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Wireless sensor networks (WSNs) have been used widely across various industries and business fields that require the coverage of
large geographical regions that are difficult for humans to reach. It is therefore important to be able to model, assess, and predict the
reliability of WSNs. Masked data is a type of missing data used to represent system failure when the exact cause of the failure is
unknown. This paper proposed a novel additive reliability model for a cluster-based WSN system using general masked data
and uses the expectation maximization (EM) algorithm to solve the problem of the maximum likelihood estimation (MLE).
Moreover, the proposed model assumes that a WSN comprises several clusters, and the failure processes of these clusters are
independent. The probability characteristics of the system are determined according to the topology of the WSN system to
evaluate the system reliability. Finally, the proposed model is demonstrated to be powerful for estimating WSN system reliability
using a simulated dataset.

1. Introduction

Wireless sensor networks are considered one of the most
important technological innovations today. These networks
have environmental adaptability, self-correction, and ran-
dom distribution and can meet the requirements of accuracy
and real-time and cross-environmental information collec-
tion. A wireless sensor network is a typical distributed net-
work system, which consists of low-cost nodes, randomly
allocated and densely distributed. Compared with centralized
sensor systems, wireless sensor networks have higher reliabil-
ity and better flexibility in antiattack expansion, as well as
functions in the case of degradation or node loss [1]. Despite
these advantages, it is imperative to study the measurement
and prediction of WSN reliability, as quantitative measures
of the abilities of WSNs.

The wireless sensor network is a distributed network
system whose reliability evaluation can be studied using net-
work reliability analysis approaches, and several such studies
have already been conducted. AboElFotoh et al. computed

WSN reliability based on random failure [2]. Niu and Varsh-
ney developed a performance analysis pipeline for distrib-
uted detection in a random sensor field, in which the sensor
number is random and the wireless channels have nonnegli-
gible error rates [3]. Other authors have proposed ordered
binary decision diagram-based WSN reliability models [4,
5]. Lee et al. analyzed the entire aging process of a sensor net-
work in a periodic data gathering application [6]. Chen and
Wang analyzed the reliability of the wireless sensor network
system that executes a distributed code attestation protocol
[7]. Silva et al. proposed a method to evaluate the reliability
and availability of wireless sensor networks based on auto-
matic fault tree generation technology [8]. In order to
improve the survival time of sensor networks, several algo-
rithms and methods have been proposed [9]. Wang et al.
modeled the reliability and lifetime of WSN nodes in three
typical working scenarios [10]. Some researchers have stud-
ied the energy efficiency and power reliability of WSNs
[11–14]. Dâmaso et al. studied a reliability evaluation method
for the WSN system based on routing algorithms [15]. Cai
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et al. used an acknowledgment-based transmission scheme to
study the reliability of the data flow in event-driven WSNs
[16], and others have studied the wireless link reliability [17].

Some researchers discussed the reliability and perfor-
mance model of the wireless sensor network [18, 19]. Zhu
et al. proposed a certain assessment model and dynamic
framework to meet the needs of users for network transmis-
sion reliability evaluation [20]. Kafi et al. reviewed the exist-
ing wireless sensor network reliability protocols, which are
considered to be specially designed for wireless sensor net-
works due to their special characteristics [21], and a WSN
communication reliability model was recently proposed
[22–24]. Wang et al. proposed some algorithms to improve
the energy efficiency of wireless sensor networks to extend
their lifetime [25].

Zhang et al. proposed a mathematical model of network
reliability with a diameter constraint and node proportion
constraint to meet the requirements for a WSN performance
evaluation [26]. Mostafaei and Obaidat proposed a distrib-
uted learning automaton-based algorithm and an irregular
cellular learning automaton-based algorithm to preserve sen-
sor protection [27, 28]. Zhao et al. developed general WSN
reliability models by removing the independent assumption
of component or subsystem failures of WSNs [29]. Mostafaei
modeled the problem as a multiconstrained optimal path
problem and proposed a distributed learning automaton-
based algorithm to preserve WSN [30]. Chakraborty et al.
studied the reliability of WSNs with multistate nodes and
proposed an approach to evaluate the flow-oriented network
reliability of WSNs comprising multistate sensor nodes [31].
Díez-González et al. used a five-node time difference of the
arrival localization method to develop a new sensor deploy-
ment method to guarantee system availability in case of a
sensor failure [32].

Most of studies were based on probability evaluations
and used probability-based methods. However, the WSN is
a random and dynamic system, so a random process is
needed to describe the failure process of the system. More-
over, in order to improve the quality of WSN, most of the
researches focus on energy consumption, routing cost, etc.,
but the proposed studies do not make full use of the cluster
failure data to evaluate the WSN system reliability. The main
research contents of this paper are as follows:

(a) This paper discusses a cluster-based WSN system
reliability modeling

(b) The system reliability estimation method is studied
when general masked data are present

(c) An expectation maximization algorithm is studied in
order to solve the problem of maximum likelihood
estimation

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 reviews the reliability
model based on additive nonhomogeneous Poisson process
(NHPP) and discusses the general masked data of wireless
sensor networks. In addition, this paper also proposes a novel
additive cluster-based WSN system reliability model, which

uses general masked data. Section 4 describes the process of
maximum likelihood estimation of reliability model parame-
ters. Section 5 describes a numerical example applied to the
proposed model using grouped general masking data.
Finally, Section 6 summarizes this paper.

2. Related Work

The topology of the wireless sensor network plays an impor-
tant role in the network reliability assessment, which depends
on the sensor coverage and network connectivity. Several dif-
ferent topologies of wireless sensor networks are applicable
for different operating environments. The five most popular
and simple structures, namely, mesh, star, tree, ring, and fully
connected topologies, have been used in many practical fields
(Figure 1) [33]. All wireless sensor networks with these topol-
ogies include a cluster head and multiple sensor heads. All
the data collected from the sensor head is transferred to the
cluster head and then transferred from the cluster head to
the base station through the middleware receiver. However,
reliability modeling is not only related to the connectivity
of each subnet but also to spread ability of wireless sensor
networks [34]. In general, a large WSN contains many
subnets. Figure 2 shows the topological structure of a WSN
system with three subnets. The described system contains
three subnets (clusters), each of which contains one cluster
head and several sensor heads.

Some proposed WSN reliability models have considered
the failure process to be stochastic. Zhu et al. studied the reli-
ability of wireless sensor networks in which the topology is
switched between possible connections, and the connections
are controlled by Markov chains [35]. Song et al. studied the
sink node reliability method considering both software and
hardware systems [36]. Salvo Rossi et al. developed a novel
decision fusion approach and modeled a system by using a
hidden Markov model [37]. Zhao et al. merged the theorem
of NHPP with masked data when analyzing WSN systems
[38]. Lei et al. studied the energy reliability in wireless sensor
networks [39]. Ciuonzo et al. developed a novel fusion rule
corresponding to a generalized Rao test to reduce the compu-
tational complexity [40].

Masked data represent system failure data when the exact
cause of the failure is unknown; i.e., any system component
(e.g., module, subsystem, and object) may have caused the
failure [41]. Because of the influence of the actual environ-
ment, however, the cause of a system failure may be a subset
of system components and not a single component. If failure
data also comprises general masked data, the failure process
cannot be reduced to simple cluster processes. Thus, com-
mon methods used to maximize or minimize a complex
function cannot be easily applied due to the potential exis-
tence of many unknown parameters. Some researchers have
solved the problems of parameter estimation in an additive
reliability model using the expectation maximization algo-
rithm [42] and expectation least squares algorithm [43]. This
is also commonly seen in WSN applications for which the
failures cannot be attributed to specific subnets or when such
information is not available. As often observed in practice,
when the additive NHPP-based model cannot be reduced

2 Journal of Sensors



to simple NHPP models, the efficiency of parameter estima-
tion is relatively low.

3. Wireless Sensor Network Reliability Model

3.1. Review of the Additive NHPP Reliability Model. The
additive NHPP model is an important reliability model
for estimating and predicting system reliability using sub-
system failure data. For example, in the hyper-exponential
NHPP model [44], the ordinary model was actually Goel–
Okumoto (GO) model [45]. Yamada et al. also studied a
similar version of the superexponential model [46]. Xie
and Goh proposed a component-based software system
reliability growth model [47]. A power law model has also
been applied to a hardware/software system reliability data

analysis based on component failure data [41]. The addi-
tive model contains many parameters, and therefore, the
main problem associated with this type of model involves
the effective estimation of the model parameters. In gen-
eral, an additive system reliability growth model requires
the following basic assumptions [41]:

(a) The system contains k subsystems

(b) Counted failure numbers fNiðtÞ, t ≥ 0g of subsystem
i are characterized by the nonhomogeneous Poisson
process, and NiðtÞ are statistically independent

(c) Cumulative failure numbers of the system can be cal-
culated by

N tð Þ = 〠
k

i=1
Ni tð Þ: ð1Þ

Based on the above basic assumptions, the mean value
function mðtÞ and failure intensity function λðtÞ of the sys-
tem are

m tð Þ = 〠
k

i=1
mi tð Þ,

λ tð Þ = 〠
k

i=1
mi′ tð Þ:

ð2Þ

An additive reliability model requires that a system can
be decomposed into several subsystems. Of course, the sub-
system mentioned above may be failure mode, module, or

(a) Star (b) Ring

(c) Full connected (d) Tree

(e) Mesh

Figure 1: The basic topologies of WSNs.

Sink

Base
station

Ordinary sensor head
Cluster head

Figure 2: The topology of a cluster-structured WSN.
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components. It is easy to obtain the reliability function of the
system as follows:

R tð Þ = exp −〠
k

i=1
mi tð Þ

 !
,

R δt tjð Þ = e− m t+δtð Þ−m tð Þf g, δt > 0:

ð3Þ

3.2. General Masked Phenomenon for Wireless Sensor
Networks. The frequent deployment of sensor nodes in wire-
less sensor networks in harsh environments, coupled with the
obvious shortcomings of sensor nodes in terms of network
bandwidth, battery and computing power, and memory,
means that some sensor nodes are prone to failure. In addi-
tion, sensor nodes are usually in a redundant state and gener-
ate a lot of redundant data, such as data fusion [48, 49] that
can lead to the loss of data and the generation of masked data.
Some attack behaviors used to target WSNs, such as spoofs,
alterations, and replays [50, 51], can also lead to masked data.
In summary, masked data often exists in the reliability anal-
ysis of WSN systems. Suppose that a wireless sensor network
contains k clusters (or subnets), and S = f1, 2,⋯,kg is the
cluster set. The general masked failure data in the wireless
sensor network is defined as follows.

Definition 1. Suppose that a wireless sensor network contains
k clusters (subsystems or subnets), and S = f1, 2,⋯,kg is the
cluster set. Sj is the failure cause set (FCS) at time t j, and Sj

⊆ S. The vector ðk, t j, SjÞ is the mathematical structure of
general masked data.

Figure 3 exemplifies a failure process as described for a
WSN system. As shown in Figure 3, when a failure occurs,
the failure arrival time t j and FCS Sj can be observed.
The example system failed at time t4, failure cause set S4 =
f2, 3g, and both clusters 2 and 3 may have caused the WSN
system failure. These data are masked because it was impos-
sible to determine which cluster was the cause. It is easy to
determine that the causes of the system failures were masked
at times t1, t6, t8. Moreover, when the system failed at time t3,
failure cause set S3 = f2g, the cause of WSN system failure
was cluster 2, and there were no masked data. Figure 3 shows
the causes of the WSN system failures not masked at
times t2, t5, t7, t9.

Assume that the wireless sensor network system has con-
tinuous observation time t1 < t2 <⋯<tm. Table 1 shows the
general observation matrix of masked data. nMj are masked
failure numbers at time t jðj = 1, 2,⋯,mÞ, and nijði = 1, 2,
⋯, kÞ are nonmasked failure numbers for the ith cluster.

3.3. Cluster-Based Wireless Sensor Network Reliability
Modeling with General Masked Data.Modern wireless sensor
network systems are becoming more and more complex and
are generally cluster-based. Additive reliability modeling is
an important approach to a cluster-based system reliability
analysis. Considering the complexity of the environment,
some assumptions are needed to evaluate the reliability of

Cluster 3

Cluster 2

? ? ? ?

Cluster 1

S3 = {2}

S2 = {1}

S1 = {1,2} S4 = {2,3} S6 = {1,3} S8 = {1,2,3}

S5 = {1}

S7 = {3}
S9 = {2}

System
Timet1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 3: Failure process of a three-cluster wireless sensor network system.

Table 1: Grouped general masked data of a wireless sensor network system.

Failure causes of the WSN system
Observation times

t1 t2 ⋯ t j ⋯ tm

Unknown or masked nM1 , S1
� �

nM2 , S2
� �

⋯ nMj , Sj
� �

⋯ nMm , Sm
� �

Cluster 1 n11 n12 ⋯ n1j ⋯ n1m

Cluster 2 n21 n22 ⋯ n2j ⋯ n2m

⋮ ⋮ ⋮ ⋮

Cluster i ni1 ni2 ⋯ nij ⋯ nim

⋮ ⋮ ⋮ ⋮

Cluster k nk1 nk2 ⋯ nkj ⋯ nkm
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the WSN system. The development of the proposed additive
reliability model is also based on assumptions described in
Section 3.1 replacing clusters (subnets) with subsystems.
Based on the above assumptions, the MVF mðtÞ and failure
intensity function λðtÞ of the WSN system can be calculated
by

m tð Þ = 〠
k

i=1
mi tð Þ,

λ tð Þ = 〠
k

i=1
mi′ tð Þ:

ð4Þ

Furthermore, the reliability function of the WSN system
is as follows:

R tð Þ = exp −〠
k

i=1
mi tð Þ

( )
, ð5Þ

R δt tjð Þ = e− m t+δtð Þ−m tð Þf g, δt > 0: ð6Þ

In equation (5), mðtÞ is the expected number of failures
for the WSN system until time t, and miðtÞ is the expected
number of failures for cluster i. It is noted that a cluster
may contain many sensor nodes, as shown in Figures 1 and
2. Equation (6) expresses the probability of no failure in the
time interval ðt, t + δtÞ.

In accordance with the above reliability model, the fol-
lowing chapters will continue to estimate the parameters
for this model, evaluate the model performance, and evaluate
and predict the reliability of theWSN system. A flowchart for
the reliability modeling and evaluation of the WSN system is
shown in Figure 4.

4. Maximum Likelihood Analysis of Wireless
Sensor Network Reliability and
Model Validation

Least squares estimation (LSE) and maximum likelihood
estimation are two commonly used methods in parameter
estimation. However, when the WSN system failures are
masked, the objective functions of LSE and MLE in the
model are both high-dimensional and complex multivari-
ate functions. For example, an additive power law reliabil-
ity model containing k clusters in Table 2 contains a total
of 2k parameters to be simultaneously estimated. There-
fore, due to the potential existence of many unknown
parameters, the methods usually used to maximize or min-
imize objective functions cannot be easily applied.

4.1. Maximum Likelihood Estimation of Parameters in the
Reliability Model. The grouped failure data used in the
modeling of this paper is a commonly used reliability data.
First, we give the following symbol definition:

S∗j =
Sj, failure ismasked,
∅, failure is notmasked:

(
ð7Þ

Assume that the wireless sensor network system is
observed at time 0 = t0 < t1 <⋯<tm, and the observed
masked failure data from Table 1 are

n11, n21,⋯,nk1, nM1 , S∗1
� �

, n12, n22,⋯,nk2, nM2 , S∗2
� �

,⋯,

� n1m, n2m,⋯,nkm, nMm , S∗m
� �

, ð8Þ

where k is the number of clusters in the WSN system, m
is the number of observations, nMj is the number of
observed masked failures corresponding to S∗j ðj = 1, 2,⋯,
mÞS∗j , i = 1, 2,⋯, k ; j = 1, 2,⋯,m in time interval ðt j−1, t j�,

Additive power law
model with general

masked data

Masked
failure data
collection

WSN
reliability
modeling

Parameter
estimation in

modeling

Modeling
performance

evaluation

Reliability
assessment for
WSN system

Maximum likelihood
estimation using EM

algorithm

Mean squared
error and

adjusted MSE

Estimating and
predicting number

of failures

Figure 4: Flowchart of reliability modeling and evaluation of the wireless sensor network system.

Table 2: Some selected power law models corresponding to the mean value function.

No. Reliability model Description MVF

#1 Power law (PL) model Additive power law model with no masked data m tð Þ = αtβ

#2
Power law with the traditional masked

(PLTM) model
Additive power law model with traditional masked data m tð Þ =〠k

i=1αit
βi

#3
Power law with the general masked (PLGM)

model (proposed)
Additive power law model using an expectation maximization

algorithm with general masked data
m tð Þ =〠k

i=1αit
βi
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and nij is the number of observed failures for cluster i ði = 1,
2,⋯, kÞ. It is therefore easy to determine that nMj = 0⟺
S∗j =∅.

Let Ni
j be a random variable of the number of failures for

cluster i in ðt j−1, t j�, and Ni
j is known to follow an indepen-

dent Poisson distribution with intensity λijmiðt jÞ −miðt j−1Þ.
We give the following symbols:

λij =mi t j
� �

−mi t j−1
� �

, ð9Þ

nj = 〠
k

i=1
nij + nMj , n∗j = 〠

i∈S∗j

nij
� �

+ nMj = nj − 〠
i∉S∗j

nij, j = 1, 2,⋯,m:

ð10Þ
Based on basic probability and statistics theory, the like-

lihood function is

L ⋅ nij
��� , nMj , S∗j

� �
=
Ym
j=1

Y
i∉S∗j

λij
nij

nij!
⋅ e−λi j

 !
⋅ exp

8<
:

� −〠
i∈S∗j

λij

0
@

1
A ⋅ 〠

∩r∈S∗
j

ir≥nrjh i,〠r∈S∗
j
ir=n∗j

Y
r∈S∗j

λirr j
ir!

0
@

1
A
9>=
>;

=
Ym
j=1

Y
i∉S∗j

λij
nij

nij!

 !
⋅ exp

8<
:

� −〠
k

i=1
λij

 !
⋅ 〠
∩r∈S∗

j
ir≥nrjh i,〠r∈S∗

j
ir=n∗j

Y
r∈S∗j

λirr j
ir!

0
@

1
A
9>=
>;:

ð11Þ

Take the logarithm for formula (11) to obtain the log-
likelihood function as

log L ⋅ nij
��� , nMj , S∗j

� �
= 〠

m

j=1
〠
i∉S∗j

log
λij

nij

nij!

 !
− 〠

k

i=1
λij

8<
:

+ log 〠
∩r∈S∗

j
ir≥nrjh i,〠r∈S∗

j
ir=n∗j

Y
r∈S∗j

λirr j
ir!

0
@

1
A

0
BB@

1
CCA
9>>=
>>;:

ð12Þ

The maximum likelihood estimates of the parameters
can be obtained by solving the partial derivative equations
or maximizing the log-likelihood function. However, it is
difficult to obtain the global optimal solution because the
log-likelihood function of additive reliability model is very
complicated, as shown in formula (12). In the next sec-
tion, we will introduce the EM algorithm to solve this
problem.

The maximum likelihood estimations of parameters in
the additive model become very simple when there is no
masked failure data, because the failure process of each

cluster is statistically independent. The likelihood function
and log-likelihood function then take the following simple
form, and the computations of MLE are no longer compli-
cated, as shown in previous studies [45].

L ⋅ nij
���� �

=
Yk
i=1

e−mi tmð ÞYm
j=1

λij
� �nij
nij!

( )
, ð13Þ

log L ⋅ nij
���� �

= 〠
k

i=1
〠
m

j=1
nij log λij

� �
−mi tmð Þ‐〠

m

j=1
log nij!
� �" #

:

ð14Þ
The parameter estimation methods in the additive reli-

ability model can also be found in Reference [41] when
there is a traditional masked failure data, i.e., S∗j = f1, 2,
⋯, kg. Based on formula (11), the likelihood function
becomes

L ⋅ nij
��� , nMj

� �
= e−m tmð Þ ⋅

Ym
j=1

m tj
� �

−m tj−1
� �� �nj

nj!
⋅ 〠
∩ ri≥nijh i,〠k

i=1ri=nj

8><
>:

� nj!⋅
Yk
i=1

priij
ri!

 !
g:

ð15Þ

4.2. Expectation Maximization Algorithm for Estimating
Model Parameters. The expectation maximization algo-
rithm has recently gained popularity and is used for vari-
ous applications, especially to simplify the calculation of
the likelihood function maximization in reliability model.
Let θi be the parameter of MVF miðtÞ. When nMj > 0,
due to incomplete observations of random variable Ni

j,
missing data sometimes occurs. The function Q by using
formula (14) is

Q θ lð Þ, θ
� �

= 〠
k

i=1
〠
m

j=1
E Ni

j ∣ n
i
j, nMj , θ lð Þ

� �
log

(

� mi t j, θi
� �

−mi t j−1, θi
� �� �

−mi tm, θið Þ
	
:

ð16Þ

It is well known that EðNi
j ∣ n

i
j, nMj , θðlÞÞ is independent

of dummy variable θ and is equivalent to a constant in
function Q. Therefore, the maximization step in the EM
algorithm can be accomplished by maximizing the follow-
ing functions Qi, respectively:

Qi θ lð Þ, θi
� �

= 〠
m

j=1
E Ni

j ∣ n
i
j, nMj , θ lð Þ

� �
log

� mi t j, θi
� �

−mi t j−1, θi
� �� �

−mi tm, θið Þ:
ð17Þ
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In order to realize the expectation maximization algo-
rithm, the expected number of failures for each cluster i
must be determined when nMj > 0. Next, we focus on the

case of nMj ≠ 0, i.e., S∗j ≠∅. When S∗j =∅, there are no

masked failure data. Let random vector N∗
j = ðNr1

j ,⋯,
N

rLj
j Þ, rl ∈ S∗j , where l = 1, 2,⋯, Lj and Lj is the number

of elements in set S∗j . The random vector N∗
j obeys the

multinomial distribution, i.e., N∗
j ~Mðn∗j , pr1 , pr2 ,⋯,prLjÞ,

where n∗j is described in formula (10), and

prj =
mr t j
� �

−mr t j−1
� �

m tj
� �

−m tj−1
� � =

mr t j
� �

−mr t j−1
� �

∑r∈S∗j
mr t j
� �

−mr t j−1
� �� � , S∗j ≠∅,r ∈ S∗j :

ð18Þ

Now, we easily determine that ∑r∈S∗j
pr j =∑Lj

l=1prl = 1 ðj =
1, 2,⋯,mÞ. Moreover, the conditional probability is

P ∩
r∈S∗j

Nr
j ≥ nrj

D E !
〠
r∈S∗j

Nr
j = n∗j

������
8<
:

9=
; = 〠

∩r∈S∗
j

αr≥nrjh i,〠r∈S∗
j
αr=n∗j

n∗j !⋅
Y
r∈S∗j

pαrr j
αr!

0
@

1
A:

ð19Þ

Because the expectation E½Ni
j� is unknown when nMj > 0,

we must calculate E½Ni
j� to implement the EM algorithm.

Here, let N̂
i
j ≡ EðNi

j ∣ n
i
j, nMj , θðlÞÞ, which can be shown as

N̂
i
j =

nij, S∗j =∅or i ∉ S∗j ≠∅,
Σ

∩r∈S∗
j

αr≥nrjh i,
∑r∈S∗

j
αr=n∗j

αr ⋅
Q

r∈S∗j
pαrr j /αr!

� �
Σ

∩r∈S∗
j

αr≥nrjh i,
∑r∈S∗

j
αr=n∗j

Q
r∈S∗j

pαrr j /αr!
� � , S∗j ≠∅,i ∈ S∗j :

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

In summary, we can obtain the steps of the EM algorithm
to estimate the parameters θ = ðθ1, θ2,⋯θkÞ with general
masked data.

Step 1. Give the initial values ðθ1,⋯,θkÞð0Þ.

Step 2. Calculate N̂
i
j using formula (20), and solve the maxi-

mum value of the log-likelihood function shown in formula

(17) as the new estimatesðθ1,⋯,θkÞð1Þ.

Step 3. Replace initial values ðθ1,⋯,θkÞð0Þ by new estimates

ðθ1,⋯,θkÞð1Þ and skip to step 2.

Step 4. Repeat steps 2 and 3 until the stop rule is met.

4.3. Model Performance Evaluation Criteria. In order to com-
pare the performance of the reliability model, the mean

squared error (MSE) and adjusted MSE are used to compare
the goodness of the model fit to the observed failure data. The
MSE is defined as

MSE = 1
m
〠
m

j=1
m tj
� �

−mj

� �2 = 1
m
〠
m

j=1
〠
k

i=1
mi t j
� �

−mj

 !2

,

ð21Þ

where mðt jÞ is the estimated cumulative numbers of system
failures ð0, tj� and mj is the observed cumulative numbers
of failures for the WSN system until time t j.

To consider the influence of the number of parameters K
on the model, the adjusted MSE is defined as

MSEadj =
1

m − K
〠
m

j=1
m tj
� �

−mj

� �2 = 1
m − K

〠
m

j=1
〠
k

i=1
mi t j
� �

−mj

 !2

:

ð22Þ

Clearly, the smaller the MSE and adjusted MSE, the bet-
ter the fitness of the model to the observed data.

5. Experimental Results and Analysis

5.1. Selected Models and Simulation Data. In reliability anal-
yses, a very widely used NHPP model is the power law
model, also known as the Duane model. The power law
model is very flexible, as the intensity can be decreasing,
constant, or increasing. Its MVF and intensity function are
described as [52]

m tð Þ = αtβ, λ tð Þ = αβtβ‐1, α > 0, β > 0: ð23Þ

In this paper, the power law model is applied to build the
additive reliability model of a WSN. Table 2 describes the
proposed PLGM, traditional PL, and PLTM models corre-
sponding to MVF.

To illustrate the method described in previous sections, a
numerical example is given for a WSN with three clusters.
Here, the MVF is given by

m tð Þ = α1t
β1 + α2t

β2 + α3t
β3 : ð24Þ

A simulated dataset is shown in Table 3. In Table 3, C1,
C2, and C3 represent the numbers of failures at each month
for cluster 1, cluster 2, and cluster 3, respectively. Obviously,
the WSN system in this paper contains three clusters. M
denotes the numbers of failures for masked data. GM means
general masked data, and TMmeans traditional masked data.
S∗j is the FCS described in formula (7).

5.2. Expectation Maximization Algorithm Performance
Analysis. In our computation, the stop rule of the EM algo-
rithm is
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max αl+11 − αl1

��� ���, βl+1
1 − βl

1

��� ���, αl+12 − αl2

��� ���, βl+1
2

���n
− βl

2

���, αl+13 − αl3

��� ���, βl+1
3 − βl

3

��� ���o ≤ 10−5:
ð25Þ

R software was used to write the program and obtain the
number of iterations for the EM algorithm under different
initial values, as shown in Table 4. For 10 independently
repeated experiments, the number of iterations is 8–10,

which is very low. This indicates that the EM algorithm has
a lower computational complexity and higher robustness
for the present choice of initial values.

5.3. Reliability Evaluation of Wireless Sensor Network
Systems. Using the EM algorithm for the PLGM model
described in Appendix A, if the initial value of ðα1, β1, α2,
β2, α3, β3Þ is taken as (20, 0.06, 3, 0.5, 0.8, 1.5), then the EM
estimates of the parameters are obtained in eight iterations,

Table 3: Simulation general masked data for a wireless sensor network (WSN) system with three clusters.

Time (month) C1 C2 C3 M GM (S∗j ) TM (S∗j ) Time (month) C1 C2 C3 M GM (S∗j ) TM (S∗j )

1 1 0 0 0 ∅ S2 16 20 6 28 14 S2 S2
2 3 19 1 0 ∅ S2 17 17 11 32 15 S2 S2
3 5 31 2 3 ∅ S2 18 20 6 37 16 S2 S2
4 3 19 4 3 ∅ S2 19 25 9 45 13 S3 S2
5 3 26 8 7 ∅ S2 20 28 3 53 14 S3 S2
6 4 18 7 15 S1 S2 21 25 12 51 16 S3 S2
7 4 18 9 11 S1 S2 22 26 14 65 20 S3 S2
8 9 20 7 13 S1 S2 23 25 9 68 19 S3 S2
9 3 13 10 13 S1 S2 24 27 10 71 20 S3 S2
10 4 15 5 20 S1 S2 25 25 9 71 20 S3 S2
11 12 18 8 26 S1 S2 26 32 18 100 30 S3 S2
12 13 10 8 27 S2 S2 27 26 9 86 24 S3 S2
13 20 14 6 20 S2 S2 28 23 20 119 0 ∅ S2
14 8 14 13 22 S2 S2 29 28 12 114 0 ∅ S2
15 2 19 10 26 S2 S2 30 24 20 148 0 ∅ S2
Note: S1 = f1, 2g, S2 = f1, 2, 3g, and S3 = f2, 3g.

Table 4: Number of iterations for the expectation maximization (EM) algorithm under different initial values.

No. Initial value α1, β1, α2, β2, α3, β3ð Þ Number of iterations No. Initial value α1, β1, α2, β2, α3, β3ð Þ Number of iterations

1 (20, 0.06, 3, 0.50, 0.8, 1.50) 8 6 (20, 9.82, 12, 0.71, 5, 8.19) 9

2 (92, 4.37, 16, 0.78, 5, 3.24) 9 7 (1, 4.34, 4, 0.15, 5.00, 4.19) 9

3 (30, 5.23, 3, 0.62, 2, 6.05) 9 8 (78, 5.24, 8, 0.16, 7, 9.38) 10

4 (81, 0.89, 14, 0.28, 8, 8.52) 11 9 (34, 0.79, 18, 0.21, 8, 2.60) 10

5 (98, 4.65, 10, 0.86, 5, 6.51) 9 10 (40, 2.07, 12, 0.52, 3, 7.10) 9

Table 5: The results of MLE and MSE for all reliability models.

Model MLE MSE MSEadj

PL model α = 4:0142 β = 1:8899 4109.9501 4403.5180

PLTM model

α1 = 10:2335 β1 = 1:2497
788.4630 985.5787α2 = 1:3646 β2 = 1:5845

α3 = 0:1976 β3 = 2:6156

PLGM model (proposed)

α1 = 11:5747 β1 = 1:1995
572.8286 716.0358α2 = 1:4291 β2 = 1:5820

α3 = 0:1482 β3 = 2:7055
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Figure 5: Fitted mean value functions for the system.
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Figure 6: Fitted failure intensity functions for the system.
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as shown in Table 5. Here, the MSE and adjusted MSE of the
proposed PLGM model are less than those of the traditional
PL and PLTM models. Furthermore, the MSE and adjusted
MSE of the PLTMmodel are less than those of the traditional
PL model. Overall, it is reasonable that the proposed PLGM
reliability model has a better goodness of fit than all selected
traditional models. In addition, the traditional PL model has
the lowest goodness of fit among all selected models.

Figure 5 shows the fitted mean value functions for the
WSN system. Figure 6 shows the fitted failure intensity func-
tions of all selected models. Evidently, the traditional PL
model is unable to fit the data.

The proposed reliability model in this paper not only can
evaluate the reliability of WSN systems but can also evaluate
the reliability of each cluster. Figure 7 shows the estimated
MVFs and failure intensity functions of three clusters. The
reliability of each cluster can also be predicted using the
above estimated MVF.

6. Conclusions

In this paper, the failure processes of clusters are character-
ized by the stochastic process NHPP, not the static
probability-based methods. The proposed model can use
the failure data of the clusters to evaluate the reliability of
the system in order to improve the lifetime of the WSN sys-
tem. Moreover, useful and powerful EM algorithm is very
powerful in handling optimization problems of likelihood
function. That is, for 10 independently repeated experiments,
the number of iterations is 8–10, which is very low. Finally,
we used a simulated dataset to comparatively analyze the
model performance and showed that adjusted MSE and
MSE of the proposed PLGM model are less than those of
the traditional reliability models.

In the future, the proposed WSN reliability model can be
extended to other systems, such as Internet of things systems
and software/hardware systems. Reliability models of WSN
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systems that consider both masked data and random pulses
can be the focus of further studies. Finally, the WSN system
reliability model considering energy consumption, routing
cost, sensor node, and link failures is also the future research
topics.

Appendix

A. Expectation Maximization Algorithm for the
PLGM Model

The MVF of the power law model from formula (23) is given
by

m tð Þ = αtβ: ðA:1Þ

We can derive prj, N̂
i
j, and QiðθðlÞ, θiÞ as shown below,

using formulas (17), (18), (20), and (24):

prj =
mr t j
� �

−mr tj−1
� �

m tj
� �

−m tj−1
� � =

αrt
βr
j − αrt

βr
j−1

∑r∈S∗j
αrt

βr
j − αrt

βr
j−1

h i , S∗j ≠∅,r ∈ S∗j ,

ðA:2Þ

N̂
i
j =

nij, S∗j =∅or i ∉ S∗j ≠∅,
Σ

∩r∈S∗
j

ar≥nrjh i,
∑r∈S∗

j
ar=n∗j

ar ⋅
Q

r∈S∗j
parr j /ar!

� �
Σ

∩r∈S∗
j

ar≥nrjh i,
∑r∈S∗

j
ar=n∗j

Q
r∈S∗j

parr j /ar!
� � , S∗j ≠∅,i ∈ S∗j ,

8>>>>>>>>><
>>>>>>>>>:

ðA:3Þ

Qi θ lð Þ, θi
� �

= 〠
m

j=1
N̂

i
j log αit

βi
j − αit

βi
j−1

h i
− αit

βi
m , i = 1, 2,⋯, k:

ðA:4Þ
Finally, the EM procedure of the MLE for the PLGM reli-

ability modeling is similar to the algorithm steps in Section
4.2 by using formulas (A.3) and (A.4).

Notations

k: Number of clusters (subnets) in WSN
NðtÞ: WSN system failure numbers at time t
NiðtÞ: Failure numbers of cluster i at time t
Ni

j: Failure numbers in interval ðt j−1, t j� due to cluster i

mðtÞ: Mean value function (MVF) for WSN
miðtÞ: MVF for cluster i
λðtÞ: Failure intensity function for WSN
mj: Cumulative observed failure numbers for WSN until

t j
nj: Observed failure numbers for WSN in inter-

val ðt j−1, t j�
nMj : Observed failure numbers that are masked in inter-

val ðt j−1, t j�

nij: Observed failure numbers in interval ðt j−1, t j� known
due to cluster i

θi: Model parameter for cluster i
Sj: Failure cause set.
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