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Recognition and understanding of sign language can aid communication between nondeaf and deaf people. Recently, research
groups have developed sign language recognition algorithms using multiple sensors. However, in everyday life, minimizing the
number of sensors would still require the use of a sign language interpreter. In this study, a sign language classification
method was developed using an accelerometer to recognize the Korean sign language alphabet. The accelerometer is worn
on the proximal phalanx of the index finger of the dominant hand. Triaxial accelerometer signals were used to segment
the sign gesture (i.e., the time period when a user is performing a sign) and recognize the 31 Korean sign language letters
(producing a chance level of 3.2%). The vector sum of the accelerometer signals was used to segment the sign gesture
with 98.9% segmentation accuracy, which is comparable to that of previous multisensor systems (99.49%). The system was
able to classify the Korean sign language alphabet with 92.2% accuracy. The recognition accuracy of this approach was
found to be higher than that of a previous work in the same sign language alphabet classification task. The findings
demonstrate that a single-sensor accelerometer with simple features can be reliably used for Korean sign language alphabet
recognition in everyday life.

1. Introduction

Hearing-impaired or deaf people generally use sign language
and finger spelling to communicate with others. However,
their communication with those who are not familiar with
sign language is limited. This limitation can be a social bar-
rier between hearing-disabled and nondisabled people, lead-
ing to low sociality of deaf persons. Various approaches have
been developed to understand or recognize sign language or
finger spelling using computer vision and wearable sensor
systems [1–4]. For example, Rivera-Acosta et al. proposed
an American sign language alphabet translation system using
neuromorphic camera sensors [1]. Tao et al. developed an
American sign language alphabet recognition system using
Microsoft Kinetic motion data [2]. Such a vision-based sys-
tem does not require signers to use complicated instruments.
Although the motion data-based recognition systems
achieved reliable recognition accuracy, they had their own
limitations in daily life.

Wearable sensor-based sign language systems have also
been investigated widely; most of them included a wearable
glove-type system. The advantages of such a system, com-
pared with the vision-based system, are the mobility and
comfort they offer. The glove-incorporated strain gaze sen-
sors or inertial measurement units (IMUs) have been investi-
gated directly to detect finger movements [5–7]. Suri and
Gupta developed a wearable IMU device that consists of an
accelerometer and a gyroscope for sentence-level sign recog-
nition. The recognition accuracy was 94.0% using a deep
neural network model [8]. Mummadi et al. developed a data
glove using five IMUs in the fingertips [9]. The recognition
accuracy was 93.0% using a random forest model. A combi-
nation of IMUs and electromyography (EMG) sensors has
been used to develop EMG signal-based language systems
for ease of use in daily life even though it measures finger
movements through wrist and muscle movements [10]. For
example, Yeo and Shin interpreted the Korean sign language
alphabet using a four-channel EMG, an accelerometer, and a
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gyro sensor. The recognition accuracy was 95.3% and 92.4% for
6 consonants and 6 vowels, respectively, using a Gaussian
model [10]. Paudyal et al. developed a real-time sign language
recognition model with 95.4% recognition accuracy using an
eight-channel EMG and a nine-dimensional IMU sensor [11].
However, the EMG-based systems induced an uncomfortable
experience for users because it required skin contact; it also
had a high power consumption due to the high sampling rate.

Furthermore, researchers have used accelerometer sen-
sors to recognize sign language using fingertips because of
the small mass characteristic and the low sampling rate
required. For instance, Bui and Nguyen developed a glove
using 6 accelerometers to distinguish 23 Vietnamese sign lan-
guage letters with 95% accuracy [12]. To make the system
available for use in everyday life, researchers detected the sign
gesture onset and offset times from the accelerometer signals
[13, 14]. Ibarguren et al. segmented sign gestures with 99%
accuracy in real time using an accelerometer sensor on the
back of the hand [14].

Despite the high recognition accuracy, the aforementioned
multisensor systems have their own limitations for use in daily
life. First, multisensor systems involve high power consumption
because they comprise multiple high-power sensors and high-
performance processors [10, 15]. Second, their bulky design
makes the system infeasible for long-term use [7, 16]. Third,
adopting additional signal processes (e.g., normalization and
synchronization) might involve high computational costs.
Computational cost is directly proportional to timing delay.
Therefore, minimizing the delay between gesturing and classifi-
cation would have a significant impact on how natural the
human-machine interface would appear to the user [17]. To
reduce the computational cost, simple classification algorithms
can be used as an alternative to complex algorithms (e.g., neural
network) to extend the battery lifespan, although accuracy may
be reduced. For use in everyday life, a sign language recognition
system should consider achieving balance among design, com-
putational cost, and accuracy. Therefore, a single accelerometer-
based wireless system with a low-cost computational algorithm
could be employed to overcome the limitations of multisensor
recognition systems.

In this study, we developed a novel approach using a sin-
gle accelerometer-based sensor worn on the index finger to
recognize the Korean sign language alphabet. This study
makes the following contributions:

(i) It develops a sign language alphabet classification
using a simple machine learning algorithm and min-
imum features

(ii) It introduces an effective method of sign language
segmentation using a single accelerometer, with
lower computational time

(iii) It investigates the possibility of using a single
accelerometer-based sign language recognition system

2. Materials and Methods

2.1. Motion-Sensing Module. The motion-sensing module
included a triaxial accelerometer (BMA250; ±2 g, Bosch

Co., Germany) and an nRF51822 system-on-chip (SoC)
(Nordic Semiconductor, Norway) [18] with an integrated
2.4GHz RF/Bluetooth 4.0 transceiver attached on the index
finger of the glove as seen in Figure 1. The motion-sensing
module was powered by a rechargeable battery and con-
trolled using an Android-based smartphone via Bluetooth.
The sampling rate range was between 100Hz and 1 kHz in
similar research [6, 7, 12, 15]. A higher sampling rate leads
to higher power consumption [19]. To develop a system that
does not consume excessive power, we adopted a sampling
rate of 20Hz. A custom-made SoC program controlled the
acceleration data acquisition. The motion-sensing module
was housed in a custom-made case using a 3D printer and
attached to the index finger on a glove.

2.2. Data Acquisition. The 15 subjects who voluntarily partic-
ipated in the study (7 males and 8 females, average age 22.5)
had no musculoskeletal disorders in their hands and were not
hearing disabled. The Korean sign language consists of 31 let-
ters (14 consonants, 10 basic vowels, and 7 double vowels).
The participants were asked to wear the glove with the
motion-sensing module attached on the index finger and sign
the 31 Korean sign language letters, as shown in Figure 2.

The experiment consisted of two sessions, and in each
session, subjects were asked to randomly sign 31 Korean sign
language letters 10 times, as shown in Figure 3. The subject
sat in an armchair during the experiment. In the baseline
and the rest periods, the subject was asked to put their arm
on the armrest and put their wrist at the end of the armrest
without force. During the experiment, subjects had to keep
their arm on the chair arm. They had to use only fingers
and palm to express a sign gesture. The sign gesture order
was displayed on amonitor, and each gesture was maintained
for 3 s. There was a 6 s interval between each gesture and a
10min break between sessions. The acceleration data con-
tained 620 gestures for each subject. Each category of Korean
sign language letters contained 20 samples. All study proce-
dures were reviewed and approved by the University of Ulsan
Institutional Review Board.

2.3. Preprocessing. The motion data were postprocessed in a
PC using a custom-made program based on MATLAB
(MathWorks, USA). Figure 4 summarizes the procedure of
motion data processing to classify sign language. The base-
line drift correction was performed using the mean of the
acceleration data from 5 to 7 s during the baseline period.
The baseline-corrected signal was segmented by the auto-
matic segmentation process to extract the features. The
extracted features were used for the classification of the
Korean sign language letters.

2.4. Segmentation. Figure 5 shows the segmentation process.
The baseline-corrected signals were filtered with a 0.1Hz 1st-
order Butterworth low-pass filter, and the vector sum of the
three-axis signals was calculated to detect the gesture period
(see Figure 5(b)). The offset of sign language was computed
based on a specified threshold using the vector sum. The
threshold was 0.7 times the mean value of the baseline for
6 s. The motion data for each sign were segmented for a 2 s
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period from the offset of the gesture, as seen in Figure 5(c). The
number of detected gestures was counted if the gesture’s offset
and onset were included when the user maintained a gesture.

Table 1 shows the segmentation results. The nondetected
signs were m5anually segmented to extract the features.

2.5. Feature Extraction. There are time domain features and
frequency domain features to detect motion from an acceler-
ometer signal. Frequency domain features are used for
dynamic motion, which makes them inappropriate here
because motion data are measured for static gestures. Con-
sidering this aspect, we focused on the time domain features
for classification, such as mean, standard deviation, and sam-
ple entropy. The average acceleration on the three axes and
the vector sum, roll, pitch, and yaw per sign were used as fea-
tures for classification.

2.6. Classification Model. The multiclass support vector
machine (SVM) was employed to classify sign language let-
ters. SVM has few parameters to optimize, which makes it
preferable to the neural network model. The classification
model for each subject was developed using six different
SVM kernels in MATLAB (i.e., linear, quadratic, cubic, fine
Gaussian, medium Gaussian, and rough Gaussian). The
kernel of SVM was optimized by comparing accuracies, as
shown in Figure 6. Ten-fold crossvalidation was employed
to overcome the limitation of the available dataset [20, 21].
The data were divided into an 18-trial training set (90%)
and a 2-trial test set (10%).

3. Results

Figure 6 shows the average accuracy in the classification of
the 31 Korean sign language letters across six different
SVM kernels. All SVMs achieved better results than those
predicted by random chance (p < 0:001, one-sample t-test).
Since the quadratic kernel SVM is the best classifier
(p < 0:001, paired t-test), it is employed as the classifier for
the single-sensor-based system. Figure 7 summarizes the

classification accuracy of the 31 Korean sign language letters
obtained from 15 subjects. The accuracy across sign language
letters ranged from 87.1% to 98.6%, as shown in Figure 7(a).
The lowest accuracy was observed at the 5th sign language let-
ter, /m/, while the highest was at the 24th sign language letter,
/i/. As shown in Figure 7(b), the lowest and highest accuracies
among subjects were 85.5% (for S15) and 98.5% (for S14),
respectively. The average classification accuracy for the 31
Korean sign language letters was 92:2 ± 3:5%. The average
accuracy was certainly higher than the chance level of 3.2%.

Figure 8 shows the average confusion matrix across all
subjects. The correct (actual) sign language letter and the
predicted sign language letter are represented on the vertical
and horizontal axes, respectively. The average classification
accuracy is represented using colors as seen on the right side.
All letters that were correctly recognized lie on the diagonal
line, whereas those that were not recognized lie outside the
diagonal line. The average diagonal accuracy is 92.2%. In
some cases, pairs of sign language letters were interchanged
because one letter was mistaken for the other due to their
similarities in hand postures; the incorrectly predicted pairs
tend to show symmetricity around the diagonal line.
Figure 9 shows examples of pairs of sign language letters that
were mistakenly identified; each row in Figure 9(a) shows a
pair of those. The horizontal axis represents the sign lan-
guage letter index, and the vertical axis represents inaccuracy.
In the first-row panels, the left panel shows inaccuracy in the
gesture of the 19th sign language letter. It was mostly pre-
dicted incorrectly as the 20th sign language letter, at a rate
of 5.2%. The algorithm also incorrectly predicted the 4th sign
language letter motion as the 12th sign language letter, at a
rate of 5.1%. Such paired sets were observed between the
4th and 12th, 7th and 9th, and 21st and 22nd sign language let-
ters. The sign language letter pairs that were often confused
for each other are similar, as presented in Figure 9(b).

4. Discussion

In this study, a simplified approach was proposed using a sin-
gle motion sensor worn on the index finger to recognize the
Korean sign language alphabet. The SVM-based classifica-
tion algorithm could recognize the sign language alphabet
with an accuracy rate of 92:2 ± 3:5% over a 3.2% chance level.
Table 2 summarizes the algorithm and the accuracy of the
existing sign language recognition studies.

To validate our approach, we trained our system using 6
consonants and 6 vowels signs as described in the publication
of Yeo and Shin [10]. Our approach shows an accuracy of
99.2% for consonants and 98.3% for vowel classification, out-
performing their scores of 95.3% and 92.4%, respectively.
However, the proposed system requires an accelerometer
with a low sampling rate. As a comparative approach, Abua-
lola et al. achieved lower accuracy (85.00%) in the American
sign language alphabet with a similar random chance (3.9%)
even though they used 6 IMU sensors on the fingertips with a
high sampling rate [15]. The abovementioned studies used
multisensor systems that experienced issues in synchroniza-
tion between sensors, computational time, power consump-
tion, and ease of use, whereas single-sensor systems can
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Figure 1: Motion-sensing module with a triaxial accelerometer and
Bluetooth 4.0 transceiver. The motion-sensing module was
mounted on the proximal phalanx of the index finger.
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avoid such problems. These results provide evidence for the
potential use of a single sensor and simple classification
algorithms.

Segmenting a sign language gesture is as critical as high
classification accuracy in a real-time system. However, Yeo
and Shin have no segmentation part in their system [10].
While our segmentation algorithm uses the relative value of
baseline power, their segmentation process could be hard to
use for a general model in real life because the threshold value
was experimentally determined depending on a user. In other
words, our segmentation algorithm can be used to develop a
general real-time system. Ibarguren et al. found that the sig-

nals from the accelerometer are reliable in determining sign
language gesture. They used an IMU to segment the sign lan-
guage gesture with a pause between the sign language letters
using a genetic algorithm [14]. Although their segmentation
accuracy was 99.5%, the genetic algorithm-based segmenta-
tion requires high computational cost compared to the pro-
posed automatic segmentation algorithm, owing to the
large number of needed computations. Since the computa-
tional cost to segment the gestures is high, their approach
suffers from time delay and the inability to segment during
signal processing. Our segmentation results show that a sin-
gle accelerometer on the index finger is adequate to detect

Figure 2: Korean sign language letters with 14 consonants (1–14), 10 basic vowels (15–24), and 7 double vowels (25–31).

Baseline period

Gesture

0 10 13 16 19 22 64 67 70 time (s)

Rest Rest ... Rest

Gesture Gesture

Figure 3: Experimental paradigm for acceleration data collection during signing Korean sign language letters. The Korean sign language
letter is randomly selected from among 31 Korean sign language letters and displayed 10 times following the baseline period of 10 seconds.
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Figure 5: Schematic of the automatic segmentation process: (a) the accelerometer signal is normalized by the baseline correcting process; (b)
the gesture offset time point is extracted from the vector sum of the low-pass-filtered three-axis signals; (c) the segmented data are determined
based on the gesture offset time point.
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sign language gesture with 98.9% segmentation accuracy. In
other words, the automatic segmentation algorithm can be
used in a real-time system to segment sign language gesture
with low computational cost.

To develop a real-time system, the computational cost is
a crucial factor. Systems with higher computational cost
require more time for recognition [17]. Table 3 summarizes
model training time and recognition time to compare the
computational costs of representative models. Although
Paudyal et al. had only 67ms recognition time delay, their
computational cost was high on a smartphone because of
its hardware computational capabilities [11]. Mummadi
et al. used five IMU devices for classification and the recogni-
tion time was 140ms [9]. Although they used only ten
features, the computational cost increased due to the use of
a sophisticated classifier. Suri and Gupta used an accelerom-
eter and a gyro sensor for sign language recognition [8].
Whereas their system required much time to train the classi-
fication model because they employed a deep neural network,
our proposed system requires only approximately 1 s for
training. In addition, a timing delay of 100ms or less is con-
sidered instantaneous by the user [22]. Therefore, our system
would be viewed as instantaneous because the recognition
time is only 1.8ms. In other words, the proposed system
could be used to develop a smartphone-based real-time sys-
tem without a noticeable delay for the user.

There continues to be ambiguity about the optimal finger
and the accelerometer sensor position of the finger used in
the sign language recognition system. The sensor position
was decided by each research group that used accelerometer
signals to interpret sign language. The sensor position on
the finger can influence system accuracy. In this study, the
sensor was set on the proximal phalanx of the index finger.
The sign language letters misclassified by the algorithm are
similar, as can be seen in Figure 9. However, if the sensor is
set on the middle part of the index finger, it could improve
accuracy in a typical case of misreading between “ㅂ(/p/,
6th)” and “ㅍ(/ph/, 13th).” The fingers for placing sensors
have been differently selected because of different gestures
of individual sign languages. For example, in American sign
language, the index and middle fingers are primarily used
[23]. In contrast, Sadek et al. identified the most important
fingers (e.g., index, ring, middle, and pinky) based on statis-
tical analysis in Arabic sign language [24]. Thus, the choice
of the finger for wearing the sensor can also affect system
accuracy. Despite the proposed system successfully recogniz-
ing the Korean sign language alphabet using a single motion
sensor, it could be improved by determining the optimal fin-
ger. Such factors need to be investigated in future studies.

In addition, the errors in the sign language letters in
Figure 9 could be surmounted by combining the sign language
alphabet with a language model in future work [12, 25–27].
Although the processing time would be increased by imple-
menting a language model, a simple language model does
not need much processing time. For example, it takes a few
milliseconds to process short n-grams (e.g., 2- or 3-grams)
[28, 29]. This can lead to expanding the proposed system to
word- and sentence-based recognition.

Deep neural networks have also been used for sign lan-
guage recognition with precision; however, they require a
larger amount of training data than traditional machine
learning algorithms. Moreover, traditional machine learning
algorithms outperform neural networks with even a small

Table 1: Segmentation accuracies of the sign language alphabet
gesture.

Subject
Number of

nondetected signs
Number of

performed signs
Segmentation
accuracy (%)

S1 4 620 99.35

S2 2 620 99.68

S3 0 620 100

S4 1 620 99.84

S5 15 620 97.58

S6 26 620 95.81

S7 12 620 98.06

S8 2 620 99.68

S9 12 620 98.06

S10 0 620 100

S11 23 620 96.29

S12 4 620 99.35

S13 2 620 99.68

S14 2 620 99.68

S15 0 620 100

Average 7 620 98.87
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Figure 6: Comparison of Korean sign language letter classification
accuracy between the six different support vector machine (SVM)
kernel types. The quadratic kernel is an optimized kernel, and the
quadratic SVM classification accuracy is significantly higher than
that of the SVM’s linear and Gaussian kernels (∗∗∗p < 0:001,
paired t-test). The random chance is 3.2%.
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amount of training data and their computational cost is not
as high as that of deep learning networks. Therefore, the
amount of data is vital in deciding between traditional
machine learning and deep learning. In this study, the num-
ber of samples per sign is 20; therefore, machine learning is
preferred. The SVM was considered a state-of-the-art classi-
fication model before the revival of deep learning. It is also a
powerful and versatile algorithm well suited for classification
of small- and medium-sized datasets. Considering these
advantages of the SVM, we employed several kernels of
SVM to classify data and the cubic kernels seemed best fitted
for our data, as can be seen in Figure 6. In addition, the
performance of the classifiers used in previous studies was
compared with the SVM. The performances of linear dis-
criminant analysis and the Gaussian model were 91.8% and
53.8%, respectively, lower than the SVM performance opti-

mized in this study. Therefore, the SVM classifier is suitable
for sign language alphabet classification using a single accel-
erometer. Increasing the number of features might improve
the classification accuracy of the system. However, in this
case, increasing the number of features by adding sample
entropy, STD, and a combination of these values with the
mean feature resulted in decreased recognition accuracies
(88.0%, 89.6%, and 88.6%, respectively) when compared to
using only the mean feature (92.2%). The results show that
the proposed system is not underfitted because of the small
number of features. For future use in everyday life, recogni-
tion accuracy should be improved by increasing the number
of samples and using more complex classification algorithms.
The proposed model was computed offline on a computer.
Thus, the proposed model needs to be developed for online
computation so it can be implemented into smartphones to
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Table 2: Comparison studies on sign language alphabet recognition.

Author, year
Number of
sensors

Sensor types (sampling
frequency (Hz))

Recognition targets
Classification

model
Number of
features

Classification accuracy (%)
(random chance)

Abualola et al.,
2016 [15]

6 IMU (100)
American sign

language alphabet (26)
LDAa 5 85.00 (3.85)

Yeo and Shin,
2018 [10]

6
sEMG (N/A), ACC
(N/A), gyro (N/A)

Korean sign language
alphabet (12)

Gaussian
model

6
92.40 (vowels) and 95.31
(consonants) (16.67)

This study 1 ACC (20)
Korean sign language

alphabet (31)
SVMb 7 92.24 (3.23)

aLinear discriminant analysis. bSupport vector machine.
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use a sign language alphabet via Bluetooth. In addition, our
system could be developed as a smart ring wearable system
connected wirelessly to a smartphone, which would be conve-
nient for use in daily life [30, 31]. Future studies should also
consider using the proposed system via the Internet of things.

5. Conclusions

This paper presented an accelerometer-based Korean sign
language recognition system. The system can automatically
segment the sign language alphabet gesture and recognize
the Korean sign language alphabet using only a single accel-
erometer sensor. Results show that an accelerometer sensor
can be employed to develop a simple system to interpret a
sign language alphabet. Compared with existing methods,
the proposed method not only segments the gesture precisely
but also offers a comparable recognition of the Korean sign
language alphabet. The accelerometer-based system can
work effectively as an interpreting tool for the Korean sign
language alphabet. Furthermore, this light-wearable system
can be developed as a sign language-interpreting tool in the
form of an easy-to-use wearable smart ring.
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