturbance is random and
irregular

(2) The generation of disturbance variables accords with
the characteristics of normal distribution

By analyzing the disturbance factors that affect the indi-
cator data, the accuracy of temperature data is easily affected
by network fluctuations and environmental confrontation. In
this paper, four types of disturbance environment are simu-
lated, namely weak network fluctuation and weak environ-
ment countermeasure, weak network fluctuation and strong
environment countermeasure, strong network fluctuation
and weak environment countermeasure, strong network fluc-
tuation and strong environment countermeasure. The corre-
sponding disturbance intensities are 0.015, 0.030, 0.045 and
0.060, respectively. After adding disturbance, the indicator
data changed. The temperature data of node 1 are listed
under different disturbance intensities in Figure 10.

Nowadays, the disturbance intensity is given mainly by
the subjective setting of expert knowledge. In this paper, four
different values are used to characterize four different
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Figure 10: Temperature data under different perturbation intensities.

Table 2: Indicator weights under different perturbation intensities.

σ = 0:015 σ = 0:030 σ = 0:045 σ = 0:060
Standard deviation 0.385 0.385 0.386 0.388

Absolute error 0.408 0.407 0.407 0.407

Correlation
coefficient

0.207 0.208 0.207 0.205

Table 3: Indicator reliability under different perturbation
intensities.

σ = 0:015 σ = 0:030 σ = 0:045 σ = 0:060
Standard deviation 0.699 0.699 0.698 0.697

Absolute error 0.668 0.667 0.665 0.665

Correlation
coefficient

0.706 0.704 0.703 0.703
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disturbance environments. In the future, it is hoped that sci-
entific calculation methods can be used to classify and accu-
rately assign values to different disturbance environments, so
as to improve the scientific of disturbance intensity. It is nec-
essary to recalculate the indicator data of nodes with affected
sensor nodes by disturbance. Moreover, due to each indica-
tor’s different stability in the disturbance environment, the
weight and reliability of each indicator also change. Accord-
ing to Equations (11)-(14), the weight and reliability of each
indicator under different disturbance intensity are calculated,
as shown in Tables 2 and 3:

According to the evidential reasoning rules and utility-
based calculation method, sensor nodes’ data reliability is cal-
culated under different disturbance intensities. The expected
utility of the output of evidential reasoning rules is calculated
by the utility-based calculation method. This belongs to the
application of decision theory, which is used to represent
the comprehensive level of sensor node data reliability. As
shown in Figure 11, the data reliability of nodes is shown
under different disturbance intensities.

As shown in Figure 11, there are weak differences in the
data reliability evaluation results of WSN nodes under differ-
ent disturbance environments. However, different disturbance
intensities can lead to different credibility of evaluation results.
Therefore, it is necessary to consider the adaptability of WSN
nodes to different disturbance environments.

Based on Equation (26), the disturbance factors of nodes
with different disturbance intensities can be obtained and
taken as absolute values. As shown in Figure 12, the distur-
bance factor reflects the node’s adaptability to different dis-
turbance environments. The smaller the disturbance factor
at a specific time, the stronger and more stable the node is
against the disturbance environment. Conversely, the node
is damaged and needs to be repaired or replaced.

It is easy to see from the figure above that the disturbance
factor increases with the increase of disturbance intensity,
consistent with the actual state. The belief distribution of

low reliability of WSN node data is compared under different
disturbance intensity. As shown in Figure 13, when the node
reliability is low, it is easier to cause the disturbance factor
change; when it changes from other states to low reliability.
The actual phenomenon reflected is the abnormal fluctuation
of sensor node data. In other words, when WSN nodes are
unstable, they are easily affected by external disturbances.
Therefore, we need to consider the authenticity and availabil-
ity of the data here. Suppose the maximum disturbance error
ε = 30 is set. When the disturbance intensity does not exceed
0.030, the disturbance factor is always less than ε, which indi-
cates that the node’s disturbance degree is within the accept-
able range. When the disturbance intensity is more excellent
than 0.045, the disturbance factor is more significant than ε,
which indicates that the disturbance condition has interfered
with the regular operation of WSN nodes. At this time, it is
necessary to adjust the node or working state.

4.4. Comparative Study. ER rules belong to the expert system
in essence. The expert system’s function is to combine expert
knowledge with objective data effectively and finally get
quantitative evaluation results. To further illustrate the effec-
tiveness of the above methods, and given the unsupervised
characteristics of the experimental data, the same qualitative
and quantitative analytic hierarchy process (AHP) is used to
compare with this method.

First, the discriminant matrix is established. The indica-
tors’ relative importance is assigned according to the scale
of 1-9 through expert knowledge.
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Figure 11: WSN node data reliability under different perturbation intensities.
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To verify the rationality of discriminant matrix A, the
consistency of matrix A is checked [31]. The maximum
eigenvalues λmax = 3:0183 and CI = ðλmax − nÞ/ðn − 1Þ =
0:00915 of the matrix are calculated by the square root
method. RI = 0:52 is obtained by looking up the table. The
satisfactory consistency is verified as follows:

CR = CI
RI

= 0:00185
0:52 = 0:0176 < 0:1 ð29Þ

The results show that the matrix is reasonable. The corre-
sponding characteristic equation is obtained and normalized:

W = 0:2385 0:6250 0:1365½ � ð30Þ

where W is the weight vector of the evaluation indicator.
The indicator values of each time point are calculated

according to the data of node and other nodes in the neigh-
borhood. Each indicator’s membership degree xi to the eval-
uation grade setΘ is transformed into a fuzzy relation matrix
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Figure 13: Low reliability distribution of WSN nodes under different perturbation intensities.
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[32] as shown in Equation (31). Among them, element bi,j rep-
resents the membership degree of evaluation indicator ei rela-
tive to gradeHj. The fuzzy relation matrix can be obtained by
normalizing the values, as shown in Equation (32).

B =
b11 b12 b13

b21 b22 b23

b31 b32 b33

2
664

3
775 ð31Þ

B =
0:5880 0:2940 0:1180
0:5560 0:2780 0:1670
0:4760 0:3330 0:1900

2
664

3
775 ð32Þ

According to Equations (30) and (32), the reliability eval-
uation results of sensor nodes are obtained as follows:

C =W · B = 0:5527 0:2893 0:1585½ � ð33Þ

From the above formula, we can get the result that the reli-
ability of WSN data can be analyzed by the AHP method. The
belief degree of “high” is 0.5527, that of “medium” is 0.2893,
and that of “low” is 0.1585. In the WSN data reliability distri-
bution shown in Figure 6, “low” reliability is mainly concen-
trated after 481h. And the belief distribution of “low” and is
about 0.1. Moreover, after 505h, the node ultimately failed
and lost the research value. The actual situation cannot be
effectively described by wireless sensor reliability evaluation
results based on the AHP method. And AHP method relies
on expert knowledge in the process of setting parameters.
Therefore, the data cannot be objectively described by the
evaluation results. It can only evaluate the network as a whole.
However, the model proposed in this paper combines data
with expert experience. Through objective data analysis and
effective use of the positive role of expert knowledge in practi-
cal engineering, it reflects the advantages of evidential reason-
ing rules in the fusion of multi-source information. Therefore,
the proposed method is reasonable and effective in this paper.

5. Conclusions

In this paper, based on the analysis of the operational charac-
teristics of WSN, taking the actual monitoring data of sensor
nodes as the research object, a data reliability evaluation
model of sensor nodes is proposed, which is based on ER
rules. The model is used to evaluate the data reliability of
WSN nodes data in no disturbance state; on this basis, the
disturbance is added to ER rule to simulate the influence of
different disturbance conditions on nodes in a complex
working environment. Furthermore, a reliability evaluation
model of sensor node data is proposed, which takes distur-
bance into account. In this paper, temperature time correla-
tion and spatial correlation are used as evaluation
indicators. The utility-based method is used to unify the indi-
cator information into the form of belief distribution, which
improves the expression ability of indicator information.
The method of variation coefficient and distance-based

method is used to obtain the weight and reliability of indica-
tors, which overcomes the subjectivity of traditional expert
weighting to a certain extent. And it improves the credibility
of the consistency evaluation results. The adaptive ability of
nodes to disturbance conditions is quantified by disturbance
factor and maximum disturbance error. And the reliability of
different disturbance environment is analyzed. The model
can reasonably evaluate the data reliability of sensor nodes.
And through the comparison of temperature data between
nodes, the effectiveness of the model is illustrated.
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