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To eliminate the noise from the signals received by MEMS vector hydrophone, a joint algorithm is proposed in this paper based on
wavelet threshold (WT) denoising, variational mode decomposition (VMD) optimized by a hybrid algorithm of Multiverse
Optimizer (MVO) and Particle Swarm Optimization (PSO), and correlation coefficient (CC) judgment to perform the signal
denoising of MEMS vector hydrophone, named as MVO-PSO-VMD-CC-WT, whose fitness function is the root mean square
error (RMSE) and whose individual is the parameters of VMD. For every individual, the original signal is decomposed by VMD
into pure components, noisy components, and noise components in terms of CC judgment, where the pure components are
directly retained, the noisy components are denoised by WT denoising, and the noise components are discarded, and then, the
denoised noisy components and the pure components are reconstructed to be the denoised signal of the original signal. Then,
the obtained optimal individual is utilized to perform the signal denoising by MVO-PSO-VMD-CC-WT by the use of the above
repeated signal processing. Two simulated experimental results show that the MVO-PSO-VMD-CC-WT algorithm which has
the highest signal-to-noise ratio and the least RMSE is superior to the other compared algorithms. And the proposed MVO-
PSO-VMD-CC-WT algorithm is effectively applied to perform the signal denoising of the actual lake experiments. Therefore,
the proposed MVO-PSO-VMD-CC-WT is suitable for the signal denoising and can be applied into the actual experiments in
signal processing.

1. Introduction

There are rich resources in the marine environment, which
are an important treasure trove to have influences on human
development in the future [1, 2]. More and more people have
devoted to detecting the ocean and continually seeking the
acoustic wave detection technology with long propagation
distance, fast propagation speed, and small energy loss. A
MEMS hydrophone [3] is an important tool to be applied
to receive the underwater signal. The state parameters such
as the target category, the relative angle, and the position of
the sound source are obtained by processing the received sig-
nal. However, there exists the complex environment in the
ocean, which leads to the complex acoustic wave. The
received signals from theMEMS hydrophone are that the tar-
get signals are inevitably mixed with different noises, such as
biological noise, background noise, and tugboat noise. There-
fore, it is necessary to denoise the signal to better understand

the target signal and to apply the signal in a wider range, such
as signal positioning, fault diagnosis, and analysis [4].

The concrete details of the signals cannot be obtained by
the traditional Fourier transform [5], but the frequency com-
ponents of known signals can only be obtained and the time
of each component is unknown, which causes the time-
frequency description and noise reduction effect of the non-
stationary signal to be worse. The short-time Fourier trans-
form [6] overcomes the shortcomings of the worst local
analysis on signal by the traditional Fourier transform [7],
but it cannot achieve fast analysis on signal. Wavelet analysis
[8] with the characteristics of multiresolution analysis is a
time-frequency analysis method and can analyze the time-
frequency and frequency domain of the signal at the same
time, which has been widely used in many fields. It is more
suitable to analyze and process nonstationary signals and
can better distinguish the abrupt parts of the signal and noise
to perform the signal denoising. In [9], the wavelet packet
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transformation method can be applied to the structural char-
acteristics of signal location by mathematical induction. In
[10], wavelet packet to scan probe microscope is applied to
improve the quality of scanning images and the control sys-
tem strategy. In [11], a biorthogonal wavelet tree is applied
to perform intelligent sensor embedded signal classification.

Meanwhile, wavelet analysis also has been one of the most
commonly used methods for underwater acoustic signal
denoising. According to the different basis, the correspond-
ing wavelet function is obtained. The Haar wavelet is the sim-
plest wavelet function and discontinuous in the time domain;
the Mexican hat wavelets and Morlet wavelets do not have
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Figure 1: The flowchart of MVO-PSO-VMD-CC-WT.
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scale functions and not orthogonal; the Meyer wavelet is not
tightly supported; the Daubechies wavelet is finite in the time
domain and often used to decompose and reconstruct the
signals as filters. In this paper, the Daubechies wavelet is cho-
sen to be the wavelet base.

Empirical Mode Decomposition (EMD) proposed in
1988 [12] is a new time-frequency analysis method, which
can adaptively decompose nonlinear and nonstationary sig-
nals to perform the signal processing and has been widely
applied in many areas, such as seismic signal [13], speech rec-
ognition [14], and bearing fault diagnosis [15]. According to
the local characteristics of the time scale of the signal, EMD
can decompose the signal into a finite number of intrinsic
modal functions (IMFs) from high frequencies to low fre-
quencies. But there exists mode aliasing in the decomposed
IMF layer, where two adjacent inherent modal function
waveforms are aliased to cause a large amount of noise mixed
in the reconstructed signal. An Ensemble Empirical Mode
Decomposition (EEMD) method [16] was proposed by aux-
iliary noise being added into the original signal to improve
the influence of modal aliasing [17]. However, the signal
decomposed by the EEMD method contains residual noise,
which leads to a large error when reconstructing the signal.
Based on the theory of EEMD, Yeh et al. proposed a Com-
plete Ensemble Empirical Mode Decomposition (CEEMD)
method [18]. In the CEEMD method, the auxiliary noises
in the form of positive and negative pairs are added into
the signal, which can not only eliminate residual auxiliary
noise but also effectively reduce the number of added noise
sets [19]. However, the IMFs of each signal decomposition
in the CEEMD method are different, which results in ran-
domness of signal decomposition.

Variational mode decomposition (VMD) proposed in
2014 [20] is an adaptive nonrecursive signal processing algo-
rithm, which has been applied into many different areas. Dif-
ferent from EMD, EEMD, and CEEMD, VMD has a solid
theoretical foundation and can better solve modal aliasing
problems [21]. In [21], VMD is used to be combined with
wavelet denoising algorithm for performing the underwater
acoustic signal denoising, but the number k of IMFs obtained
by VMD and the penalty factor α need to be set up in
advance. These two parameters k and α directly affect the
final decomposition results: less k will cause insufficient sig-
nal decomposition, while excessive k will produce some false
components which will interfere with the analysis of the use-
ful components of the original signal; excessive α will make
the modal broadband smaller, while less α will make the
modal broadband larger. Therefore, the appropriate parame-
ters k and α are the essential key in VMD for signal decom-
position. In addtion,in [22–24], VMD has been applied into
the seismic data analysis. In [25], VMD is also applied to pre-
form fault diagnosis.

In recent years, some researches only have been done to
optimize the number k of IMFs. For example, if the difference
between the mutual information obtained from the recon-
structed sequence signal by VMD and the original signal
when k = ki and k = ki+1 is less than the threshold, k = ki is
chosen to be the appropriate number of IMFs in VMD
[26]; the orthogonal value is calculated in terms of the length

of data, and the optimal k is to be the value corresponding to
the minimum orthogonal value [27]; an adaptive parameter
optimized VMD method proposed determines the optimal
parameter k by judging the ratio of the center frequencies
of two adjacent IMFs [28].

Some researches have also been performed to optimize
both these two parameters k and α of VMD. In particular,
the proposed intelligence algorithms are utilized to obtain
the optimal parameters k and α of VMD. For instance, in
[29], genetic algorithm is employed to optimize k and α by
taking the envelope entropy as the fitness function, in [30],
whale optimization algorithm is used to optimize k and α
by taking the power spectral entropy (PSE) as the fitness
function, and in [31], spectral aggregation factor method is
proposed to adjust penalty factor adaptively.

To eliminate the noise from the signals received by
MEMS vector hydrophone, a joint algorithm is proposed
in this paper based on wavelet threshold (WT) [21] denois-
ing, VMD optimized by a hybrid algorithm of Multiverse
Optimizer (MVO) [32] and Particle Swarm Optimization
(PSO) [33], and correlation coefficient (CC) [34] judgment
to perform the signal denoising of MEMS vector hydro-
phone, named as MVO-PSO-VMD-CC-WT, whose fitness
function is the root mean square error (RMSE) and whose
individual is the parameters of VMD. For every individual,
the original signal is decomposed by VMD into pure com-
ponents, noisy components, and noise components (similar
to those in [21]) in terms of CC judgment, where the pure
components are directly retained, the noisy components are
denoised by WT denoising, and the noise components are
discarded, and then, the denoised noisy components and
the pure components are reconstructed to be the denoised
signal of the original signal. Then, the obtained optimal
individual is utilized to perform the signal denoising by
MVO-PSO-VMD-CC-WT by the use of the repeated signal
processing. Two simulated experimental results show that
the proposed MVO-PSO-VMD-CC-WT algorithm which
has the highest signal-to-noise ratio and the least RMSE is
superior to the other compared algorithms. And the pro-
posed MVO-PSO-VMD-CC-WT algorithm is effectively
applied to perform the signal denoising of the actual lake
experiments. Therefore, the proposed MVO-PSO-VMD-
CC-WT algorithm is suitable for the signal denoising and

Table 1: Initial parameters of MVO-PSO-VMD-CC-WT.

Parameter Value or region

Number k of IMFs k ∈ 3, 10½ �, k ∈ Z
Penalty factor α α ∈ 3000, 5000½ �, α ∈ Z
The maximum iteration
number: Maxgen 30

The size of population 20

Acceleration factor c1 2

Acceleration factor c2 2

Inertia weight ω
e− l/Maxgenð Þ, where l is the current

iteration and Maxgen is the maximum
iteration
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can be applied into the actual experiments in signal
processing.

The rest of this paper is organized as follows. In Section 2,
VMD, WT denoising, MVO, PSO, and CC are introduced in
detail. In Section 3, the hybrid MVO-PSO-VMD-CC-WT is
proposed. In Section 4, two kinds of simulated signals are
given to verify the validation of the proposed MVO-PSO-
VMD-CC-WT. In Section 5, the proposed MVO-PSO-
VMD-CC-WT is applied to perform the signal denoising
on the Fenji Lake experimental data of North University of
China. Conclusion and discussion are given in Sections 6
and 7, respectively.

2. The Basic Methods

2.1. Variational Mode Decomposition. Variational mode
decomposition (VMD) [20] is an adaptive nonrecursive
algorithm for signal processing, whose concrete steps are as
follows.

Step 1. For every inherent modal function ukðtÞ, Hilbert
transform [33] is used to obtain the analytical signal of ukðtÞ
as follows:

δ tð Þ + j
πt

� �
uk tð Þ: ð1Þ

Step 2. The obtained analytical signal (1) is multiplied by an
exponential term e−jωt to become the following:

δ tð Þ + j
πt

� �
uk tð Þ

� �
e−jωt: ð2Þ

Thus, the spectrum of each modal function ukðtÞ is mod-
ulated to the corresponding baseband.

Step 3. By calculating the 2-norm square of (2), the band-
width of every modal function ukðtÞ is estimated. Thus, the
corresponding variation problem with constraints on the
bandwidth is as follows:

min
ukf g, ωkf g

〠
k

∂t δ tð Þ + j
πt

� �
uk tð Þ

� �
e−jωt

����
����
2

2

( )

s:t: 〠
k

uk tð Þ = f tð Þ,
ð3Þ

where fukg = fu1,⋯, uKg and fωkg = fω1,⋯, ωKg are the
sets of all modes and the corresponding central frequencies,
respectively, δðtÞ is a Dirichlet function, and ∂t is the deriva-
tive with respect to time t.

The method to solve (3) is that the penalty factor α and
Lagrange multiplier λ are introduced into (3) and (3) is trans-
formed to be the unconstrained variation problem (4), as
follows:
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Figure 2: Source signal and five kinds of noisy signal. (a) The source signal. (b) The noisy signal under -10 dB. (c) The noisy signal under
-5 dB. (d) The noisy signal under 0 dB. (e) The noisy signal under 5 dB. (f) The noisy signal under 10 dB.
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L ukf g, ωkf g, λð Þ = α〠
k

∂t δ tð Þ + j
πt

� �
uk tð Þ

� �
e−jωt

����
����
2

2

+ f tð Þ −〠
k

uk tð Þ
�����

�����
2

2

+ λ tð Þ, f tð Þ −〠
k

uk tð Þ
* +

:

ð4Þ

The alternate direction method of multiplier (ADMM) is
used to solve (4). Thus, the “saddle point” problem of
Lagrange expression is solved by iterative update ways of
un+1k , ωn+1

k , and λn+1 whose expressions are as follows:

un+1k ωð Þ = f ωð Þ −∑k−1
i−1 u

n+1
i ωð Þ − ∑K

i−k+1u
n
i ωð Þ + λ ωð Þð Þ/2ð Þ

1 + 2α ω − ωn
kð Þ2 ,

ð5Þ

ωn+1
k =

Ð∞
0 ω un+1k ωð Þ�� ��2dωÐ∞
0 un+1k ωð Þ�� ��2dω , ð6Þ

λn+1 ωð Þ = λn ωð Þ + τ f ωð Þ −〠
k

un+1k ωð Þ
" #

, ð7Þ

where τ is the noise tolerance parameter, ω is the frequency, n
is the current iteration, and f ðωÞ is the corresponding result
of f ðtÞ obtained by Fourier transform.

Let ε be the convergence tolerance. The iteration termi-
nates if and only if the iteration arrives at the maximum iter-
ation or the condition ðð∑kkun+1k ðωÞ − unkðωÞk22Þ/
ðkunkðωÞk22ÞÞ < ε is satisfied.
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Figure 3: Denoised results of these four algorithms under -10 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.
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In the actual applications, two parameters τ and ε in
VMD have little influence on the decomposition results,
which causes that these parameters τ and ε in VMD are set
up to be the same as those in Reference [21].

2.2. Wavelet Threshold Denoising. Wavelet transform is used
to analyze the multilevel, low-frequency, and high-frequency
signals, which is the key of the wavelet threshold (WT) [21]
denoising. In this paper, the adopted WT denoising method
is the soft threshold denoising method.

The soft threshold denoising method widely used in engi-
neering is performed by setting up a threshold λ in advance.
Let x be the wavelet coefficient obtained after orthogonal
decomposition of the noisy signal and f ðxÞ be the eliminated
wavelet coefficient of the actual signal. Thus, the relation
between f ðxÞ and x is as follows:

f xð Þ =
sgn xð Þ xj j − λð Þ, xj j > λ,

0, xj j ≤ λ,

(
ð8Þ

where sgn ð⋅Þ is a sign function and λ is a threshold. In gen-
eral, the threshold λ is taken to be λ = σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log N

p
, where σ

is the standard deviation of noise and N is the signal length.

2.3. Multiverse Optimizer.Multiverse Optimizer (MVO) [32]
proposed in 2016 is a new metaheuristic algorithm, which
was inspired by the concepts of black holes, white holes,
and wormholes based on the Big Bang theory. Black holes
attract everything by their extremely high gravity; white holes
send objects as the main components of the birth of the uni-
verse; wormholes are the holes connected with different com-
ponents of the universes and act as the time/space travel
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Figure 4: Denoised results of these four algorithms under -5 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.
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tunnels for sending the objects from one universe to another
universe. In MVO, black holes and white holes represent the
exploration stage, and wormholes represent the exploitation
stage. Suppose that every solution is regarded to be one uni-
verse, and every component is regarded to be one object. And
every solution has the corresponding inflation rate which is
proportional to the fitness function.

Let ui = ðxi1, xi2,⋯, xidÞ ði = 1, 2,⋯, nÞ be n universes,
where xij is the jth object of the ith universe uiðj = 1, 2,⋯,
dÞ. According to the roulette wheel selection mechanism,

xij =
xkj, r1 < NI uið Þ,
xij, r1 ≥NI uið Þ,

(
ð9Þ

where r1 is a random number in ½0, 1�, NIðuiÞ is normalized
inflation rate of the ith universe, and xkj is the jth object of

the kth universe selected according to the roulette
mechanism.

Based on the above mechanism, the objects are changed
between the universes without interference and the worm-
holes exist in every universe such that the objects are trans-
formed between the universes though the wormholes. If the
inflation rate is not considered, then the objects in the
universe are randomly updated. Suppose that there exist
wormhole tunnels between every universe and the optimal
universe. Then,

xij =

Xj + TDR × ubj − lbj
	 


× r4 + lbj
	 


r3 < 0:5,

Xj − TDR × ubj − lbj
	 


× r4 + lbj
	 


r3 ≥ 0:5,
r2 <WEP,

xij, r2 ≥WEP,

8>><
>>:

ð10Þ
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Figure 5: Denoised results of these four algorithms under 0 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-CC-
WT; (d) VMD-CC-WT.
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where Xj is the j
th object of the optimal universe, r2, r3, r4 are

the random numbers distributed in ½0, 1�, lbj and ubj are the
lower bound and the upper bound of the jth object, respec-
tively, TDR is the travel distance rate, and WEP indicates
the probability of wormhole existence.

WEP and TDR are defined as follows:

WEP =min + max −minð Þ × l
L
, ð11Þ

TDR = 1 −
l
L

� �1/p
, ð12Þ

where min and max are the minimum value and the maxi-
mum value of WEP (min = 0:2 and max = 1 in the general),

respectively, l is the current iteration, and L is the maximum
iteration.

2.4. Particle Swarm Optimization. Particle Swarm Optimiza-
tion (PSO) [33] proposed in 1995 simulates the birds’ forag-
ing behavior.

In PSO, a bird is regarded as a particle, which is a solution
of the optimization problem. In the search space, every parti-
cle has its velocity and its position.

There are n particles in PSO, where the velocity and the
position of the ith particle are Xi = ðxi1, xi2,⋯, xiDÞ and Vi
= ðvi1, vi2,⋯, viDÞ, respectively. The velocity and the position
of the ith particle are updated are as follows:

Vk+1
i = ωVk

i + c1r1 Pk
i − Xk

i

� �
+ c2r2 Pk

g − Xk
i

� �
, ð13Þ
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Figure 6: Denoised results of these four algorithms under 5 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-CC-
WT; (d) VMD-CC-WT.
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Figure 7: Denoised results of these four algorithms under 10 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.

Table 2: The average SNRs and RMSEs obtained by five algorithms for Type I.

Noise intensity Indicator VMD-CC-WT PSO-VMD-CC-WT MVO-VMD-CC-WT
MVO-PSO-PSE-VMD-

CC-WT
MVO-PSO-VMD-

CC-WT

-10 dB
SNR 1.7290 1.9160 1.9691 2.2135 3.6344

RMSE 0.5624 0.5624 0.5065 0.5477 0.4661

-5 dB
SNR 6.0429 6.6372 6.7344 7.0128 8.6337

RMSE 0.3529 0.3297 0.3258 0.3156 0.2618

0 dB
SNR 11.2016 11.4757 11.9285 12.1574 13.6008

RMSE 0.1952 0.1892 0.1794 0.1747 0.1477

5 dB
SNR 14.3201 14.9929 15.1734 15.3029 17.0212

RMSE 0.1362 0.1225 0.1235 0.1217 0.0998

10 dB
SNR 14.9307 17.8312 18.1929 18.3556 20.3457

RMSE 0.1267 0.0932 0.0872 0.0856 0.0679
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Xk+1
i = Xk

i +Vk+1
i , ð14Þ

where k is the current iteration, ω is the inertial weight, c1 and
c2 are the acceleration factors, r1 and r2 are the random num-
bers distributed in [0, 1], Pk

i is the local optimal position of
the ith particle, and Pk

g is the global optimal position of all
the particles.

2.5. Correlation Coefficient. The correlation coefficient (CC)
[30] is an important parameter in statistics, which can
measure the correlation between the denoised signal and
the original signal. CC can distinguish whether the signal
components obtained by VMD contain the main characteris-
tics of the original signal for performing the signal denoising.
The correlation coefficient R between the original signal and
the IMFs is defined as follows:

R =
E uk tð Þf tð Þ½ � − E uk tð Þ½ �E f tð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D uk tð Þ½ �p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D f tð Þ½ �p , ð15Þ

where f ðtÞ and ukðtÞ are the original signal and the kth IMF
component, respectively, and Eð⋅Þ and Dð⋅Þ are the mathe-
matical expectation and variance of the signal, respectively.

3. The Proposed Signal Denoising Algorithm

3.1. MVO-PSO Algorithm. Owing to the constant movement
of the universe, every universe has its velocity and position in
the space. Therefore, the velocity of every universe is updated
as Equation (13) of PSO, and the position of every universe
based on Equation (10) of MVO is defined as follows:

xij =

Xj + Vij + TDR × ubj − lb j
	 


× r4 + lbj
	 


r3 < 0:5,

Xj + Vij − TDR × ubj − lb j
	 


× r4 + lbj
	 


r3 ≥ 0:5,
r2 <WEP,

xij, r2 ≥WEP:

8>><
>>:

ð16Þ

Thus, the hybrid algorithm based on the combination of
MVO and PSO is established, written as MVO-PSO.

3.2. MVO-PSO-VMD-CC-WT Algorithm. In this paper, two
parameters ðk, αÞ of VMD where k is the number of IMFs
and α is the penalty factor are regarded to be a universe of
MVO-PSO. And the root mean square error (RMSE)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

n=1
x nð Þ − x′ nð Þ

� �2
s

ð17Þ

between the denoised signal obtained by VMD algorithm and
the original signal is taken to be the fitness function of MVO-
PSO, where x′ðnÞ and xðnÞ are the denoised signal and the
original signal, respectively, and N is the number of the
snapshots.

Based on the above, a hybrid denoising method is
proposed based on VMD, WT denoising, MVO-PSO, and
CC in this paper, named as MVO-PSO-VMD-CC-WT. The
flowchart of MVO-PSO-VMD-CC-WT is shown in
Figure 1, and the steps of MVO-PSO-VMD-CC-WT are as
follows.

Step 1. Initialize the parameters, shown in Table 1. Every
individual ðk, αÞ in MVO-PSO-VMD-CC-WT denotes a uni-
verse. And initialize the population of MVO-PSO. Let l = 1.

Step 2. Judge that the terminal condition is satisfied or the
Maxgen is arrived. If yes, then turn Step 7; otherwise, turn
Step 3.

Step 3. For every universe ðk, αÞ, VMD makes the original
signal sðnÞ be the component to be k IMFs. The main fre-
quency f0 of the original signal, the center frequency f k of
each IMF, and CC are calculated. The IMF whose center fre-
quency f k is the closest to the main frequency f0 is regarded
to be the pure IMF. Besides, the indicator of CC is 0.2, which
is the same as that of Ref. [35]. The IMF whose CC is less than
0.2 is regarded to be the noise component, and the IMF
whose CC is larger than 0.2 is regarded to be the noisy com-
ponent. Thus, these IMFs are divided into pure IMFs, noisy
IMFs, and noise IMFs in terms of CC.

Table 3: The average SNRs and RMSEs obtained by five algorithms for Type II.

Noise
intensity

Indicator
VMD-CC-

WT
PSO-VMD-CC-

WT
MVO-VMD-CC-

WT
MVO-PSO-PSE-VMD-CC-

WT
MVO-PSO-VMD-CC-

WT

-10 dB
SNR 1.5658 1.9283 1.9501 2.2377 4.3433

RMSE 0.5907 0.5675 0.4963 0.5342 0.4293

-5 dB
SNR 6.1526 6.2342 6.4713 7.0062 9.0947

RMSE 0.3489 0.3453 0.3361 0.3161 0.2236

0 dB
SNR 11.1970 11.2424 11.5588 11.9457 13.8305

RMSE 0.1950 0.1942 0.1849 0.1777 0.1440

5 dB
SNR 14.0095 14.7189 15.0088 15.3264 16.9478

RMSE 0.1409 0.1299 0.1258 0.1210 0.1005

10 dB
SNR 14.6676 17.4848 17.7375 18.2819 20.1053

RMSE 0.1306 0.0945 0.0923 0.0862 0.0695
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0 100 200 300 400 500 600 700 800 900 1000
–1

–0.5

0

0.5

1

A
m

pl
itu

de

Snapshots

(a)

–10

–5

0

5

10

A
m

pl
itu

de

0 100 200 300 400 500 600 700 800 900 1000
Snapshots

(b)

0 100 200 300 400 500 600 700 800 900 1000
–5

0

5

A
m

pl
itu

de

Snapshots

(c)

–4

–2

0

2

4

A
m

pl
itu

de

0 100 200 300 400 500 600 700 800 900 1000
Snapshots

(d)

Figure 8: Continued.
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Step 4. The pure IMFs are directly retained, the noisy IMFs
are denoised by WT denoising, and the noise IMFs are
discarded.

Step 5. The denoised noisy components and the pure compo-
nents are reconstructed to be the denoised signal of the orig-
inal signal. Then, the fitness value of this universe ðk, αÞ is
calculated in terms of Equation (17). Then, the global opti-
mal universe of all the universes and the local best universe
of every universe are obtained.

Step 6. For every universe ðk, αÞ, the velocity and the position
of this universe are updated in MVO-PSO according to
Equations (13) and (16). According to the upper and lower
bounds of the components, the velocity and the position of
this universe are further updated. Then, l = l + 1. Turn Step 2.

Step 7. For the global optimal universe ðk, αÞ obtained from
the MVO-PSO-VMD-CC-WT, perform Steps 3–5 and
obtain the denoised signal of the original signal.

4. Simulated Experiments

Owing to the marine environment and human activities in
the ocean exploration, the noise intensity of the underwater
acoustic signal is constantly variable. In this section, the sim-
ulated signal with noise is defined as follows:

f nð Þ = s nð Þ + gs nð Þ, ð18Þ

where f ðnÞ is a noisy signal, sðnÞ is a noise-free source signal,
gsðnÞ is white Gaussian noise with different noise-added
decibels, n is the sampling point, and N is the number of
snapshots. In this section, N = 1000.

According to the complex underwater environment, we
take two types of sðnÞ to quantitatively evaluate the denoising
performance of MVO-PSO-VMD-CC-WT.

For Type I, the noise-free source signal sðnÞ is chosen to
be a sinusoidal sequence signal defined as

s nð Þ = sin 2π ⋅ 40 ⋅ nð Þ, ð19Þ

whose amplitude and frequency are 1 and 40Hz, respectively.
For Type II, the noise-free source signal sðnÞ is chosen to

be a mixed frequency sequence signal defined as

s nð Þ = sin 2π ⋅ 40 ⋅ nð Þ + sin 2π ⋅ 400 ⋅ nð Þ, ð20Þ

which is a mix of 40Hz and 500Hz frequencies.
In this paper, the signal-to-noise ratio (SNR) defined as

SNR = 10 ⋅ log
∑N

n=1x
2 nð Þ

∑N
n=1 x nð Þ − x′ nð Þ

h i2
0
B@

1
CA ð21Þ

and RMSE defined as Equation (17) are used to be the
denoised performance indicators, where x′ðnÞ and xðnÞ are
the denoised signal and the original signal, respectively, and
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Figure 8: Source signal and five kinds of noisy signal. (a) The source signal. (b) The noisy signal under -10 dB. (c) The noisy signal under
-5 dB. (d) The noisy signal under 0 dB. (e) The noisy signal under 5 dB. (f) The noisy signal under 10 dB.
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N is the number of snapshots. The higher the SNR is, the bet-
ter the denoising effect is. And the smaller the RMSE is, the
better the denoising effect is.

In this paper, VMD-CC-WT, PSO-VMD-CC-WT, and
MVO-VMD-CC-WT are employed to be compared with
MVO-PSO-VMD-CC-WT. Among these four algorithms,
VMD-CC-WT, PSO-MD-CC-WT, MVO-VMD-CC-WT,
and MVO-PSO-VMD-CC-WT, the fitness functions are all
taken to be Equation (17).

4.1. Simulated Experiment for Type I. For the simulated signal
of Type I whose noise-free source signal sðnÞ is taken to be
Equation (19), gsðnÞ is white Gaussian noise with noise-
added -10 dB, -5 dB, 0 dB, 5 dB, and 10 dB, respectively. Thus,
five kinds of noisy signals are obtained, shown in Figure 2.
The denoised results of VMD-CC-WT, PSO-VMD-CC-
WT, MVO-VMD-CC-WT, and MVO-PSO-VMD-CC-WT

are shown in Figures 3–7 under -10 dB, -5 dB, 0 dB, 5 dB,
and 10 dB, respectively.

From Figures 3–7, it is observed that all of these four
algorithms VMD-CC-WT, PSO-VMD-CC-WT, MVO-
VMD-CC-WT, and MVO-PSO-VMD-CC-WT have the
abilities in performing the signal denoising of the simulated
signal defined by Equations (18) and (19) where gsðnÞ is
white Gaussian noise with noise-added -10 dB, -5 dB, 0 dB,
5 dB, and 10 dB. And it is observed that with the noise-
added decibel increasing, the denoised signals obtained by
these four algorithms match the source signal better and
better. The denoised results show that MVO-PSO-VMD-
CC-WT proposed in this paper is obviously superior to
VMD-CC-WT, PSO-VMD-CC-WT, and MVO-VMD-CC-
WT. And MVO-PSO-VMD-CC-WT has the ability in effec-
tively eliminating the sharp burrs in the waveform of the
denoised signal which becomes smoother and neater. In the
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Figure 9: Denoised results of these four algorithms under -10 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.
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denoised signal obtained by the worst VMD-CC-WT, there
exists the distortion on some local extremum points of the
signal and the obvious concussion in the waveform, which
illustrates that the parameters of VMD have the larger effect
on the signal denoising. Compared with VMD-CC-WT,
PSO-VMD-CC-WT and MVO-VMD-CC-WT improve the
denoised results, but there exist the sharp protrusions in the
denoised signal.

In order to further observe the compared results on the
RMSE and SNR, we replace the fitness function of MVO-
PSO-VMD-CC-WT with the power spectral entropy (PSE)
introduced in Reference [30], named as MVO-PSO-PSE-
VMD-CC-WT which is used to distinguish from MVO-
PSO-VMD-CC-WT.

VMD-CC-WT, PSO-VMD-CC-WT, MVO-VMD-CC-
WT, MVO-PSO-PSE-VMD-CC-WT, and MVO-PSO-

VMD-CC-WT are independently run 30 times, respectively.
The average SNRs and RMSEs are shown in Table 2.

From Table 2, it can be seen that MVO-PSO-VMD-CC-
WT with different decibels has the least RMSE and the high-
est SNR among these five algorithms: SNR 3.6344 and RMSE
0.4661 under -10 dB; SNR 8.6337 and RMSE 0.2618 under
-5 dB; SNR 13.6008 and RMSE 0.1477 under 0 dB; SNR
17.0212 and RMSE 0.0998 under 5 dB; SNR 20.3457 and
RMSE 0.0679 under 10 dB. For the same decibels, according
to the increasing of SNRs or the decreasing of RMSEs, the
order of five algorithms in Table 3 is VMD-CC-WT, PSO-
VMD-CC-WT, MVO-VMD-CC-WT, MVO-PSO-PSE-
VMD-CC-WT, and MVO-PSO-VMD-CC-WT. And we also
observe that SNRs are increasing and RMSEs are decreasing
with the noise decibel increasing. Therefore, the results
obtained from Table 2 show that MVO-PSO-VMD-CC-
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Figure 10: Denoised results of these four algorithms under -5 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.
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WT outperforms VMD-CC-WT, PSO-VMD-CC-WT,
MVO-VMD-CC-WT, and MVO-PSO-PSE-VMD-CC-WT.

4.2. Simulated Experiment for Type II. In this section, the
analyses are similar to the situation of Type I. For the simu-
lated signal of Type II whose noise-free source signal sðnÞ is
taken to be Equation (20), gsðnÞ is also white Gaussian noise
with noise-added -10 dB, -5 dB, 0 dB, 5 dB, and 10 dB, respec-
tively. Thus, five kinds of noisy signals are obtained, shown in
Figure 8. The denoised results of VMD-CC-WT, PSO-VMD-
CC-WT, MVO-VMD-CC-WT, and MVO-PSO-VMD-CC-
WT are shown in Figures 9–13 under -10 dB, -5 dB, 0 dB,
5 dB, and 10dB, respectively.

From Figures 9–13, we also observe that all of these four
algorithms VMD-CC-WT, PSO-VMD-CC-WT, MVO-
VMD-CC-WT, and MVO-PSO-VMD-CC-WT have the abil-
ities in performing the signal denoising of the simulated signal

defined by Equations (18) and (20) where gsðnÞ is white
Gaussian noise with noise-added -10dB, -5dB, 0dB, 5 dB,
and 10dB. And it is observed that with the noise-added decibel
increasing, the denoised signals obtained by these four algo-
rithms match the source signal better and better.

From Figures 9–13, VMD-CC-WT has the worst denois-
ing effect. Compared with VMD-CC-WT, PSO-VMD-CC-
WT andMVO-VMD-CC-WT improve the denoising results,
and the denoised signal waveform obtained by the MVO-
VMD-CC-WT algorithm and PSO-VMD-CC-WT is
smoother. Among these four algorithms VMD-CC-WT,
PSO-VMD-CC-WT, MVO-VMD-CC-WT, and MVO-
PSO-VMD-CC-WT, the denoised signal waveform obtained
by MVO-PSO-VMD-CC-WT is the smoothest and the neat-
est and has the least distortion phenomenon.

Similar to the situation of Type I, VMD-CC-WT, PSO-
VMD-CC-WT, MVO-VMD-CC-WT, MVO-PSO-PSE-
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Figure 11: Denoised results of these four algorithms under 0 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.
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VMD-CC-WT, and MVO-PSO-VMD-CC-WT are also
independently run 30 times, respectively. The average SNRs
and RMSEs are shown in Table 3.

From Table 3, it can be seen that MVO-PSO-VMD-CC-
WT with different decibels has the least RMSE and the high-
est SNR among these five algorithms: SNR 4.3433 and RMSE
0.4293 under -10 dB; SNR 9.0947 and RMSE 0.2236 under
-5 dB; SNR 13.8305 and RMSE 0.1440 under 0 dB; SNR
16.9478 and RMSE 0.1005 under 5 dB; SNR 20.1053 and
RMSE 0.0695 under 10 dB. For the same decibels, according
to the increasing of SNRs or the decreasing of RMSEs, the
order of five algorithms in Table 3 is VMD-CC-WT, PSO-
VMD-CC-WT, MVO-VMD-CC-WT, MVO-PSO-PSE-
VMD-CC-WT, and MVO-PSO-VMD-CC-WT. And we also
observe that SNRs are increasing and RMSEs are decreasing
with the noise decibel increasing. Therefore, the results
obtained from Table 3 show that MVO-PSO-VMD-CC-

WT is superior to VMD-CC-WT, PSO-VMD-CC-WT,
MVO-VMD-CC-WT, and MVO-PSO-PSE-VMD-CC-WT
in the mixed frequency simulated denoising experiment.

4.3. Experimental Results. In this section, two simulated
experiments are given to verify the validation of MVO-
PSO-VMD-CC-WT by comparison with VMD-CC-WT,
PSO-VMD-CC-WT, MVO-VMD-CC-WT, and MVO-
PSO-PSE-VMD-CC-WT. Figures 2–13 show that the
denoised signals under different noise-added decibels by
VMD-CC-WT, PSO-VMD-CC-WT, MVO-VMD-CC-WT,
and MVO-PSO-VMD-CC-WT match the noise-free source
signals, where the denoised signals under different noise-
added decibels by MVO-PSO-VMD-CC-WT match the
noise-free source signals optimally. According to RMSE
and SNR, MVO-PSO-VMD-CC-WT outperforms VMD-
CC-WT, PSO-VMD-CC-WT, and MVO-VMD-CC-WT.
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Figure 12: Denoised results of these four algorithms under 5 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.
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Further, the fitness function RMSE of MVO-PSO-VMD-CC-
WT is replaced with PSE, and thus, MVO-PSO-PSE-VMD-
CC-WT is established. The comparable results show that
the proposed MVO-PSO-VMD-CC-WT is better than
MVO-PSO-PSE-VMD-CC-WT. Therefore, the proposed
MVO-PSO-PSE-VMD-CC-WT in this paper with the fitness
function RMSE is suitable for the simulated signal denoising.

5. Lake Experiments

In this paper, the measured data used are derived from Fenji
experiments conducted by North University of China in 2011
and 2014 in Fenhe Reservoir 2, respectively. In this section,
we apply the above proposed MVO-PSO-VMD-CC-WT to
perform the signal denoising on these measured data.

5.1. Experiment 1: The Measured Experimental Data of Fenji
in 2011. In the experiment, a MEMS vector hydrophone with
4-element line array where 1-meter distance was between
two adjacent array elements was fixed on the shore, and the
acoustic signal emission transducer was placed on the tug-
boat. Then, the hydrophone is placed at 6 meters underwater,
and the transducer was used to transmit signals after anchor-
ing in different positions by the tug, and then, the data is col-
lected. These Fenji measured data with transmitting signal
frequency of 331Hz are chosen to verify the validation of
MVO-PSO-VMD-CC-WT. And these Fenji measured data
are obtained from X road and Y road of 1# and 2# MEMS
vector hydrophones in 2011, respectively. In this section,
the measured data with the length of 1000 snapshots
obtained from X road and Y road of 1# and 2# MEMS vector
hydrophones in 2011 are randomly taken for granted.
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Figure 13: Denoised results of these four algorithms under 10 dB: (a) MVO-PSO-VMD-CC-WT; (b) MVO-VMD-CC-WT; (c) PSO-VMD-
CC-WT; (d) VMD-CC-WT.
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Figure 14: X road signal of 1# vector hydrophone (2011.10). (a) Noisy measured signal. (b) Frequency spectrum of noisy measured signal. (c)
Denoised measured signal. (d) Frequency spectrum of denoised measured signal.
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Figure 15: Y road signal of 1# vector hydrophone (2011.10). (a) Noisy measured signal. (b) Frequency spectrum of noisy measured signal. (c)
Denoised measured signal. (d) Frequency spectrum of denoised measured signal.
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Figure 16: X road signal of 2# vector hydrophone (2011.10). (a) Noisy measured signal. (b) Frequency spectrum of noisy measured signal. (c)
Denoised measured signal. (d) Frequency spectrum of denoised measured signal.
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Figure 17: Y road signal of 2# vector hydrophone (2011.10). (a) Noisy measured signal. (b) Frequency spectrum of noisy measured signal. (c)
Denoised measured signal. (d) Frequency spectrum of denoised measured signal.
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Figures 14–17 are the measured signals and their corre-
sponding spectra and also show the noised signals of the
measured signals and their corresponding spectra by MVO-
PSO-VMD-CC-WT, where Figures 14 and 15 are obtained
from X road and Y road of 1# vector hydrophone, respec-
tively, and Figures 16 and 17 are obtained from X road and
Y road of 2# vector hydrophone, respectively.

From (a) and (b) in Figures 14–17, we can observe that
there are some glitches in the frequency spectra of the signals,
which shows that there exists a small amount of noise in the
signal and the signals have relative fluctuations. In particular,
from (a) and (b) in Figure 16, we can observe that there are a
large number of sharp protrusions in the frequency spectra of
the signals, which indicates that the signal is mixed with a
large number of high-frequency noise and the signal has been
seriously distorted.

he (c) and (d) in Figures 14–17 are the denoised signals
and their corresponding frequency spectra obtained MVO-
PSO-VMD-CC-WT. It is observed that the denoised signals
preserve the basic characteristics of the noise-free source sig-
nals and the baseline drifts are corrected to the zero level.
Thus, the sharp noises are eliminated effectively by MVO-
PSO-VMD-CC-WT and the distortions of the denoised sig-
nals are improved, which make the denoised signals
smoother and neater. And from (d) in Figures 14–17, we also
observe that the energy of the signals is hardly no loss.

5.2. Experiment 2: The Measured Experimental Data of Fenji
in 2014. In the experiment, MEMS vector hydrophone with
2-element line array where there was 0.5-meter distance
between two adjacent array elements was fixed on the shore,
and the acoustic signal emission transducer was placed on
the tugboat. There was the distance of 10 meters between
the sound source and the MEMS vector hydrophone. And
the transducer was used to transmit signals, and then, Fenji
measured data was collected.

In this paper, these Fenji measured data in September
2014 with transmitting signal frequency of 800Hz and
1000Hz are chosen to verify the validation of MVO-PSO-
VMD-CC-WT. And these Fenji measured data are obtained
from X road and Y road of 2# MEMS vector hydrophones
in 2014, respectively. In this section, the measured data with
the length of 1000 snapshots obtained from X road and Y
road of 2# MEMS vector hydrophones in 2014 are randomly
taken for granted.

Figures 18 and 19 are the measured signals and their cor-
responding spectra, respectively, and also show the noised
signals of the measured signals and their corresponding spec-
tra by MVO-PSO-VMD-CC-WT, respectively. Figure 18 is X
road of 2# hydrophone with 800Hz, and Figure 19 is Y road
of 2# hydrophone with 1000Hz.

From (a) and (b) in Figure 18, we can observe that there
are a large number of glitches in X road of 2# vector
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Figure 18: X road of 2# hydrophone with 800Hz (2014.9). (a) Noisy measured signal. (b) Frequency spectrum of noisy measured signal. (c)
Denoised measured signal. (d) Frequency spectrum of denoised measured signal.
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hydrophone with 800Hz frequency, which indicates that
there is a large amount of noise in the signal and there exists
the relative distortion in the signal. From (a) and (b) in
Figure 19, we can observe that there are some glitches in
the left half of frequency spectrum in X road of 2# vector
hydrophone with 1000Hz frequency, which indicates that
the signal is mixed with low-frequency noise, and there are
some sharp protrusions in the right half of the frequency
spectrum, which indicates that the signal is mixed with a lot
of high-frequency noise and that high-frequency noise has
great interference and leads to severe distortion of the signal.

The (c) and (d) in Figures 18 and 19 are the denoised sig-
nals and their corresponding frequency spectra obtained
from Figures 18(a) and 19(a) by using MVO-PSO-VMD-
CC-WT. We observe that the denoised signals preserve the
basic characteristics of the noise-free source signal and the
baseline drifts are corrected to the zero level. Thus, the sharp
noises are eliminated effectively by MVO-PSO-VMD-CC-
WT and the distortions of the denoised signals are improved,
which make the denoised signals smoother and neater.

5.3. Experimental Results. The above two experimental
results show that the MVO-PSO-VMD-CC-WT proposed
in this paper can effectively eliminate the noise of the mea-
sured signals, can well retain the basic characteristics of the
sound source signal, and can make the baseline drifts be cor-
rected, which gives an inspiration in the actual denoising
applications.

6. Conclusion

In this paper, the proposed MVO-PSO algorithm is used to
optimize the number k of IMFs obtained by VMD and the
penalty factor α and the optimized VMD is obtained. Thus,
the hybrid denoising algorithm MVO-PSO-VMD-CC-WT
based on WT denoising and VMD optimized by MVO-
PSO algorithm in terms of CC judgement is proposed to per-
form the denoising of the signal mixed with noise received
fromMEMS vector hydrophone. Two simulated experiments
show that MVO-PSO-VMD-CC-WT can be able to effec-
tively perform denoising and has the least RMSE and the
highest SNR and that MVO-PSO-VMD-CC-WT outper-
forms the other compared algorithm. Further, MVO-PSO-
VMD-CC-WT is applied to perform denoising of the Fenji
measured signal, and the denoised results show that MVO-
PSO-VMD-CC-WT has an ability in signal denoising and
the baseline drift corrected and with a simple principle and
fast calculation speed and has certain practical research
significance.

7. Discussion

In the wavelet threshold (WT) denoising method, the section
of the threshold function is important. Currently, the hard
threshold function and the soft threshold function are the
most widely applicable in many fields. It is found that the
hard threshold function is discontinuous at the threshold
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Figure 19: Y road of 2# hydrophone with 1000Hz (2014.9). (a) Noisy measured signal. (b) Frequency spectrum of noisy measured signal. (c)
Denoised measured signal. (d) Frequency spectrum of denoised measured signal.
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point, which makes the estimated signal produce additional
oscillation to a certain extent. Compared with the hard
threshold function, the soft threshold function avoids this
problem, and the processing result is relatively smooth. How-
ever, the deviation between the wavelet estimation coefficient
after soft threshold and the wavelet coefficient of the input
noisy signal is always inevitable, which affects the approxi-
mation degree between the denoised signal and the source
signal. For this reason, many scholars improve the threshold
function to improve the effect of wavelet threshold denoising.
In this paper, the soft threshold denoising method is chosen.
In the later researches, the threshold function needs to be
improved further. Although variational mode decomposition
(VMD) overcomes the disadvantages of EMD, EEMD, and
CEEMD and has a solid theoretical foundation and can bet-
ter solve modal aliasing problems, the number of IMFs
obtained by VMD and the penalty factor need to be set up
in advance. Therefore, the appropriate parameters are the
essential key in VMD for signal decomposition. We apply
the swarm intelligence algorithm to optimize the number of
IMFs obtained by VMD and the penalty factor and obtain
the optimized VMD. Further, the combination of WT, the
optimized VMD, and correlation coefficient (CC) is able to
perform the signal denoising and overcome the disadvan-
tages of VMD and WT, whose performance is superior to
the two individual methods.

In the future, according to the foundation of MVO-PSO-
VMD-CC-WT proposed in the paper, we can propose more
and more hybrid algorithms to be applied to perform signal
denoising.
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