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While the modern communication system, embedded system, and sensor technology have been widely used at the moment, the
wireless sensor network (WSN) composed of microdistributed sensors is favored due to its relatively excellent communication
interaction, real-time computing, and sensing capabilities. Because GPS positioning technology cannot meet the needs of
indoor positioning, positioning based on WSN has become the better option for indoor localization. In the field of WSN
indoor positioning, how to cope with the impact of NLOS error on positioning is still a big problem to be solved. In order to
mitigate the influence of NLOS errors, a Neural Network Modified Multiple Filter Localization (NNMML) algorithm is
proposed in this paper. In this algorithm, LOS and NLOS cases are distinguished firstly. Then, KF and UKF are applied in the
LOS case and the NLOS case, respectively, and appropriate grouping processing is carried out for NLOS data. Finally, the
positioning results after multiple filtering are corrected by neural network. The simulation results illustrate that the location
accuracy of NNMML algorithm is better than that of KF, EKF, UKF, and the version without neural network correction. It
also shows that NNMML is suitable for the situation with large NLOS error.

1. Introduction

Within the framework of modern Internet of Things (IoT)
technology, the wireless sensor network (WSN) plays a very
key role. The technology relies on a network of sensors built
together. The network collects the required information
through various sensors, processes the data through embed-
ded and information distribution technology, and then trans-
mits the data to the top device. In the practical application
level, the positioning technology based on this network has
relative advantages compared with other positioning means.
Due to the practical application demand at the present stage,
satellite positioning has significant advantages in the precision
demand of outdoor positioning, but it has obvious disadvan-
tages in indoor positioning. Therefore, WSN positioning [1],
which is light and small in size, inexpensive in price, low in
energy consumption, and topologically strong, will be a
cost-effective choice in the indoor positioning field with
higher positioning accuracy requirements.

There are two kinds of nodes in WSN positioning: one is
the mobile node, whose coordinates and motion information

are unknown; the other is the beacon node, whose coordi-
nates are known. By transmitting signals, the distance from
the mobile node can be obtained by means of time of arrival
(TOA) [2, 3], time difference of arrival (TDOA) [4], angle of
arrival (AOA) [5], RSSI [6, 7], and other possible ways, so as
to achieve the positioning effect. In the actual signal trans-
mission process, there is no ideal channel in the theoretical
derivation. Even if the signal travels in a straight line, there
is still a certain error, which is called the line-of-sight
(LOS) error. Moreover, considering that possible obstacles
may block the LOS path traveling along a straight line, the
signal is compelled to travel along a non-line-of-sight path
in the form of refraction or reflection, and the resulting error
is known as a non-line-of-sight (NLOS) error [8, 9]. There-
fore, it is worth studying how to effectively suppress the non-
line-of-sight (NLOS) error of TOA, TDOA, AOA, and other
measured values in the actual algorithm research.

The non-line-of-sight error different from the line-of-
sight error of normal distribution is a kind of positive error
of indefinite form that makes the measured value greater
than the actual value. If the measurement value with such
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error is not properly handled, the positioning effect will be
significantly worse. Up to now, although there have been a
variety of ways to judge and solve NLOS errors such as those
listed in Related Work [10–25], how to reduce and weaken
the impact of NLOS error on positioning is still a big prob-
lem to be solved.

In this paper, a Neural Network Modified Multiple Filter
Localization (NNMML) algorithm is proposed. Our pro-
posed algorithm has the following improvements:

(1) The location accuracy of the proposed algorithm is
better than that of the KF algorithm in the case of
LOS and the UKF algorithm in the case of NLOS
by means of multiple filtering after FCM grouping

(2) Through parameter correction after each round of
Kalman filter, the error caused by cycle parameter
deviation is alleviated

(3) Compared with the traditional hybrid algorithm,
the follow-up neural network correction reduces
the possibility that the trajectory in the positioning
results does not conform to the real situation and
reduces the error of most sampling moments

(4) Because trajectory estimation is carried out not only
by the least square method, but also by the BP neural
network training method, the possibility of misjudg-
ment is reduced

2. Related Work

At present, many pioneers have proposed a number of
methods to try to identify and reduce the error caused by
NLOS, but there is still no relative optimal solution. In
[10], an interacting multimodel based on Kalman Filtering
was proposed by Liao and Chen. This model has good exten-
sibility under LOS/NLOS transition conditions and opens up
a new idea for later comers. In [11], Chen proposed a
method that parameters are provided by both time of
arrival and received signal strength. The algorithm in [11]
performs extremely well under the given special LOS/NLOS
environment. However, its universality is not strong, and it
is difficult to apply it in the unknown environment of
NLOS. Then, in [12], J. Svečko. estimated the distance as
the state of the random system and realized the particle fil-
ter. In their particle filter algorithm, they used RSSI acqui-
sition to calculate the important weight and resampled the
weighted particles to ensure their reasonable distribution
and density.

From [13, 14], the robust extended Kalman filter pro-
posed by Hammes et al. is based on nonhorizon detection
and probabilistic correlation coefficient adjustment, in
which different distance subgroups are additively con-
structed. His improvement not only surpasses the classical
extended Kalman filter in the non-LOS condition but also
maintains the effect of the classical extended Kalman filter
in the LOS condition so as to improve overall robustness.
In [15], Fang et al. used the adaptive Kalman filter to modify
noise parameters and improved the robustness compared

with the classical method, and combined with various basic
algorithms, the accuracy was significantly improved, while
in [16], Cheng et al. proposed a triple filtering algorithm
which used FCM to divide the errors in the NOLS environ-
ment into soft NLOS and hard NLOS and then integrated
them with the filtering results under LOS. This enhances
the robustness of his algorithm in the mixed environment.
In [17], the Raccoon Optimization Algorithm-based Accu-
rate Positioning Scheme (ROA-APS) was proposed to
strengthen the local search process involved in the estima-
tion of the NLOS node. The authors propose a robust posi-
tioning method which tackles this problem by detecting the
NLOS through a decision tree in [18]. It plays a good role
in the mixed environment where the non-line-of-sight error
is relatively small. The authors in [19] proposed an idea
that applied a data clustering method of unsupervised
machine learning to classify the NLOS signals and exclude
them. Its accuracy can be improved to extremely close to
pure LOS environment, but the adaptability to high NLOS
error is poor.

In literature [20], attention was paid to the selection of a
suitable hybrid TDOA/RTT/DOA location base station in a
hybrid LOS/NLOS environment. The authors of [20]
jumped out of the framework of optimizing the algorithm
and successfully extracted more accurate measurement data.
Tian and his partners proposed a distance and angle proba-
bility model so as to identify the NLOS propagation in [21].
This model can work well in a more specific NLOS environ-
ment. In [22], deep learning (DL) was applied to the NLOS
identification. A localization method using a robust
extended Kalman filter and track-quality-based (REKF-TQ)
fusion algorithm was proposed to mitigate the effect of
NLOS errors in [23]. Compared with the Kalman Filtering
based on IMM, this fusion algorithm has much higher accu-
racy. The study in [24] developed a coarse NLOS detection
algorithm based on discrete power levels to efficiently
achieve the coarse NLOS mitigation, which automatically
discards most unreliable dynamic anchors, while in [25], to
obviously alleviate NLOS effects, the authors proposed a
polynomial fitting-based adjusted Kalman filter (PF-AKF)
method. The method employed polynomial fitting to accom-
plish both NLOS identification and distance prediction, and
it was really inspirational. In addition, in my previous con-
ference paper [26], I have made some preliminary explora-
tions on this topic.

Up to now, even if more and more new methods have
been proposed, how to reduce and weaken the influence of
NLOS error on positioning is still a big problem that is
worth of further study.

3. Personal Method

3.1. Signal Model. In the plane of the node to be tested, n
(n ≥ 3) positions are randomly selected to place beacon
nodes, and their coordinates, as known quantities, are,
respectively, noted as follows:

Xi, Yið Þ i = 0, 1,⋯, n − 1, n: ð1Þ
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Set the number of observations to be prepared, fix the real
action track of the mobile node (which does not know the
specific coordinates when measuring), and mark as ðXk, YkÞ
at time k. Then, the accurate distance between it and the bea-
con node is

Dik =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi − Xkð Þ2 + Yi − Ykð Þ2

q
, ð2Þ

where in Dit , k represents the kth moment and i represents
the ith beacon node.

In the LOS environment, due to the nonideal channel,
the actual measured distance through the TOA/TDOA/RSSI
model is

Dik LOSð Þ =Dik + nLOS, ð3Þ

where nLOS is a Gaussian distribution which has a mean of 0
and a standard deviation σLOS, noted as nLOS ~Nð0, σ2

LOSÞ. It
owns the following distribution function.

f nLOSð Þ = 1ffiffiffiffiffiffi
2π

p
σLOS

exp −
n2LOS
2σ2

LOS

� �
: ð4Þ

In the NLOS environment, due to the existence of pos-
sible obstacles, which may block the LOS path traveling
along a straight line and compel the signals to travel along
a non-line-of-sight path in the form of refraction or reflec-
tion, the actual measured distance becomes more complex
just as [27, 28]

Dik NLOSð Þ =Dik + nLOS + nNLOS, ð5Þ

where nNLOS has many possibilities, and here it is briefly
summarized as one of Gaussian distribution, uniform dis-
tribution, and Poisson distribution.

If nNLOS satisfies the Gaussian distribution, it will obey
the Gaussian distribution owning the mean of μNLOS and

the standard deviation of σNLOS, noted as nNLOS ~NðμNLOS,
σ2
NLOSÞ. And its distribution function is as follows:

f nNLOSð Þ = 1ffiffiffiffiffiffi
2π

p
σNLOS

exp −
nNLOS − μNLOSð Þ2

2σ2NLOS

 !
: ð6Þ

When nNLOS satisfies a uniform distribution, its minimum
and maximum values are a and b, respectively, i.e., nNLOS ~
Uða, bÞ, whose distribution function satisfies as follows:

f nNLOSð Þ =
1

b − a
, a ≤ nNLOS ≤ b,

0, else:

8<: ð7Þ

When nNLOS satisfies an exponential distribution, its rate
parameter is expressed as λ, i.e., nNLOS ~ EðλÞ, whose distribu-
tion function satisfies as follows:

f nNLOSð Þ =
1 − exp −λnNLOSð Þ, nNLOS ≥ 0,
0, nNLOS < 0:

(
ð8Þ

3.2. General Concept. In this paper, a new algorithm named as
the Neural Network Modified Multiple Filter Localization
(NNMML) will be put forward. Its algorithm flow is illustrated
in Figure 1. At first, the NLOS judgment is carried out towards
the estimated distance d̂k. The residual calculation method is
adopted here, and the mean value of distance residual is
obtained by calculating maximum likelihood estimation coor-
dinates. This method has high practicability and high confi-
dence interval, which can maintain an error rate of less than
5% in a high LOS/NLOS mixed environment.

After grouping, we perform targeted filtering on the
data. For the LOS case, the updated results are worked out
by traditional Kalman Filtering. In the linear environment,
the effect of the traditional Kalman filter is always quite sat-
isfactory. For the NLOS case, due to the large difference of
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Figure 1: Algorithm flow chart.
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NLOS errors, the measurement data will be classified by
NLOS classification based on FCM. High NLOS measure-
ments, medium ones, and soft ones will be processed after
FCM. Then, the NLOS measurements after filtering can be
obtained by the interacting multimodel (IMM).

After we get the updated results, the noise parameters
such as the covariance matrix are adjusted adaptively by
using corresponding formulae for KF and UKF. The filter
itself is constantly used to judge whether the dynamic of
the system has changed and updates the noise parameters
so as to be used in the next filtering. This adaptive approach
can improve the robustness of the algorithm in complex
environments.

Then, the distance data of multiple nodes were inte-
grated to obtain the preliminary positioning results by the
least square method, and the curve was simply fitted accord-
ing to multiple moment data. FCM was used to remove the
preliminary positioning results seriously deviating from the
overall trend. Finally, the BP neural network is used to take
the preliminary positioning results that fit the overall trend
as the training set. Specifically, we use gradient descent to
complete the back propagation of network parameters.
Eventually, the output after training fills the gap of the posi-
tioning results, and we get the full result after correction.

3.3. NNMML Algorithm

3.3.1. NLOS Judgment Based on Residual Calculation. Under
the condition that the error value brought by NLOS is
unknown, N estimated distance values fd̂i,k ∣ i = 1, 2,⋯Ng
from N (N ≥ 3) beacon nodes can be obtained at a certain
measurement time k. According to the permutation and
combination, we can have group M distance estimation.

Through the basic Newtonian least square method, the
m-pair maximum likelihood estimation coordinates of the
mobile node fðX̂k,m, Ŷk,mÞ ∣m = 1, 2, 3⋯Mg calculated
from the above m-set data can be obtained. Then, the
distance between each group ðX̂k,m, Ŷk,mÞ and the coordinate
of beacon node ðXi, YiÞ is figured out, and the average
residual difference is calculated with the estimated distance
as follows:

ϵk,i =
∑M

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di,k −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X∧k,m − Xið Þ2 + Y∧k,m − Yið Þ2

q� �� �2s
M

:

ð9Þ

The calculated residual difference between the ith beacon
node and the mobile node that we achieve at time k will
make a comparison with the measurement noise standard
deviation σ to confirm whether it belongs to the NLOS cat-
egory or not.

ωk,i =
0, ϵk,i ≤ σ,
1, ϵk,i > σ:

(
ð10Þ

As is shown in formula (10), if ωk,i is zero, it is judged in
the LOS case, otherwise in the NOLS environment.

3.3.2. Kalman Filtering. Since the KF algorithm still has sat-
isfactory accuracy in the linear environment, Kalman Filter-
ing is still adopted in the LOS environment.

Firstly, we define the basic state parameters between
the ith beacon node and the mobile node at time k as XiðkÞ:

Xi kð Þ = d̂i,k, _di,k
h i

, ð11Þ

where d̂i,k represents the distance between the ith beacon

node and the mobile node and _di,k denotes the speed of
mobile node.

Thus, state equation can be worked out as follows:

Xi kð Þ = FXi k − 1ð Þ + Cw kð Þ, ð12Þ

where coefficient matrices are, respectively,

F =
1 Δt

0 1

" #
, C =

Δt2

2
Δt

24 35: ð13Þ

Δt is the time interval between two measurements and wðkÞ
represents the process noise vector.

Moreover, measurement equation is obtained as follows:

Zi kð Þ =HXi kð Þ + v kð Þ, ð14Þ

where column vector

H =
1
0

" #
, ð15Þ

and vðkÞ delegates the measurement noise vector.
From the above state equation and measurement equa-

tion, the following iterative formula of the KF algorithm
can be derived:

X̂i k ∣ k − 1ð Þ = FX̂i k − 1 ∣ k − 1ð Þ,
Pi k ∣ k − 1ð Þ = FPi k − 1 ∣ k − 1ð ÞFT + R k − 1ð Þ,

ð16Þ

where RðkÞ represents covariance matrix of the measured
noise whose initial value is set as σ2LOSCC

T .

Ei kð Þ = Zi kð Þ −HX̂i k ∣ k − 1ð Þ, ð17Þ

Si kð Þ =HPi k ∣ k − 1ð ÞHT +Q k − 1ð Þ, ð18Þ
where QðkÞ represents the covariance matrix of the observed
noise which is independent of RðkÞ.

From following formula (19), the incremental Kalman
gain KiðkÞ in the iteration is ciphered out:

Ki kð Þ = Pi k ∣ k − 1ð ÞHT Si kð Þð Þ−1: ð19Þ
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The updated state parameters and covariance required
by the round of iteration can be obtained from the Kalman
gain KiðkÞ as follows:

X̂i k ∣ kð Þ = X̂i k ∣ k − 1ð Þ + Ei kð ÞKi kð Þ,
Pi k ∣ kð Þ = Pi k ∣ k − 1ð Þ I − Ki kð ÞHð Þ,

ð20Þ

where I is the identity matrix.

3.3.3. Unscented Kalman Filtering. Unscented Kalman Filter-
ing (UKF) is an improved algorithm of Kalman Filtering.
Although its advantages are not obvious in the LOS environ-
ment with linear signal propagation, it can significantly cor-
rect the nonlinear error and improve the positioning
accuracy in the nonlinear environment. So UKF is adopted
in the NLOS environment in this paper.

(1) Initialization. Its state equation and measurement equa-
tion can be derived from the same formulae in KF. There-
fore, those formulae will not be repeated and elaborated in
this part.

For the convenience of subsequent calculation, Xi is
defined as the basic state parameters between the ith beacon
node and the mobile node. �xi and Pi are, respectively, its
mathematical expectation and its covariance matrix.

(2) Calculate the Sigma Points and Their Weights. Such a
state, as an N-dimensional random variate, owns a total of
2n + 1 sigma points, which are obtained by formula as fol-
lows:

Xi,j k − 1ð Þ =

�xi k − 1ð Þ j = 0,

�xi k − 1ð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + λð Þ Pi k − 1ð Þð Þj

q
 j = 1, 2, 3, 4,⋯n,

�xi k − 1ð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + λð Þ Pi k − 1ð Þð Þj−n

q
 j = n + 1,⋯, 2n,

8>>>><>>>>:
ð21Þ

where ðPiðk − 1ÞÞj signified the jth column in the covariance
matrix Pi.

The sigma point weights follow the following law ωm
0 =

λ/ðn + λÞ, ωm
j = 1/2ðn + λÞ, j = 1, 2, 3,⋯, 2n.

And the weights of its variances satisfy ωc
0 = λ/ðn + λÞ

+ ð1 − α2 + βÞ, ωc
j = 1/2ðn + λÞ, j = 1, 2, 3,⋯, 2n, where λ

follows the expression λ = α2ðn + kÞ − n, α is determined by
the dispersion degrees of the above sigma points, and the
optimal value of β that can be obtained in Gaussian distribu-
tion is two. In addition, in this circumstance, k is set as zero.

(3) State Prediction. From the state equation and measure-
ment equation, the following state prediction of the UKF
algorithm can be derived:

X̂i k ∣ k − 1ð Þ = 〠
2n

j=0
ωm
j Xi,j k − 1ð Þ,

Pi k ∣ k − 1ð Þ = 〠
2n

j=0
ωc
j Xi,j k − 1ð Þ − X̂i k ∣ k − 1ð Þ� �

� Xi,j k − 1ð Þ − X∧i k ∣ k − 1ð Þ� �T +Q kð Þ,

Ẑ k ∣ k − 1ð Þ = 〠
2n

j=0
ωm
j Zi,j k − 1ð Þ,

ð22Þ

where RðkÞ and QðkÞ stand for covariance matrix of mea-
surement noise and covariance matrix of observation
noise, respectively.

(4) State Update. On the basis of the formulae of Part 3, the
updated variance and covariance matrix can be achieved as
follows:

Pxxi k ∣ k − 1ð Þ = 〠
2n

j=0
ωc
j Xi,j k − 1ð Þ − X̂i k ∣ k − 1ð Þ� �

� Xi,j k − 1ð Þ − X∧i k ∣ k − 1ð Þ� �T +Q kð Þ,

Pzzi k ∣ k − 1ð Þ = 〠
2n

j=0
ωc
j Zi,j k − 1ð Þ − Ẑi k ∣ k − 1ð Þ� �

� Zi,j k − 1ð Þ − Z∧i k ∣ k − 1ð Þ� �T + R kð Þ,

Pxzi k ∣ k − 1ð Þ = 〠
2n

j=0
ωc
j Xi,j k − 1ð Þ − X̂i k ∣ k − 1ð Þ� �

� Zi,j k − 1ð Þ − Z∧i k ∣ k − 1ð Þ� �T
:

ð23Þ

In the wake, the Kalman gain of UKF can be figured out:

Ki kð Þ = Pxzi k ∣ k − 1ð ÞPzz−1i k ∣ k − 1ð Þ: ð24Þ

In light of the above Kalman gain, the updated state
parameter and its covariance will be done as follows:

X̂i kð Þ = X̂i k ∣ k − 1ð Þ + Ki kð Þ Zi kð Þ − Ẑi k ∣ k − 1ð Þ	 

,

Pi k ∣ kð Þ = Pi k ∣ k − 1ð Þ − Ki kð ÞPzzi k ∣ k − 1ð ÞKT
i kð Þ

= Pi k ∣ k − 1ð Þ − Ki kð ÞPxzi k ∣ k − 1ð Þ:
ð25Þ

At this point, one of its iterations ends.

3.3.4. Fuzzy C-Means Clustering. In practice, the distribution
of NLOS is more complex, which will lead to great uncer-
tainty in the error parameters of NLOS. In order to alleviate
this problem, the FCM method is adopted for the NLOS
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group after NLOS judgment, and then, filtering is carried out
after classification.

At time k, the distance between theM beacon nodes and

the mobile node is denoted as ~dðkÞ,edðkÞ = ½ ed1ðkÞ,⋯, fdMðkÞ�.
Let each element be divided into c groups; ½c1, c2,⋯, cc�

is the cluster center matrix, and μij represents the member-
ship degree of the jth distance element to the ith group, that
is, the degree to which it belongs to this group. In this paper,
c is set to 3.

Then, the objective function and constraint conditions of
FCM are obtained as follows:

J U , c1, c2,⋯, ccð Þ = 〠
c

i=1
〠
M

j=1
μmij d

2
ij

s:t:
〠
c

i=1
μij = 1, ∀j = 1, 2,⋯,M,

μij ∈ 0, 1½ �,

8><>:
ð26Þ

where dij represents the Euclidean distance between the ith
cluster center and the jth distance element and M indicates
the fuzzy weight factor.

In order to make JðU , c1, c2,⋯, ccÞ reach the minimum
value, the updated objective function is obtained by the
Lagrange multiplier method:

L U , c1, c2,⋯, cc, λ1, λ2,⋯, λMð Þ

= J U , c1, c2,⋯, ccð Þ + 〠
M

j=1
λj 〠

c

i=1
μij − 1

 !
,

ð27Þ

where λ is the Lagrange multiplier.
The clustering center and the membership degree of its

corresponding elements can be obtained through partial
derivative calculation:

ci =
∑M

j=1μ
m
ij
~di kð Þ

∑M
j=1μ

m
ij

, i ∈ 1, c½ �, ð28Þ

μij =
1

∑c
k=1 dij/dkj
	 
2/ m−1ð Þ : ð29Þ

By membership degree, M distance elements are divided
into the group with the largest membership degree. There-
fore, when c = 3 here, they can be divided into high NLOS
measurements, medium ones, and low ones.

3.3.5. Interactive Multimodel Algorithm. The Interacting
Multimodel (IMM) algorithm is an algorithm that is based
on the Bayesian theory, through multiple filters to achieve
the purpose of model adaptation. There are four steps in
the IMM algorithm: interactive input, filter use, probability
update, and interactive output. In this paper, the algorithm
is used to carry out the grouping calculation under NLOS
cases in order to achieve a more robust state estimation.

Owing to NLOS cases, the state equation and measure-
ment equation satisfy formula (22) in the UKF without fur-
ther elaboration.

(1) Interactive Input. In the first step, the mixing probability
can be figured out, whose values are the ratio of the initial
probability after the weighted transfer probability to its nor-
malized coefficient:

μi,j k − 1 ∣ k − 1ð Þ = pijμi k − 1ð Þ
∑ipijμi k − 1ð Þ , ð30Þ

where pij represents the transition probability which obeys
the Markov Transition Probability Matrix

p =
p11 ⋯ p1g

⋮ ⋱ ⋮

pg1 ⋯ pgg

0BB@
1CCA, ð31Þ

and parameter g in the matrix before is the dimension
number.

Then, the measurement estimates can be weighted
through the mixing probabilities. At the same time, its
covariance is recalculated:

~Xj k − 1 ∣ k − 1ð Þ =〠
i

X̂i k − 1 ∣ k − 1ð Þμi,j k − 1 ∣ k − 1ð Þ,

ð32Þ

~Pj k − 1 ∣ k − 1ð Þ =〠
i

Pi k − 1 ∣ k − 1ð Þ + X̂i k − 1 ∣ k − 1ð Þ	h
− X̂ij k − 1 ∣ k − 1ð ÞÞ ∗ X̂i k − 1 ∣ k − 1ð Þ	
− X̂ij k − 1 ∣ k − 1ð Þ
Tiμi,j k − 1 ∣ k − 1ð Þ:

ð33Þ
(2) Filter Use. The state parameters and covariance obtained
by Equations (32) and (33) were used as the input of the
filter, and UKF was selected as the filter in the NLOS envi-
ronment. By the formulae in Section 3.3.3, the correspond-
ing results can be calculated: X̂ jðk ∣ kÞ, Pjðk ∣ kÞ, EjðkÞ, SjðkÞ.

(3) Probability Update. In this part, the probability is redis-
tributed for the next iteration, and the updated mixing prob-
ability is as follows:

μj kð Þ = Lj kð Þ∑ipijμi k − 1ð Þ
∑j Lj kð Þ∑ipijμi k − 1ð Þ
� � , ð34Þ

where the LjðkÞ above represents the maximum likelihood
function on measurement equation, and it is a function of
residual EjðkÞ as the dependent variable, which is following
formula (35).
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Lj kð Þ = 1
2π

ffiffiffiffiffiffiffiffiffiffi
Sj kð Þ

q exp −
E2
j kð Þ

2Sj kð Þ

 !
=N Ej kð Þ ; 0, Sj kð Þ	 


:

ð35Þ

(4) Interactive Output. The mixing probability obtained in
(34) is used as the weight to finally get the state parameters
and covariance.

X̂ k ∣ kð Þ =〠
j

μj kð Þ X̂ j k ∣ kð Þ,

Ej kð Þ = X̂ j k ∣ kð Þ − X̂ k ∣ kð Þ,

P k ∣ kð Þ =〠
j

μj kð Þ Pj k ∣ kð Þ + Ej kð ÞET
j kð Þ

h i
:

ð36Þ

3.3.6. Parameter Correction. In order to improve the overall
adaptive performance of the algorithm, NNMML carries out
an additional error correction for the observation noise
covariance matrix QðkÞ and the measurement noise covari-
ance matrix RðkÞ after each filtering iteration, so as to reduce
the error caused by the initial covariance value in the itera-
tion process and improve the accuracy of filtering. The rele-
vant parameters and formulae will be briefly described
below.

Let the correction constant be b, which does not change
in a given location. Then, we can reach the correction weight
by the following formula:

ω∗
k =

1 − b

1 − bk+1
: ð37Þ

The modified formulae for KF and UKF filtering
methods are slightly different, which will be briefly
described below.

(1) Parameter Correction Formulae Applied to KF. The mod-
ification of the measurement noise covariance matrix RðkÞ in
the iteration is as follows:

R k + 1ð Þ = ω∗
k Ei kð ÞET

i kð Þ −HPi k ∣ k − 1ð ÞHT� �
+ 1 − ω∗

kð ÞR kð Þ:
ð38Þ

The modification of the observation noise covariance
matrix QðkÞ in the iteration is as follows:

Q k + 1ð Þ = ω∗
k Ki kð ÞEi kð ÞET

i kð ÞKT
i kð Þ + Pi k ∣ kð Þ�

− FPi k − 1 ∣ k − 1ð ÞFT� + 1 − ω∗
kð ÞQ kð Þ,

ð39Þ

where matrices H and F are the same as described in KF
filtering that

H =
1
0

" #
,

F =
1 Δt

0 1

" #
:

ð40Þ

(2) Parameter Correction Formulae Applied to UKF. For the
sake of simplifying the formal expression of the UKF revi-
sion, we define it for the time being that

Ei kð Þ = Zi kð Þ − Ẑi k ∣ k − 1ð Þ: ð41Þ

The modification of the measurement noise covariance
matrix RðkÞ in the iteration is as follows:

R k + 1ð Þ = ω∗
k Ei kð ÞET

i kð Þ − Pzzi k ∣ k − 1ð Þ − R kð Þð Þ� �
+ 1 − ω∗

kð ÞR kð Þ:
ð42Þ

The modification of the observation noise covariance
matrix QðkÞ in the iteration is as follows:

Q k + 1ð Þ = ω∗
k Ki kð ÞEi kð ÞET

i kð ÞKT
i kð Þ + Pi k ∣ kð Þ�

− Pxxið k ∣ k − 1ð Þ −Q kð Þ� + 1 − ω∗
kð ÞQ kð Þ:

ð43Þ

For fear of the loss of positive quality in the iteration of
the above noise covariance matrix, the positive quality
should be tested after correcting the parameters in each
round. If the positive nature is lost, this round of parameter
correction will be abandoned.

3.3.7. Preliminary Location Estimation. Through the above
subalgorithm, the X̂iðk ∣ kÞ, which combines the results of
the two filtering methods, can be obtained; namely, we get
the revised distance d̂i,k between ith beacon node (coordi-
nates ðXi, YiÞ) and mobile node at every measured time.

If the coordinates of the mobile node at the time k are
defined as ðxk, ykÞ, an underdetermined system of equations
of it is able to be listed as follows:

xk − X1ð Þ2 + yk − Y1ð Þ2 = d̂
2
1,k,

xk − X2ð Þ2 + yk − Y2ð Þ2 = d̂
2
2,k,

xk − X3ð Þ2 + yk − Y3ð Þ2 = d̂
2
3,k,

⋮

⋮

xk − Xnð Þ2 + yk − Ynð Þ2 = d̂
2
n,k:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð44Þ

By simple transposition and matrix operations, it is
capable of being rewritten as the following matrix equation:

A½ � X½ � = b½ �, ð45Þ
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where

X½ � =
xk

yk

" #
, ð46Þ

and the matrices ½A� and ½b� satisfy as follows:

A½ � =

2 X1 − Xnð Þ 2 Y1 − Ynð Þ
2 X2 − Xnð Þ 2 Y2 − Ynð Þ

⋮

2 Xn−1 − Xnð Þ
⋮

2 Yn−1 − Ynð Þ

2666664

3777775,

b½ � =

X2
1 − X2

n + Y2
1 − Y2

n + d̂
2
1,k − d̂

2
n,k

X2
2 − X2

n + Y2
2 − Y2

n + d̂
2
2,k − d̂

2
n,k

⋮

X2
n−1 − X2

n + Y2
n−1 − Y2

n + d̂
2
n−1,k − d̂

2
n,k

26666664

37777775:
ð47Þ

Because of the high matrix dimensions, this system is
overdetermined. So, we use the Gauss-Newton least square
method to arrive at the answer.

X̂
� �

=
x̂k

ŷk

" #
= ATA
	 
−1

ATb: ð48Þ

3.3.8. Trajectory Correction Based on BP Neural Network. By
analogy, the approximate position of the mobile node at all
times can be obtained preliminarily.

After the above coordinate calculation, the approximate
positions of mobile nodes at all times are obtained. However,
in practical application, there are still a few moments when
the positioning trajectory does not conform to the overall
motion trend. Therefore, in order to alleviate such errors,
this paper adopts the BP neural network to correct the over-
all trajectory.

We define the approximate trajectory of the mobile
node as

x kð Þ,
y kð Þ,

(
ð49Þ

namely, the trajectory for a parameter equation about
the measuring interval k. For example, the coefficients of
the parametric equation xðkÞ can be obtained by the fol-
lowing least square method:

1 1
1 2

⋯
1 1

N − 1 N

⋮ ⋱ ⋮

1 2p ⋯ N − 1ð Þp Np

266664
377775 ∗ coefficient =

x̂1
x̂2
⋮

x̂N

266664
377775,
ð50Þ

where N is the total moving steps and P is the order of
the parametric equation. In general, P is set as 3.

Therefore, the Euclidean distance from the estimated
position of the mobile node to its approximate motion tra-
jectory at each time is as follows:

de kð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x∧k − x kð Þð Þ2 + y∧k − y kð Þð Þ2:

q
ð51Þ

N Euclidean distances are divided into two groups
through fuzzy C-means clustering (FCM) described above;
that is, c = 2 is set. Thus, the data of group A which conforms
to the trajectory and group B which deviates from the trajec-
tory can be obtained. The specific process of FCM is similar
to the previous one and will not be repeated here.

BP (back propagation) neural network, a multilayer neg-
ative feedback network, uses the adaptive mapping ability of
the network to carry out back propagation. It can realize
arbitrary nonlinear operation from input to output. From
the perspective of hierarchical analysis of the network struc-
ture, its structure generally consists of the input layer, output
layer, and implication layer. The BP neural network com-
pares the error between the network output and the expected
output by solving the network weight corresponding to the
optimization of the target result, constructs the correspond-
ing error function, uses the error gradient descent method to
solve, corrects the network weight, and returns to the input
layer to recalculate until the error is small.

In this paper, the BP neural network takes group A data
which is in line with the motion trajectory as the training set
and establishes the mapping relationship of ðk, xðkÞ, yðkÞÞ in
group A data, so as to train and output the modified mobile
node position at the time k corresponding to group B data.

The following formula (52) represents the information
transfer relationship between the input layer and the output
layer, where n1 and n2 are the number of nodes in the input
layer and the implication layer, respectively. Among the
input layer, xi is the input value of the ith node in the input
layer; φij is the weighting constant from the ith input layer
node to the jth implication layer node. Among the implica-
tion layer, Cj is the additional offset of the jth node; f ð·Þ is
the transfer function, and its common ones are logsig,
tansig, and pirelin. Here, we use logsigðxÞ = 1/ð1 + e−xÞ; φjk

is the weighting constant between the jth implication layer
node and the kth output layer node; among the output layer,
xk′ is the output value which belongs to the kth node.

xk′ = 〠
n2

j=1
φjk f 〠

n1

i=1
φijxi + Cj

 !
: ð52Þ

Back propagation is to calculate the output error of each
layer through the output layer and adjust the weight and
additional offset of each layer according to the error gradi-
ent descent method. The overall error objective function is
as follows:
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Q = 1
2〠

P

j=1
〠
n3

i=1
Ei − xi′
� �2

, P <N , ð53Þ

where P, n3, and Ei are the number of samples, the
number of nodes in the output layer, and the output expec-
tation, respectively.

Here, we take the error function of yj, the output result
of the jth implication layer, as an example to introduce the
gradient descent method:

Pj = 〠
n1

i=1
φijxi + Cj

� �
,

yj = f 〠
n1

i=1
φijxi + Cj

 !
,

Qj φij, Cj

� �
= 1
2〠

n3

j=1
Ej − yj
� �2�

:

ð54Þ

We choose the transfer function as follows, and it is clear
that logsigðxÞ is a special and initial state of the following
function:

f xð Þ = α

1 + e−x/β
: ð55Þ

This transfer function satisfies the following formula:

f ′ xð Þ = f xð Þ ∗ α − f xð Þ½ �
αβ

: ð56Þ

Then, the partial derivatives of the functions Qj with
respect to φij and Cj are performed:

∂Qj φij, Cj

� �
∂φij

= ∂
∂φij

1
2〠

n3

j=1
Ej − yj
� �2�

=
∂yj
∂φij

Ej − yj
� �

=
∂Pj

∂φij
f ′ Pj

	 

Ej − yj
� �

= xi
f Pj

	 

α − f Pj

	 
� �
αβ

Ej − yj
� �

= xiϕij
∂Qj φij, Cj

� �
∂Cj

= ϕij,

ð57Þ

where ϕij = ð f ðPjÞ½α − f ðPjÞ�/αβÞðEj − yjÞ.
We start from the last layer to proceed layer by layer,

pass the error forward by weight to get the error of the pre-
vious layer, and repeat successively. Meanwhile, the values of
φij and Cj are updated according to the gradient descent
method to minimize the error:

φij = φij − η1xiϕij,
Cj = Cj − η2ϕij,

ð58Þ

where η1, η2 are the learning rates and use the default value
0.05. The higher the learning rate is, the less the time to
reach the training target will be. However, if the learning
rates is too high, it may lead to a locally optimal solution,
so we take a moderate value here.

By setting the maximum number of iterations and the
training target, the modified results of K at the correspond-
ing time of group B data were solved and combined with the
data of group A to obtain more accurate

X̂
� �

=
x̂k

ŷk

" #
: ð59Þ

4. Simulation Results

In this paper, the positioning accuracy of the algorithm is
simulated by the simulation software MATLAB.

The environment set by this simulation is roughly as
follows:

All beacon nodes and mobile nodes are in a plane with
an area of 100 × 100 during the measurement time. The
mobile node moves in a smooth trajectory, and there is no
nonphysical movement less than the measured interval.
The coordinates of n beacon nodes set are an array of n rows
and 2 columns randomly generated by the function “rand”
in MATLAB, whose horizontal and vertical coordinates are
known and fixed during measurement. In addition, a total
of N measurements have been made.

The error of LOS and NLOS satisfies as follows.
Since the LOS error is caused by white noise satisfying

the normal distribution, its mean value is 0 and its standard
deviation is σLOS. There are many errors in NLOS, and three
kinds of noise satisfying Gaussian distribution, uniform
distribution, and Poisson distribution are selected as repre-
sentatives. The mean value of μNLOS and the standard devia-
tion of σNLOS are satisfied. Poisson distribution satisfies the
condition that rate parameter is λNLOS.

In determining whether a certain beacon node and
mobile node are in NLOS state at a certain moment, a num-
ber in the interval of [0,1] is randomly generated by the
function “rand.” If the random number is greater than the

Table 1: List of the parameters.

Parameter Symbol Values

Total moving steps N 100

Number of beacon nodes n 5

Standard of LOS error σLOS 1

Mean of NLOS error μNLOS

Standard of NLOS error σNLOS

NLOS threshold S 0.7

Rate parameter of NLOS error λNLOS

Maximum number of iterations 3000

Training target 10-7

Number of nodes in implication layer n2 5
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NLOS threshold S, it is considered to be in the NLOS
environment; otherwise, it is deemed to be in the LOS
environment.

In the correction of the BP neural network, we set three
parameters with partial empirical direction, maximum num-
ber of iterations, training target, and number of nodes in the
implication layer. The training target is the gradient value
target set in the neural network. The setting of the maximum
number of iterations prevents the neural network from fall-
ing into an endless cycle when it cannot reach the gradient
goal for a long time. Using too few nodes in the implication
layer results in underfitting. On the contrary, using too
many nodes may also lead to overfitting, so 5 is selected
for reference [29].

In order to show the localization effect of the NNMML
algorithm in the LOS/NLOS mixed environment, the Kal-
man Filtering (KF) algorithm, Extended Kalman Filtering
(EKF) algorithm, Unscented Kalman Filtering (UKF) algo-
rithm, and Multiple-filter Localization (ML) without NNs
were used as the comparison algorithm group to carry out
one thousand repeated experiments (NUM= 1000). Refer
to Table 1 for some basic parameters of the data and the
neural network without comparison items. The root mean
square error is used as the error measurement standard,
and its formula is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

1
NUM 〠

N

k=1
x∧k − xkð Þ2 + y∧k − ykð Þ2� � !vuut :

ð60Þ

Figures 2–4, respectively, show the variation trend of
RMSE of the five algorithms, when the NLOS error obeys
Gaussian distribution, by changing the number of BN, the
mean of NLOS error, and the standard of NLOS error.

In Figure 2, as the number of mobile nodes n increases
from 4 to 7, it can be clearly seen that the positioning errors
of the five algorithms all show a downward trend. When the
number of mobile nodes is small, the NNMML algorithm
has obvious advantages and can better deal with the localiza-
tion problem. However, as the number of mobile nodes con-
tinues to rise, the positioning accuracy of the NNMML
algorithm and the ML algorithm is gradually approached,
and its advantages become weaker.

In Figure 3, when the mean of NLOS errors μNLOS rises
from 2 to 6, the positioning errors of the five algorithms all
rise gradually, but the NNMML algorithm rises at the gen-
tlest speed. In this process, KF, EKF, UKF, and ML increased
by 49.33%, 31.74%, 35.71%, and 19.40%, respectively, while
NNMML only increased by 13.42%, and its initial value
was the lowest. Compared with other algorithms, the loca-
tion effect was the best.

In Figure 4, when the standard of NLOS errors σNLOS
rises steadily from 1 to 5, all the five algorithms have signif-
icant changes. When σNLOS=1, the NLOS error tends to be a
constant error, and the positioning error of NNMML and
ML algorithm is similar. When the standard rises, the error
ratio of NNMML to ML decreases from 99.24% to 89.54%,
indicating that NNMML is more suitable for the case of rel-
atively large NLOS.

Then, Figure 5 shows how RMSE of each algorithm
changes with the rate parameter when the NLOS error sat-
isfies the Poisson distribution. In this figure, when the rate
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Figure 2: Difference in the number of BN.
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parameter changes from 4 to 7, RMSE of all algorithms
shows an upward trend, while RMSE of the NNMML algo-
rithm keeps the lowest and the upward trend is not obvi-
ous. With the increase of error, the NNMML algorithm

has a sharp increase in advantages over other algorithms.
It can be preliminarily confirmed that the NLOS error of
Poisson distribution is well suppressed by the NNMML
algorithm.
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Figure 4: Different in the standard of NLOS error (Gaussian).
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Figure 3: Difference in the mean of NLOS error (Gaussian).
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Finally, Figure 6 shows the effect of the algorithm, if the
NLOS error is uniform.

In Figure 6, the standard of NLOS errors μNLOS rises
steadily from 3 to 6 and σNLOS remains 2. In this process,
KF, UKF, and EKF change dramatically, while ML and

NNMML algorithms fluctuate less. Although KF and EKF
have good performance when the maximum and minimum
values are 5 and 1, respectively, NNMML has obvious
advantages of universality from the perspective of overall
RMSE and its stability.
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Figure 6: Difference in the mean of NLOS error (uniform).
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Figure 5: Difference in the rate parameter (Poisson).
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In addition to the above basic comparison, we selected
TF-FCM, JPDA, RAPF, and other improved algorithms in
[16, 30, 31] for horizontal comparison.

From Figures 7–9, it can be seen that our MMNNL algo-
rithm is significantly stronger than TF-FCM and JPDA

when the number of BN changes or the error parameters
of NLOS change. Compared with the improved algorithm
RAPF based on PF, it is better in partial effect when the
overall filtering effect is similar. For example, when the num-
ber of BN is low, it has an advantage of 8.5% to 11.2%. The
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Figure 8: Further contrast on mean of NLOS error.
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Figure 7: Further contrast on number of BN.
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effect is gradually better when the mean of NLOS error
increases. Compared with the RAPF algorithm, the optimi-
zation effect is enhanced in the high error region.

All in all, the NNMML algorithm has stronger error
suppression ability and stronger robustness for uniformly
distributed NLOS.

5. Discussion

The NNMML algorithm has excellent performance com-
pared with conventional KF, EKF, and UKF in LOS/NLOS
mixed environment. At the same time, compared with the
ML algorithm without neural network, it also has a good
effect in alleviating errors, with high robustness and preci-
sion. However, due to the addition of the neural network
for correction, the overall algorithm consumes a little longer
time. Therefore, our future work will focus on the optimiza-
tion of time complexity and the improvement of redundant
parts to reduce the time consuming of the algorithm. At the
same time, our future work will also apply the NNMML
algorithm to more specific and complex actual environ-
ments, instead of representing NLOS error completely
through simple probability distribution, in order to improve
the practical application value of the algorithm.

6. Conclusion

In this paper, an algorithm called the neural network modi-
fied multiple-filter localization is proposed. Firstly, LOS and
NLOS cases are distinguished. Then, KF and UKF are
applied in different environments, and appropriate grouping
processing is carried out for NLOS. Finally, the positioning

results after multiple filtering are corrected by the neural
network. Simulation results show that it is better than KF,
EKF, UKF, and multiple filtering without the neural net-
work. It achieves better accuracy and robustness in LOS/
NLOS hybrid environments.
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