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Recently, researches on data-driven faulty identification have been achieving increasing attention due to the fast development of
the modern conditional monitoring technology and the availability of the massive historical storage data. However, most
industrial equipment is working under variable industrial operating conditions which can be a great challenge to the
generalization ability of the normal data-driven model trained by the historical storage operating data whose distribution
might be different from the current operating datasets. Moreover, the traditional data-driven faulty prognostic model trained
on massive historical data can hardly meet the real-time requirement of the practical industry. Since the hierarchical feature
extraction can enhance the model generalization ability and the attention learning mechanism can promote the prediction
efficiency, this paper proposes a novel bearing faulty prognostic approach combining the U-net-based multiscale feature
extraction network and the CBAM- (convolutional block attention module-) based attention learning network. First, time
domain conditional monitoring signals are converted into the two-dimensional gray-scale image which can be applicable for
the input of the CNN. Second, a CNN model based on the U-net structure is adopted as the feature extractor to hierarchically
extract the multilevel features which can be very sensitive to the faulty information contained in the converted image. Finally,
the extracted multilevel features containing different representations of the raw signals are sent to the designed CBAM-based
attention learning network for high efficiency faulty classification with its unique emphasize discrimination characteristic. The
effectiveness of the proposed approach is validated by two case studies offered by the CWRU (Case Western Reserved
University) and the Paderborn University. The experimental result indicates that the proposed faulty prognostic approach
outperforms other comparison models in terms of the generalization ability and the speed-up properties.

1. Introduction

With the advent of the large-scale manufacturing of the
modern industry, the prognostic and health management
(PHM) of the manufacturing equipment has been becoming
increasingly important. Bearings, regarded as the key com-
ponent of the industrial machine, play a significant role in
the health status of the whole equipment whose failure
might directly result in total collapse. Therefore, the accurate
and effective prediction of the bearing fault can not only save
the periodical maintenance cost but also improve the reli-
ability of the whole equipment. Traditional faulty prognostic
approach can be mainly categorized into three schemes:

signal-based approach, physical analyzing-based approach,
and pattern recognition-based approach. The signal-based
approach, especially the vibration signal-based approach,
can be the most commonly used one in the faulty prediction
of the industrial mechanical components. By using the time
domain, frequency domain, and the time-frequency analysis,
the vibration-based faulty prognostic approach can be very
sensitive to the machine faulty symptom. Hong and Dhupia
[1] proposed a vibration-based faulty prognostic model by
analyzing the kurtosis of strong impact circle of the vibration
spectrum. Borghesani et al. [2] established a vibration-based
faulty prognostic model by analyzing the relationship between
the Kurtosis, square envelop spectrum and cepstrum
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prewhitening. A novel band demodulation approach is pro-
posed for the faulty prognostic of the rolling bearings. Apart
from the vibration-based approach, the temperature-based
approach and oil analysis-based faulty prognostic approach
can also be very effective [3–5]. The signal-based faulty prog-
nostic approach is totally based on the understanding of the
target monitoring signal whose prediction accuracy can be
limited to the priori domain expertise knowledge. Moreover,
the manual feature extraction and alarming threshold setting
of different target signal can be labour cost [6].

In addition to the signal-based approach, the physical
analyzing-based approach has also been studied in recent liter-
ature. The physical analyzing approach aims at establishing
the physical equation based on the material characterization.
Xu et al. [7] analyzed the degradation situation of the
aluminium-steel joint by analyzing the profile effects of the
underwater friction stir welding tool pin on the on the proper-
ties of aluminium steel joint. Xu et al. [8] established a com-
posite material fatigue analyzing evaluation based on the
analysis of the dispersion wave characteristics of laminated
composite nanoplate.

To overcome the above issue existed in the signal- and
physical analyzing-based approach, the pattern recognition-
based approach, usually realized by the deep learning model,
is proposed for the faulty prognostic tasks. The deep learning
models can replace the manual feature extraction with its
power automatic learning ability of representative features
and the nonlinear input-output mapping relationship in com-
plex system with its deep nonlinear network structure [9–11].
As one of the most effective deep learning models, the convo-
lution neural network model has shown its promising ability
in hierarchical feature learning and intelligent faulty prognos-
tic [12–18]. The CNN-based faulty prognostic approaches
have achieved comparatively higher accuracy than the
signal-based approaches; however, there still exists some
points needed to be considered.

(1) It is assumed that the training datasets and the test-
ing datasets are collected under the same operating
situation; however, in the real industrial environ-
ment, the operation condition such as the bearing
rotating speed and the load of the equipment can
be variable in different time segments. The perfor-
mance of traditional CNN-based faulty prediction
approach can be vulnerable when the load condition
vary. How to boost the model generalization ability
remains a challenge

(2) In the traditional CNN-based faulty prediction
approach, only the last feature layer, which is highly
related to the specific task or datasets, is used for the
faulty prognostic task. However, some generalized
characteristics are contained in the low-level hidden
layers which are not well preserved in the high-level
feature. How to jointly use these multilevel features
remain a problem

Since the low-level features reserved in the hidden layers
are universal and similar for different but related distributed
datasets or tasks, the multiscale hierarchical feature learning

has been studied in recent literature [19–23]. Ding and He
[20] combined the second max pooling layer with the last
convolution layer as the categorical feature image for spindle
bearing fault diagnosis. Sun et al. [21] connected both the
third and the fourth convolution layer into the last hidden
layer of the CNN network so that the model generalization
ability can be enhanced. Lee and Nam [22] incorporated sev-
eral low-level features with the extracted high-level feature.
The concatenated feature vector is fed into a SVM detector
for the prediction. In order to fully utilize the hierarchical
features learned by the CNN model, Xu et al. [23] extracted
the feature image of two pooling layers and one fully con-
nected layer from the CNN model. These features are fed
to the ensemble learning model of three random forests for
final prediction.

Since these literature directly extract multiple feature
layers from the traditional CNN and send them to the classi-
fier for faulty prognostic, it is questionable whether the tradi-
tional CNN network has enough hierarchical feature
learning ability and whether it is appropriate to directly use
the multilevel features for practical faulty classification prob-
lem. The following two points need to be further considered.

(1) In current literature, the multilevel and multiscale
features are extracted from the traditional CNN net-
work such as the most commonly used LeNet-5, but
the network itself has limited hierarchical feature
learning ability which hinders the model generaliza-
tion ability somewhat

(2) In current literature, the extracted multilevel feature
images are directly used for the faulty classification
tasks. Nevertheless, there exists some abundant fea-
tures contained in these extracted feature images
which has less relationship to the prognostic task.
These abundant features greatly increase the compu-
tation cost, and the highly related features might be
concealed by them, thus causing reduction of the
prognostic efficiency and the prognostic accuracy

Dealing with the above two issues, this paper takes full
advantage of the powerful hierarchical feature learning abil-
ity of the U-net CNN and the discriminative feature selec-
tion ability of the attention learning network. The major
contributions of this research are as follows: considering
the first issue listed above, an improved CNN based on U-
net structure is designed as the hierarchical feature extractor
network which has already been proved about its powerful
hierarchical feature learning ability in the medical image
area; considering the second issue listed above, a designed
attention learning network based on several CBAM- (convo-
lutional block attention model-) based attention learning
blocks is used for the faulty classification with its unique dis-
criminative feature selection mechanism for eliminating the
redundant features; the rest structure of this paper is orga-
nized as follows: Section 2 briefly reviews the related theory
and the methodology used in this paper; Section 3 presents
the overall flowchart and the technical detail of the proposed
faulty prognostic method; Section 4 presents the experimen-
tal result including the ablation study and the comparison
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experiment with other traditional prognostic approaches;
finally, the conclusion and future work of this paper are pre-
sented in Section 5.

2. Related Theory and Methodology

2.1. Multiscale Feature Extraction and U-Net. As a typical
representation of deep learning model, the convolution neu-
ral network can automatically learn the structured and rep-
resentative features from the raw datasets through layer-to-
layer propagation scheme. Since the convolution neural net-
work can learn multiscale hierarchical features of raw data,
researches on making full use of features in the multilayers
of the CNN have achieved considerable attention which
has been proved to have better generalization ability [21].
There are some famous CNN models such as LeNet-5 [24],
Alex-Net [25], VGG-Net [26], Google-Net [27] and U-Net
[28], among which the CNN model based on U-Net struc-
ture has shown its great advantage in hierarchical feature
learning.

U-Net, as a new structure of CNN, has already been fre-
quently applied into the task of image classification, segmen-
tation, detection, and tracking in the medical imaging and
biochemical area due to its powerful hierarchical feature
learning ability [29]. Gao et al. [30] proposed an improved
U-net-based image segmentation method for the blood ves-
sel segmentation. In order to combine complementary mag-
netic resonance image protocols to reconstruct the high-
quality image, Lei et al. [31] proposed a Dense-UNet to
reconstruct T2-weighted image (T2WI) using both T1-
weighted image (T1WI) and undersampled T2WI. Nazem
et al. [32] proposed an improved 3D version of the U-net
model based on the dice loss function to predict the binding
sites of new proteins accurately. Dogan et al. [33] proposed a
two-phase hybrid approach combining the Mask R-CNN
and the 3D U-net for high-accuracy automatic segmentation
of pancreas in CT imaging. Chae et al. [34] proposed a resid-

ual U-Net combined with an attention learning module for
the image segmentation of the pressure ulcer (PU) region.

To the best of our knowledge, it is the first time that the
“U-net” is used as a feature extractor in the area of equipment
faulty prognostic. Normally, the U-net-based CNN network
consists of two parts, the max-pooling period in the left and
the upconvolution period in the right which jointly construct
the “U” structure as shown in Figure 1. It usually consist of
four kinds of operations, namely, convolution, max-pooling,
transpose-convolution, and skip connection.

2.1.1. Convolution Operation. The convolution layer consists
of a series of feature maps which is obtained through the
convolution operation between the convolution kernel and
the input as shown in

Xj
α = f 〠

n

β=1
Wj

α,β ∗ Xj−1
β + bjα

 !
: ð1Þ

Xj
α denotes the αth output feature map of the jth layer;

Xj−1
β denotes the βth input feature map of the ðj − 1Þth layer;

Wj
α,β denotes the convolution kernel between the feature

map Xj
α and the feature map Xj−1

β . The f ð∗Þ denotes the acti-
vation function. In order to increase the nonlinearity of
CNN, the rectifier linear units (Relu) is adopted in this paper
due to its excellent performance. The ReLu function can be
expressed as shown in

Xj
a =max 0, Xj′

a

� �
: ð2Þ

2.1.2. Max-Pooling Operation. In order to release the model
parameter size as well as the overfitting problem, the pooling
operation is executed along with the convolution operation.
Since the convolution kernels for the same feature map share
the same weight and bias, a max-pooling layer is added to

Input 
image

tile

Max-pooling
Transpose-convolution

Convolution

Skip connection

Figure 1: The conventional U-net structure.
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each convolution layer, producing lower resolution feature
maps through subsampling operations. The max-pooling
function can be defined as illustrated in

XS1∗S2
a =max XS1′∗S2′

a : S1 ≤ S1′ < S1 + λ, S2 ≤ S2′ < S2 + λ
� �

,

ð3Þ

where the XS1∗S2
a and XS1′∗S2′

a denote the S1 ∗ S2 pixel in the ath
feature map before and after max-pooling operation. The
parameter λ denotes the stride size of the pooling window
whose value should be larger than 1. The max-pooling oper-
ation decreases the size of the feature maps and subsamples
the highest resolution proportion of the input feature image
which greatly reduce the parameter number of the CNN
model.

2.1.3. Transpose Convolution. In order to obtain the feature
image which has the same size as the input image, the trans-
pose convolution operation is applied along with the max-
pooling process. During the transpose convolution process,
the domain interpolation is the most commonly used tech-
nology as shown in

XI∗I
a = Deconv Xi∗i

a

� �
,

I = i + 2p − k
s

+ 1,
ð4Þ

where the Xi∗i
a denotes the i ∗ i pixel value in the ath feature

map before the transpose convolution operation and XI∗I
a

denotes the I ∗ I pixel value in the ath feature image after
the transpose convolution operation; the parameter S
denotes the stride step of the transpose convolution, and
the parameter p denotes the zero padding. The kernel size
of the transpose convolution kernel is k ∗ k.

2.1.4. Skip Connection. The U-net is a typical encoding-
decoding structure. The encoding process is realized by the
max-pooling operation while the decoding process is real-
ized by the transpose convolution operation. In order to
compensate the information loss during the max-pooling
process, the U-net utilizes the concatenation layer to realize
the feature fusion of the two symmetrical feature images
located in the max-pooling and transpose processes, respec-
tively, which is called skip connection. The “skip connec-
tion” enhances the hierarchical feature learning ability of
the U-net without resolution loss.

2.2. Attention Learning and CBAM. The attention learning is
first inspired by the cognitive neuroscience. When dealing
with a certain task, people will pay more attention to the
important issue while paying less attention to the unimpor-
tant ones. Based on this notion, the attention mechanism is
first proposed by Treisman and Gelade in 1980s [35]. The
attention mechanism is aimed at assigning different weights
to different proportions of the input based on the contribu-
tion of the different input proportions to the output. It has
already been successfully applied into the area of natural lan-
guage processing, machine translation, pattern recognition,
and large equipment maintenance due to its powerful ability
of extracting discriminative features [36].

Chen et al. [37] proposed an attention-based deep learn-
ing framework for machine’s RUL prediction. In his paper,
the proposed approach first exploits the LSTM network to
learn representative sequential features from raw sensory
data, then the attention learning network is utilized to learn
the importance of the sequential features and assign larger
weights to more important ones. Chen et al. [38] applied a
spatial-temporal convolution neural network with convolu-
tion block attention module for microexpression recogni-
tion. First image sequences were input to a medium-sized
convolution neural network (CNN) to extract visual fea-
tures. Afterwards, it learned to allocate the feature weights
in an adaptive manner with the help of a convolutional block
attention module. Since microexpressions only occur in
parts of the human face, the attention mechanism helps to
focus on specific facial regions, learning and acquiring the
important features. Xiong et al. [39] proposed an attention
augmented multiscale network (AAMN) for single-image
superresolution (SISR), employing an attention driven strat-
egy to guide feature selection and aggregation among multi-
ple branches. Leng et al. [40] proposed a context-aware
attention network combining the context learning module
and the attention transfer module. The context learning
module is first utilized to capture the global contexts. Then,
the attention transfer module is proposed to generate atten-
tion maps that contain different attention regions, benefiting
for extracting discriminative features.

Currently, there are two most commonly used attention
learning mechanism, namely, SENET (sequential and excita-
tion network) and CBAM (convolutional block attention
model) [37]. The SENET applies the attention module to
channel dimension while the CBAM applies the attention
module not only on the channel dimension but also the spa-
tial dimension of the image.

The idea of the CBAM attention mechanism was first
proposed by Woo et al. [36]. The CBAM consists of channel

Input features
with channel Channel

attention module Spatial
attention
module

Refined
features

Figure 2: The structure of the CBAM attention mechanism.
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attention process and spatial attention process as shown in
Figure 2. The overview of the channel-spatial process of
the CBAM is illustrated in

M ′ =MC Mð Þ ⊗M,M ∈ RC∗H∗W ,

M″ =MS M ′
� �

⊗M ′,
ð5Þ

where M represents the input image of the CBAM module
with the channel number of C, the height of H, and the
width of W. The mark ⊗ represents the element-wise multi-
plication, M ′ represents the feature image multiplying the
channel attention map, and M″ represents the result of the
spatial attention map multiplying M ′ which is regarded as
the output of the CBAM module.

2.2.1. Channel Attention Process. Usually, the input image
can be transferred to a feature matrix through the convolu-
tional layer. The channel number of the obtained feature
matrix is the same as the kernel number of the convolutional
layer with the common value of 256 or 512. Since some
channels are not so useful to the information transference,
it is necessary to apply channel attention on these channels.
The attention weighting process is illustrated in

MC Fð Þ = σ MLP AvgPool Fð Þð Þð Þ +MLP MaxPool Fð Þð Þ
= σ W1 W0 FC

avg

� �� �
+W1 W0 FC

max
� �� �� �

,
ð6Þ

where the FC
avg and FC

max denote the average pooling opera-
tion and the max pooling operation applied on the channel
dimension of the feature matrix. W0 ∈ RC/r∗C andW1 ∈
RC∗C/r denote the activation operation of the shared multi-
layer perceptron with activation function of rectified linear
unit (Relu) with the size of RC/r∗1∗1,where r denotes the
compression ratio.The parameter σ denotes the sigmoid
activation.

2.2.2. Spatial Attention Process. Similar as the channel atten-
tion process, the spatial attention is aimed at applying the
importance weighting on spatial dimension of the feature
matrix as shown in

MS Fð Þ = σ f R∗R AvgPool Fð Þ ; MaxPool Fð Þ½ �ð Þ
� �

= σ f R∗R Concat Fs
avg ; Fs

max

� �� �� �
,

ð7Þ

where the average pooling and the max pooling are also
applied for the information evaluation. The parameter f R∗R

denotes the convolutional layer with the kernel size of ∗R
and the spatial attention weighting is finally normalized by
the sigmoid activation.

2.3. Proposed Combination Model Based on U-Net and
CBAMMechanism. Although the hierarchical feature extrac-
tion network can provide the multilevel characteristics of the
input image, the input image has been largely expanded to
some extent. Therefore, it is necessary to use the attention
learning network to capture the sensitive proportion of these
input feature images and eliminate the abundant proportion.
This paper proposes a hybrid model based on the U-net and
the CBAM-based attention learning blocks, compromising
the hierarchical feature extraction of the U-net, the attention
learning of the CBAM blocks, and the effectiveness of the
combination. The overall framework is illustrated in Figure 3.

Firstly, the one-dimensional time series signal has been
converted into the two dimensional gray-scale image, which
is then decomposed by the U-net into several multilevel fea-
ture images hierarchically, representing the hierarchical
characteristics of the input signal.

Secondly, multiple CBAM attention learning blocks are
used to optimize the decomposed features, selecting the
faulty sensitive features from the redundant ones. The com-
plexity of the hierarchical feature images are greatly reduced,
thus promoting the prediction efficiency.

One
dimensional
time series

 
Signal to

image
conversion

U-net

Feature
image 1

Feature
image 2

Feature
image k

Feature
image k-1

CBAM block

CBAM block

CBAM block

CBAM block

Feature
aggregation

CBAM
block

Faulty
prognostic

Feature
extraction

network
Attention learning network

Figure 3: Framework of the hybrid model based on U-net and CBAM attention mechanism.
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Finally, the outputs of the CBAM attention learning
blocks are aggregated, and the second CBAM block is
applied on the categorical feature image. The categorical fea-
ture optimized by the CBAM attention learning is sent to the
Softmax layer for final faulty prognostic as shown in

P y ið Þ = j ∣ C ið Þ ; θ
� �

=
exp θTj ∗ C ið Þ

� �
∑K

j=1exp θTj ∗ C ið Þ
� � ,

y = argmax jp y ið Þ = j ∣ C ið Þ ; θ
� �

,

ð8Þ

where CðiÞ denotes the optimized categorical feature image
used for faulty prognostic; i = 1, 2, ::n denotes the number
of the training data; j = 1, 2, ::k denotes the dimension of
the output layer which is equal to the faulty type number.
θ denotes the parameters of the Softmax layer.

3. Proposed Faulty Prognostic Procedure

3.1. Data Preprocessing. Generally speaking, the condition
monitoring data collected from the front-end industrial
equipment includes one-dimensional time series data and
two-dimensional image data. The 2D image data can be used
directly for the faulty prognostic task by using the pattern
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Figure 4: The schematic diagram of the “N ∗N” signal to image conversion method.
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recognition techniques. In this paper, we use the “N ∗N”
signal to image conversion technique proposed in literature
[41] to convert the 1D time series vibration signal data into
the 2D image data; the converted image is used as the input
of the U-net convolution neural network. The specific sche-
matic diagram of the N ∗N “signal to image” conversion
process is illustrated in Figure 4.

First, we randomly chooseN signal segments from the raw
signal containing N sampling points in each segment equally.
Since the maximum value of the pixel length of the gray image
is less than 255, the selected N2 sampling points are normal-
ized into the value ranging from 0~255 by using Equation
(9) and the N ∗N signal matrix is constructed. Finally, the
normalized pixel value of the signal matrix is fulfilled for the
construction of the gray-scale image.

Pixel i, jð Þ = 255 ∗ round

� value i − 1ð Þ ∗N + jð Þ −min valueð Þ
max valueð Þ −min valueð Þ

� �
:

ð9Þ

In Equation (9), the round function transforms the sam-
pling signal value to the gray scale pixel value by using the
round function “roundð∗Þ”. The Pixelði, jÞ denotes the con-
verted pixel value of the corresponding signal valueði, jÞwhere
the min (value) denotes the minimum value of sampling data
point among the selected N2 sampling data point while the
max (value) denotes the maximum value among the N2 data

points. The above “signal to image” conversion method used
in this paper is simple, and it has been proved to be effective
in literature [41] due to its less requirement of the domain
expertise and signal processing knowledge. The converted
gray-scale image is a 2D representation of the raw signal which
can effectively retain the details and characteristics of the raw
signals.

3.2. Proposed Feature Extraction Network and Attention
Learning Block

3.2.1. Proposed U-net-Based Feature Extraction Network. In
this paper, a U-net-based convolution neural network is
designed as the hierarchical feature extraction network.
The whole feature extraction network consists of 10 layers,
namely, X1~X10, among which the feature images of
X1~X4 denote the max-pooling process of the U-net while
the feature images of X5~X10 denote the upconvolution
process of the U-net as shown in Figure 5.

Since the feature layers of the transposed process of the
U-net can better represent the hierarchical characteristics
of the input data which contains less outside noise, the fea-
ture layers of X6, X8, and X10 from the low, middle, and
high levels, respectively, are used as the extracted hierarchi-
cal features, representing the global and specific characteris-
tics of different health conditions, thus contributing different
knowledge to the feature extraction task.

3.2.2. Proposed ResNet-CBAM Attention Learning Block. In
this paper, the designed CBAM attention learning network
is compiled with the three-layer ResNet CNN as shown in
Figure 6. First, the ResNet-based CNN is used to extract
the spatial and channel features of the input feature images.
Then, the CBAM attention learning block is used for the
attention weighting of the channel dimensions and the spa-
tial dimensions of the input images in an adaptive way. The
advantage of the proposed ResNet-CBAM attention learning
block is that there will not be feature loss and gradient disap-
pearance before the input images are processed by the
CBAM module.

3.2.3. Proposed Prognostic Procedure. The proposed prog-
nostic procedure is illustrated in Figure 7. First, the one-
dimensional time series data is converted to the two-
dimensional gray-scale image by using the “N ∗N” image
conversion approach. Second, the U-net-based hierarchical
feature extraction network is applied and the multilevel fea-
ture images of X6, X8, and X10 are extracted as the multi-
input of the attention learning network. Third, the three
designed ResNet-CBAM-based attention learning blocks
are applied on the three extracted multilevel feature images
which are then fused through shaping into the same size
and channel concatenation. Finally, the concatenated cate-
gorical feature image is optimized by the second ResNet-
CBAM attention learning block, and the final faulty prog-
nostic result can be calculated through Softmax prediction.
The novel Pareto-optimal strategy based on spatial game
theory which is proposed by Wong [42–43] is utilized as
the parameter optimization strategy of the proposed hybrid

Input image

Conv2D, ReLu

Conv2D, ReLu

Conv2D, ReLu

Channel attention
module 

Spatial attention
module 

CBAM module

Short cut

ReLu function

Figure 6: The flowchart of the proposed ResNet-CBAM attention
learning network.
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faulty prognostic model. The general procedure of the pro-
posed approach is illustrated in Algorithm 1.

3.3. Performance Metrics. In order to evaluate the prediction
accuracy as well as the prediction efficiency of the proposed

approach, the “accuracy” metric, the “accuracy gain” metric,
and the function of the “average accuracy gain” are used in
this paper.

Equation (10) denotes the definition of the “accuracy”
function which has been widely used in the accuracy

One dimensional 
vibration signal

N
⁎
N signal to 

image conversion
U-net 

Feature image 
X6

Feature image 
X8

Feature image 
X10

ResNet-
CBAM block

ResNet-
CBAM block

ResNet-
CBAM block

Shaping for the
same size 

Channel 
concatenation

Categorical feature
fusion 

ResNet-
CBAM block

Softmax 
prognostic

Feature extraction Feature selector and 
faulty classifier

Figure 7: The framework of the proposed prognostic procedure.

Algorithm: General procedure of the proposed approach
Input: Given the one-dimensional time series bearing vibration data samples of different faulty diameters under different working
loads, the architecture and parameters of the proposed U-net and the designed CBAM attention learning model.
Output: The prediction result and the testing accuracy.
Step 1: Generate the training datasets and the testing datasets

1.1: Obtain the gray scale images of the one dimensional time series samples of the vibration signal by using the N ∗N signal-to-
image conversion method.

1.2: Categorized the gray scale images into the training datasets Xs and the testing datasets Xt.
Step 2: Construct the U-net hierarchical feature extractor for multilevel feature extraction

2.1: Construct the U-net hierarchical feature extractor as shown in Figure 5 and input the training datasets of Xs.
2.2: Train the U-net hierarchical feature extractor by using unsupervised training.
2.3: Extract the multilevel feature images of X6, X8, and X10 in the upconvolution process of the U-net.

Step 3: Construct the attention learning mechanism for the further feature optimization
3.1: Construct the ResNet-CBAM-based attention learning network as shown in Figure 7 and apply it for the further feature

optimization of the feature images X6, X8, and X10, respectively.
3.2: Applying shaping and concatenation process for the construction of categorical feature.
3.3: Applying ResNet-CBAM feature extraction network for the second feature optimization of the categorical feature in proce-

dure 3.2.
Step 4: Output the faulty prognostic result using flatten, dense, and Softmax prediction

4.1: Applying flatten, dense processing for the output in procedure 3.3.
4.2: Applying Softmax prediction using Equation (8) for calculating the final faulty prognostic result.
4.3: Optimizing the parameter of the proposed approach through minimizing the loss function in Equation (12) by using spatial

game theory-based Pareto-optimal strategy.
4.4: Repeat the procedures from 2.1 to 4.3 and finish the training procedure.

Step 5: Evaluate the proposed methodology
Evaluate the performance of the proposed methodology on testing datasets Xt and output the testing accuracy of the proposed
approach.

Algorithm 1: The general procedure of the proposed methodology.
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evaluation of the classifying problem including the faulty clas-
sification task mentioned in this paper.

acc f ;Dð Þ = 1
m
〠
m

i=1
Π f bxið Þ = yið Þ,

Π f bxið Þ = yið Þ = 1, if f bxið Þ = yi,
Π f bxið Þ = yið Þ = 0, if f bxið Þ ≠ yi,

( ð10Þ

wherem denotes the number of the training or testing samples
per epoch; f ðbxi Þ denotes the prognostic value obtained by
model, and yi denotes the true label.

Equation (11) denotes the definition of the accuracy gain
(AG) and the average accuracy gain (AAG) which has been
frequently used to evaluate the speed-up properties of the
prediction model [44].

AGi = ACCModel1
i −ACCModel2

i ,

AAGNepoch
= ∑

Nepoch
i=0 ACCModel1

i −ACCModel2
i

� �
Nepoch

,
ð11Þ

where the ACCModel1
i and ACCModel2

i denote the achieved
accuracy of model 1 and model 2, respectively, after the ith
epoch; AGi denotes the accuracy gain of model 1 over model
2 after the ith epoch; AAGNepoch

denotes the average accuracy

gain of model 1 over model 2 within the epoch range of
Nepoch; the indicator AGi evaluates the model speed-up
properties from the microperspective while the indicator
AAGNepoch

evaluates the model speed-up properties from

the macroperspective.
The loss function is defined as shown in Equation (12),

where Ið∗Þ denotes the indicator function and N denotes
the number of the training samples.

H y, Pð Þ = −〠
N

i=1
I y ið Þ = j
� �

∗ log P y ið Þ = j ∣ C ið Þ ; θ
� �� �

:

ð12Þ

4. Methodology Evaluation

In order to evaluate the effectiveness of the proposed
approach, two case studies are adopted with two bearing
datasets from the reliance electric motor and electromechan-
ical drive system, respectively. The experimental environ-
ment of this paper is Intel Xeon 5238 CPU@2.1Hz x 2, 1T
SSD, 4xTesla T4 GPU, 256G running memory.

4.1. Case Study 1: Bearing Faulty Prognostic for Reliance
Electric Motor

4.1.1. Data Description and Experimental Set-Up. Perfor-
mance of the proposed approach is evaluated on the bearing
fault datasets provided by the CWRU (Case Western
Reserved University) bearing data center [45]. The vibration
signal data is collected from the drive-end of a 2-hp reliance
electric motor as shown in Figure 8.

The accelerator sensors are installed on the inner race,
ball, and the outer race, respectively. In this case study, only
the data collected from the inner race are collected and ana-
lyzed. The vibration data is sampled at the frequency of
12 kHz under different rotating speed of 1730 rpm,
1750 rpm, 1772 rpm, and 1797 rpm. There are totally five
statuses of the inner race including one normal status and
four different faulty severity statuses of the diameters
0.007, 0.014, 0.021, and 0.028, respectively. Therefore, five
operating statuses are included in the datasets.

In this experiment, two datasets including the training
datasets and the testing datasets in each are generated,
respectively. In dataset Ι, for each health condition, 100 sam-
ples with 4096 data points in each sample are randomly
selected under each load condition in the training datasets.
That is to say, there are 400 samples of a single health con-
dition with the load condition of 0, 1, 2, and 3. Therefore,
there are totally 2000 samples of five health conditions alto-
gether. Meanwhile, 2000 samples are randomly selected in
the same way for the testing datasets. In dataset II, the train-
ing and testing samples are selected under different loads
where 1500 samples with five operating statuses are ran-
domly selected under the load condition of 0, 1, and 2 as
the training datasets, while the testing datasets consist of
500 samples of five operating status under the load condition
of 3. More details of the two datasets, namely, dataset I and
dataset II, are listed in Table 1.

Drive end

Dynamometer
Motor

Figure 8: The testing rig 2-hp reliance electric motor.

Table 1: The details of the two bearing datasets.

Machine
operating
status type

Class
label

Dataset I number of
training (loads: 0-3)/
testing (loads: 0-3)

samples

Dataset II number of
training (loads: 0-2)/
testing (loads: 3)

samples

Normal 0 400/400 300/100

Faulty
diameter
0.007

1 400/400 300/100

Faulty
diameter
0.014

2 400/400 300/100

Faulty
diameter
0.021

3 400/400 300/100

Faulty
diameter
0.028

4 400/400 300/100
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4.1.2. Results and Discussion. The raw vibration signal is
converted to the N ∗N gray-scale image by using the N ∗
N conversion approach. Since each sample contains 4096
signal points, the scale size of the gray scale image is set to
the size of 64 ∗ 64. The converted gray-scale image of five
operating status under load 0 are shown in Figure 9. It can
be found that there is naked-eye distinguishable differences
among these converted gray-scale images, which is applica-
ble for the input of the U-net.

The converted (64 ∗ 64) gray-scale images are used as the
input of the U-net-based hierarchical feature extraction net-
work with the specific configuration as shown in Table 2, where
the feature layers of X6 (512@8 ∗ 8), X8 (256@16 ∗ 16), and
X10 (128@32 ∗ 32) are extracted, respectively.

In order to demonstrate the generalization ability and
the faulty sensitivity of the proposed U-net hierarchical fea-
ture extractor, the t-distributed stochastic neighbor embed-
ding (t-SNE) technology, regarded as a novel technology
which visualizes high-dimensional data by giving each
data-point a location in a two- or three-dimensional map
[46], is used here for the visualized evaluation of the U-net
hierarchical feature extractor. As shown in Figures 10(a)–

10(f), the two-dimensional visualizations of the feature
images X6, X8, and X10 are illustrated under the test set of
dataset I (loads 0~3) and the test set of dataset II (load 3),
where different colors represent different health conditions.

Firstly, it can be found that the vast majority of the sam-
ples belonging to the same conditions are well gathered
while separated for different health conditions. Therefore it
can be concluded that the extracted multilevel features of
the U-net feature extractor can be very sensitive for the
faulty information contained in the gray-scale image. By
the comparison analysis in Figures 10(a)–10(f), it is worth
mentioning that the majority of samples belonging to the
same health condition can be well gathered in the test set
of both datasets, and there is no obvious difference in terms
of the classification result. Since the operation conditions of
the training and testing datasets are the same in dataset I
while different in dataset II, it can be further proved that
the U-net-based CNN has powerful generalized feature
extraction ability which can be less influenced by the load
condition variation.

In addition, the two-dimensional visualization view of
the extracted multilevel features of X6, X8, and X10 are dif-
ferent from each other, indicating that the different feature
level can contribute different knowledge to the faulty prog-
nostic tasks. Therefore, it can be concluded the U-net-
based CNN has powerful hierarchical feature learning ability
which represent the information of the different health con-
ditions from multiple aspects.

The visualization view of the representative feature
images of X6, X8, and X10 is illustrated in Figure 11. It
can be found that the three extracted multilevel feature
images can be well distinguished from each other under
the five different health statuses of the testing set of dataset
I, indicating the proposed U-net hierarchical feature extrac-
tor being sensitive to the faulty information contained in the
gray-scale feature image.

The extracted hierarchical features in layer X6, X8, and
X10 are sent to the designed ResNet-CBAM attention
learning block separately, and the designed ResNet-CBAM
attention learning network is applied two times not only on
the multilevel feature images but also on the (8 ∗ 8)
concatenated categorical feature images. The visualization
of the attention learning result of the health condition of
faulty diameter 0.007 under load 0 is illustrated as shown in
Figures 12(a)–12(d); it should be noted that there is obvious
discriminative concentration on these extracted multilevel
feature images and the concatenated categorical feature
image, thus, assigning larger weights to the important fea-
tures and promoting the prognostic efficiency as well as the
prognostic accuracy. Therefore, it can be concluded that it
is necessary to apply the CBAM attention learning block
not only on the extracted multilevel features of X6, X8, and
X10 but also on the concatenated categorical feature used
for faulty prognostic.

The optimized categorical feature image is sent to the
Softmax layer for final faulty prognostic. The maximum
epoch number is set to 60, and the average accuracy of the
last 10 epochs from the 50th to the 60th epoch is defined as
the final convergence accuracy (FCA) in this paper; the

Normal Faulty
diameter 0.007

Faulty
diameter 0.014

Faulty
diameter 0.021

Faulty
diameter 0.028

Figure 9: Converted image of the five health conditions under load
0.

Table 2: The detailed structure of the U-net model.

Layer name Configuration Kernel/pooling/transpose size

Input 64 ∗ 64
X1 128@32 ∗ 32 128@3 ∗ 3
X2 256@16 ∗ 16 256@3 ∗ 3
X3 512@8 ∗ 8 512@3 ∗ 3
X4 1024@4 ∗ 4 1024@3 ∗ 3
X5 512@8 ∗ 8 2 ∗ 2
X6 512@8 ∗ 8 512@3 ∗ 3
X7 256@16 ∗ 16 2 ∗ 2
X8 256@16 ∗ 16 256@3 ∗ 3
X9 128@32 ∗ 32 2 ∗ 2
X10 128@32 ∗ 32 128@3 ∗ 3
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optimizer is Adam with the learning rate of 0.005. The pre-
diction accuracy of the training and validation curves of two
datasets are illustrated in Figure 13. It can be clearly seen
that both the training and testing accuracy can reach almost
100% after the 60th epoch in dataset I. In dataset II, the final
convergence accuracy of the training result can also reach
nearly 100%, and the testing accuracy can reach nearly
93%,which can be also comparatively high. Since the train-
ing and the testing datasets are collected under the same load
in dataset Ι while different in dataset II, it can be proved that
the proposed faulty prediction approach can achieve perfect
prognostic accuracy as well as generalization ability.

4.1.3. Ablation Experiment. To evaluate the speed-up prop-
erty promotion of introducing the attention mechanism to
the proposed faulty prognostic framework, an ablation
experiment of the different combinations of the U-net and
the attention learning mechanism is evaluated on the two
datasets of the case study. Specifically, we implement the
proposed approach: the U-net+Softmax (US), the U-net+ca-
tegorical attention+Softmax (UCAS) and the U-net+multi-

scale attention+Softmax (UMAS). The “U-net+Softmax”,
which has no attention learning process, is used as the
benchmark model, and the performance metrics of accuracy
gain and the average accuracy gain is adopted for the

(a) (b) (c)

(d)

Healthy
Faulty diameter 0.007

Faulty diameter 0.021
Faulty diameter 0.028

Faulty diameter 0.014

(e) (f)

Figure 10: Visualization of the testing result of the multilevel features via t-SNE: (a) X6 (dataset I: loads 0-3); (b) X8 (dataset I: loads 0-3); (c)
X10 (dataset I: loads 0-3); (d) X6 (dataset II: load 3); (e) X8 (dataset II: load 3); and (f) X10 (dataset II: load 3).
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Figure 11: The visualization view of the extracted multilevel
features under the testing set of dataset I.
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Figure 12: Visualization of the attention learning result of the optimized feature image of faulty diameter 0.007 under load 0: (a) feature
image X6 (8 ∗ 8); (b) feature image X8 (16 ∗ 16); (c) feature image X10 (32 ∗ 32); (d) categorical feature image (8 ∗ 8).
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Figure 13: The training/testing accuracy curve of the proposed faulty prediction model: (a) dataset Ι; (b) dataset II.
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evaluation of the model speed-up properties promoted by
the attention learning network. As shown in Figure 14, the
proposed model which has two times attention learning pro-
cess significantly outperform the US model especially in the
first 30 epochs in terms of the testing accuracy gain of both
datasets, which is very important for the real-time require-
ment of the practical industry during the infant stage. More-
over, the ablation models of the UCAS and UMAS, which
have only one attention learning process on the categorical
feature and the multiscale features, respectively, also have
certain accuracy gain promotion compared with the US
model, indicating the effectiveness of the introduction of
the attention learning mechanism in promoting prediction
efficiency.

The ablation experiment is executed 10 times, and the
mean values of the average final convergence accuracy
(FCA) and the average accuracy gain (AAG) are illustrated
in Table 3, where the proposed approach outperforms the
other three ablation models in both metrics.

4.1.4. Comparison Experiment. To further evaluate the
speed-up properties of the attention learning network and
the generalization ability of the U-net CNN-based hierarchi-
cal feature extractor, the comparison analysis introduces the

proposed approach; the three ablation models as well as
some hybrid prediction models based on the hierarchical
feature extractor of the classical LeNet-5 CNN, namely,
LeNet-5+Random forest (L-RF), LeNet-5+SVM(L-SVM),
and LeNet-5+Softmax(LS) for comparison. Similar as the
ablation experiment, the model of the U-net+Softmax is set
as the benchmark model, and the accuracy gain curves of
the multiple hybrid prediction approaches are illustrated in
Figure 15, where the approaches with the attention learning
mechanism has superior accuracy gain over the US model
while the models without attention learning mechanism
has inferior accuracy gain over US model, indicating the
prognostic efficiency promotion of the attention learning.

The comparison experiments are conducted 10 times on
both datasets just the same as the ablation experiment. It can
be clearly seen from Table 4 that the proposed approach
achieves the highest final convergence accuracy and the
most superior average accuracy gain on the testing result
of both datasets. Moreover, it should be noted that the
models with the U-net feature extractor network signifi-
cantly outperform other traditional LeNet-5 CNN-based
model especially on the final convergence accuracy of data-
set II when compared with the performance on dataset Ι.
Therefore, it can be concluded that the models with the
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Figure 14: The accuracy gain of the three ablation models with attention learning mechanism: (a) testing accuracy gain of dataset I; (b)
testing accuracy gain of dataset II.

Table 3: Mean value of the final convergence accuracy and the average accuracy gain of the testing result on two datasets.

Model
Dataset I testing Dataset II testing

FCA AAG FCA AAG

Proposed approach 98.59% 11.2% 93.24% 15.36%

U-net+categorical attention+Softmax 95.50% 7.45% 90.25% 5.23%

U-net+multiscale attention+Softmax 94.89% 5.97% 89.68% 6.42%

U-net+Softmax 90.00% 0% 85.50% 0%
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designed U-net-based hierarchical feature extraction net-
work has much better generalization ability compared with
classical LeNet-5 CNN feature extractor network.

4.2. Case Study 2: Bearing Faulty Prognostic for
Electromechanical Drive System

4.2.1. Data Description and Experimental Set-Up. Perfor-
mance of the proposed approach is evaluated on the bearing
fault datasets provided by the Paderborn University [47].
The testing rig is illustrated in Figure 16 which consists of

an electric motor (1), a torque-measurement shaft (2), a roll-
ing bearing test (3), a flywheel (4), and a load motor (5). The
experiment uses the motor current signal of the electrome-
chanical drive system for bearing diagnostics which is col-
lected under four operating conditions with different
operating parameters settings as shown in Table 5. There
are totally four different statuses of the electromechanical
drive system, namely, inner-ring damage, outer-ring dam-
age, combined damage, and the healthy status. All the sam-
ples with 4096 data sampling points are randomly selected
from the conditional monitoring data. Different from the
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Figure 15: The accuracy gain of the three ablation models with attention learning mechanism and the LeNet-5-based traditional hybrid
models used for comparison: (a) testing accuracy gain of dataset I; (b) testing accuracy gain of dataset II.

Table 4: The comparison result with other traditional approaches.

Model
Dataset I testing Dataset II testing

FCA AAG FCA AAG

Proposed approach 98.58% 11.2% 93.24% 15.36%

U-net CNN+categorical attention+Softmax (UCAS) 95.5% 7.45% 90.25% 5.23%

U-net+multiscale attention+Softmax (UMAS) 94.89% 5.97% 89.68% 6.42%

U-net+Softmax (US) 90.00% 0% 85.50% 0%

LeNet-5 CNN+random forest (L-RF) 83.53% -11.03% 79.71% -6.01%

LeNet-5 CNN+SVM (L-SVM) 82.66% -6.96% 77.1% -5.83%

LeNet-5 CNN+Softmax (LS) 82% -7.51% 70.73% -8.09%

(1) (2)
(3)

(4) (5)

Figure 16: The testing rig of the Paderborn mechanical drive system.

14 Journal of Sensors



component faulty intensity classification of case study I, the
faulty classification task in case study II involves multiple
components. The arrangement of the training and testing
datasets are illustrated in Table 6.

4.2.2. Results and Discussion. In this experiment, the 4096
continuous signal points are converted to the 64 ∗ 64 gray-
scale image the same as case study one. The conversion
result of the four operating statuses under load 0 are illus-
trated in Figure 17. It can be concluded that these images
corresponding to different health conditions can also differ
from each other, and it should be easy to classify them which
further proves the effectiveness of the “N ∗N” signal to
image conversion method.

The same as the case study one, the converted gray-scale
images are used as the input of the U-net feature extractor

and the multilayer features extracted from the U-net are
used as the input of the attention learning network for faulty
classification within the maximum epoch range of 60. The
prediction result is illustrated in Figure 18. It can be seen
that the training and the testing accuracy of the 60th epoch
can reach nearly 100% on both datasets which can be com-
paratively higher than case study one. The reason should
be that the classification task is only within the same compo-
nent of inner-race faulty in case study one while including
different components in case study two, which has more dis-
tinguishable faulty symptom.

4.2.3. Ablation Analysis. The AG curves illustrated in
Figure 19 show the effectiveness of the attention learning
network where the proposed approach, the UCAS, and the
UMAS have obvious accuracy advantage over the U-net+-
Softmax within the same epoch range during the infant
stage, indicating the effectiveness of the attention learning
mechanism being also valid in case study two. The mean
value of the average accuracy gain and the final convergence
accuracy are illustrated in Table 7, where the proposed
approach outperforms the other three ablation models in
terms of both metrics in case study two.

4.2.4. Comparison with Other Approaches. Figure 20 and
Table 8 show the accuracy gain curve; the mean final conver-
gence accuracy and mean average accuracy gain of the pro-
posed approach, the three ablation models and the
traditional hybrid prediction models based on LeNet-5 hier-
archical feature extractor network, where the model with the
U-net feature extractor has better generalization ability; and
the model with the attention learning mechanism has better
speed-up properties especially during the infant stage, show-
ing the great potential of the U-net, the attention learning
network, and the proposed combination.

5. Conclusion and Future Work

5.1. Main Contribution of the Proposed Paper. In this paper,
a novel bearing faulty prediction approach based on the U-
net-based hierarchical feature extractor network and the
ResNet-CBAM-based attention learning network is pro-
posed. The main contributions of this paper can be summa-
rized as follows:

(1) Introducing the N ∗N “signal to image” conversion
approach, the N ∗N data to image approach can
be simple but effective which can relax the depen-
dencies on the domain expertise knowledge of signal
processing

(2) Proposing a U-net CNN-based multilevel feature
extractor network which has powerful generalized
and hierarchical feature extraction ability. The
extracted multilevel features can distinguish the dif-
ferent health conditions under the complex opera-
tional conditions and represent the different health
conditions from multiple aspects, contributing dif-
ferent knowledge to the prognostic tasks

Table 5: The operating parameters of the four operating
conditions.

Loads
Rotational
speed [rpm]

Load torque
[N ∗m]

Radial
force [N]

Name of setting

0 1500 0.7 1000 N15_M07_F10

1 900 0.7 1000 N09_M07_F10

2 1500 0.1 1000 N15_M01_F10

3 1500 0.7 400 N15_M07_F04

Table 6: The description of the evaluated datasets.

Machine
operating
status type

Class
label

Dataset I number of
training (loads: 0-3)/
testing (loads: 0-3)

samples

Dataset II number of
training (loads: 0-2)/
testing (loads: 3)

samples

Healthy 1 400/400 300/100

Outer-ring
damage

2 400/400 300/100

Inner-ring
damage

3 400/400 300/100

Combined
damage

4 400/400 300/100

Healthy Inner race
fault

Outer race
fault

Combined
fault

Figure 17: The converted gray-scale image of the four health
conditions under load 0.
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Figure 18: The training/testing accuracy curve of the proposed faulty prediction model: (a) dataset I; (b) dataset II.
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Figure 19: The accuracy gain of the three ablation models with attention learning mechanism: (a) testing accuracy gain of dataset I; (b)
testing accuracy gain of dataset II.

Table 7: The comparison result of the ablation experiment.

Model
Dataset Ι testing Dataset II testing

FCA AAG FCA AAG

Proposed approach 99.56% 24.17% 98.87% 11.49%

U-net+categorical attention+Softmax 96.31% 16.52% 94.47% 5.78%

U-net+multiscale attention+Softmax 95.01% 13.57% 94.68% 5.52%

U-net+Softmax 87.85% 0% 90.9% 0%
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(3) Applying the designed ResNet-CBAM-based atten-
tion learning network for the feature selection of
the extracted features. The ResNet-CBAM block is
applied two times not only on the multilevel feature
images but also on the categorical feature image.
There is obvious discriminative concentration on
the extracted features, and the proposed hybrid
model can achieve certain prediction accuracy
within the limited epoch range, enhancing the model
speed-up properties

(4) Proposing the combination framework of the U-net
and the ResNet-CBAM attention learning network.
The U-net is used as the feature extractor, and the
attention learning network is used as the feature
selector and faulty classifier. Both the generalization
ability and the speed-up properties of the model
have been improved

The proposed approach is validated on two case studies,
namely, offered by the CWRU (Case Western Reserved Uni-

versity) and the Paderborn University. Both case studies prove
the effectiveness of the generalization ability of the U-net and
the speed-up properties of the attention learning network.
Moreover, the proposed approach is validated on the ablation
experiment and the comparison experiment which further
proves the effectiveness of introducing the proposed combina-
tion of the U-net and the attention learning network.

5.2. Future Work of the Proposed Paper. Although the pro-
posed approach has made some achievements, there are still
two items needed to be considered. Firstly, the complexity of
the U-net-based hierarchical feature learning network as
well as the attention learning network should be taken into
account. In the future, the parameter scale of the proposed
approach should be shortened which can be applicable for
the model deployment of the edge-computing devices.
Moreover, the proposed bearing faulty classification
approach should be expected to be widely used in the faulty
classification of other similar prognostic scene such as the
gearbox, the milling equipment, and the gas pump system.
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Figure 20: The accuracy gain of the three ablation models with attention learning mechanism and the LeNet-5 based traditional hybrid
models used for comparison: (a) testing accuracy gain of dataset I; (b) testing accuracy gain of dataset II.

Table 8: The comparison result with other traditional approaches.

Model
Dataset I Dataset II

FCA AAG FCA AAG

Proposed approach 99.56% 24.17% 98.87% 11.49%

U-net CNN+categorical attention+Softmax (UCAS) 96.31% 16.52% 94.47% 5.78%

U-net+multiscale attention+Softmax (UMAS) 95.01% 13.57% 94.68% 5.52%

U-net+Softmax (US) 87.85% 0% 90.9% 0%

LeNet-5 CNN+random forest (L-RF) 82.14% -5.1% 85.51% -6%

LeNet-5 CNN+SVM (L-SVM) 83.5% -7.95% 84.64% -10.96%

LeNet-5 CNN+Softmax (LS) 83.3% -8.46% 84.35% -11.31%
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