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miRNAs significantly affect multifarious biological processes involving human disease. Biological experiments always need
enormous financial support and time cost. Taking expense and difficulty into consideration, to predict the potential miRNA-
disease associations, a lot of high-efficiency computational methods by computer have been developed, based on a network
generated by miRNA-disease association dataset. However, there exist many challenges. Firstly, the association between
miRNAs and diseases is intricate. These methods should consider the influence of the neighborhoods of each node from the
network. Secondly, how to measure whether there is an association between two nodes of the network is also an important
problem. In our study, we innovatively integrate graph node embedding with a multilayer perceptron and propose a method
DEMLP. To begin with, we construct a miRNA-disease network by miRNA-disease adjacency matrix (MDA). Then, low-
dimensional embedding representation vectors of nodes are learned from the miRNA-disease network by DeepWalk. Finally,
we use these low-dimensional embedding representation vectors as input to train the multilayer perceptron. Experiments show
that our proposed method that only utilized the miRNA-disease association information can effectively predict miRNA-disease
associations. To evaluate the effectiveness of DEMLP in a miRNA-disease network from HMDD v3.2, we apply fivefold
crossvalidation in our study. The ROC-AUC computed result value of DEMLP is 0.943, and the PR-AUC value of DEMLP is
0.937. Compared with other state-of-the-art methods, our method shows good performance using only the miRNA-disease
interaction network.

1. Introduction

More and more evidence shows that miRNA impacts biologi-
cal processes in a very significant way, like cell development
and cell proliferation [1-4]. Therefore, studying the nosogen-
esis, medical diagnosis, and manual interventions of human
diseases has a significant influence on predicting miRNA-
disease associations [5-22]. Biological experiments work well
but cost a lot of time and money. However, to predict the
potential miRNA-disease association by cheap and efficient
ways, many kinds of methods have been generated [23].
Over the past years, to predict the potential association
of miRNA disease, a lot of models based on the known
miRNA-disease association network have been developed.
These methods mainly consisted of two categories: the score
function-based algorithms and machine learning.

Some methods based on matrix completion also have
good results in the prediction of miRNA-disease association.
Jiang et al. (2010) generated a model by giving priority to the
entire human microRNA for diseases of interest [24]. Differ-
ing from common local network similarity measures, a
method named RWRMDA is generated by Chen et al.
(2012), which employ overall measurement of network sim-
ilarity and adopt node embedding presentation method ran-
dom walk to infer the potential association of miRNA
disease [25]. Another method that extends the process of
the Random Walk algorithm is generated by Xuan et al.
(2015) [26]. Ji et al. (2015) propose a method called
SVAEMDA, which considers the miRNA-disease associa-
tion prediction as a semisupervised learning problem, then
trains a variational autoencoder based predictor to solve
the problem [27]. By updating the association adjacency
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matrix of miRNA disease through the matrix completion
algorithm, a method named MCMDA to predict the associ-
ations of miRNA disease is generated by Li et al. (2017) [28].
By integrating known human miRNA-disease associations,
miRNA functional similarity, disease semantic similarity,
and Gaussian interaction profile kernel similarity for miR-
NAs and diseases, a method named PBMDA is proposed
by You et al. (2017). This method constructs a heteroge-
neous graph consisting of three interlinked subgraphs and
further adopts a depth first search algorithm to infer poten-
tial miRNA-disease associations [29]. According to Matrix
Decomposition and Heterogeneous Graph Inference, a
method named MDHGI is generated by Chen et al. (2018).
This method predicts associations of miRNA disease by
predicted association probability [30]. Chen et al. (2018)
propose a model of Inductive Matrix Completion for
MiRNA-disease Association prediction (IMCMDA), which
completes the missing miRNA-disease association based on
the known associations and the integrated miRNA similarity
and disease similarity [31]. Combining neighborhood
constraint with matrix completion, a model named
NCMCMDA is proposed by Chen et al. (2021) [32].

To predict the potential association of miRNA disease, a
lot of machine learning methods have been proposed. To
predict miRNA-disease associations, a novel model frame-
work is adopted by Shi et al. (2013). Furthermore, they con-
struct a bipartite network, which is used to analyze the
peculiarity of miRNA regulating disease genes. This work
provides an original perspective for the discovery of genetic
disease associations and may contribute to future research
on miRNA involvement in disease pathogenesis [33].
According to the miRNA functional similarity, which is
defined by measuring the similarity between genetically
related diseases, a model named DHMP is generated by
Xuan et al. (2013). The similarity of miRNA is effectively
evaluated by measuring the semantic similarity of their asso-
ciated diseases [34]. With the continuous development of
support vector machine and k-nearest-neighbor technology,
a novel method named RKNNMDA is generated by Chen
et al. (2017), which combinates SVM and KNN and achieves
good performance in the prediction task [35]. To predict the
potential miRNA-disease association, a model named
ABMDA is proposed by Zhao et al. (2019) based on adaptive
boosting [36]. By adopting a graph embedding representa-
tion learning algorithm and neural network method, an
original method named CNNMDA is generated by Xuan
et al. (2019) to predict the associations between miRNA
and disease [37]. To predict the potential associations of
miRNA disease, Peng et al. (2019) propose a novel
learning-based framework, MDA-CNN, which constructs a
three-layer network and uses an autoencoder and convolu-
tional neural network to catch the essential feature and pre-
dict the final lable, respectively [38]. Based on inductive
matrix completion and graph convolutional network, a
model named NIMCGCN is generated by Li et al. (2020).
This method generates node embedding feature representa-
tions from a network, and then they put the learned features
into a matrix completion model to predict miRNA-disease
associations [39]. Based on integrating the matrix factoriza-
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tion and multilayer perceptron, Liu et al. (2018) propose a
method NCFM [40]. Based on node embedding, pair
embedding, and multilayer perceptron, Liu et al. (2021) pro-
pose a method named CEMDA to predict miRNA-disease
associations [41].

It is of great importance to discover the potential
miRNA-disease association. So far, most methods use
known miRNA-disease and similarity information of disease
and miRNA to predict potential associations. However, with
the continuous enrichment of human databases and the con-
tinuous improvement of high-throughput technology [42], a
large number of databases about miRNA-disease association
are available for free. More efficient prediction methods only
utilized the miRNA-disease association information
urgently needed [40]. Many new related methods in the field
of drug target prediction have also attracted our attention
[43-49]. In this paper, we propose an effective method
named DEMLP to predict the miRNA-disease association
that only uses the known miRNA-disease association net-
work. In our method, we use DeepWalk to generate the node
embedding using the information of their neighborhood and
the network structure. After that, we use MLP to calculate
the association score of the miRNA disease. In the main
experiment, the receiver operating characteristics (ROC)
and precision-recall (PR) area under the curve (AUC) of
our proposed method are 0.943 and 0.937, respectively.
Then, we compare our model with other four known state-
of-the-art models, and the receiver operating characteristics
(ROC) area under the curve (AUC) of our proposed method
is 0.923, which is far more than any other model using the
same data HMDD v2.0.

2. Materials and Methods

2.1. Dataset for miRNA-Disease Association Prediction. Data
of miRNA-disease associations that we use in our experi-
ment are obtained from HMDD [50-52]. To construct the
interactive network of miRNA disease, we download the
whole dataset from the HMDD database of the online
website. Moreover, in the case study, we use the data of
dbDEMC v3.0 [53] to verify the effect of our model.

2.2. Data Preparation. The online website of HMDD v3.2
shows that there are 35547 miRNA-disease association
entries which include 1206 miRNA genes and 893 diseases
from 19280 papers. We need to clean the original dataset
for constructing the miRNA-disease interaction network.
Then, we need to cleanse this data set by looking for typog-
raphy errors, letter capitalization errors (e.g., hsa-mir-200C
should be has-mir-200c and Has-mir-93 should be has-
mir-93), removing duplicates, and so on. After cleaning the
original dataset, we find 1206 miRNAs, 893 diseases, and
18732 miRNA-disease associations. We construct the
miRNA-disease network by the miRNA-disease association
adjacency matrix (MDA) that is generated from the data
obtained by cleaning. The element MDA;; =1, if miRNA

v

1, is associated with disease v, , on the contrary, if MDA,
i J

=0 means there is no association between miRNA v,, and
disease v, , v is a vertex of the network. The data cleaning
J
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FIGURE 1: Data cleaning and constructing miRNA-disease network process.

and constructing miRNA-disease network process are shown
in Figure 1.

2.3. Prediction of the miRNA-Disease Association. The goal
of DEMLP is to predict potential associations. First, we gen-
erate the node embedding by DeepWalk [54], and then we
concatenate each miRNA embedding and disease embed-
ding as a new dataset for the MLP (multilayer perceptron)
model. To evaluate the effectiveness of DEMLP in the
miRNA-disease network from HMDD v3.2, we apply five-
fold crossvalidation in our research.

2.4. DeepWalk on miRNA-Disease Network. DeepWalk is a
method for generating potential representations of nodes
in a network. These potential nodes representations consist
in a continuous vector space, which could be effectively used
in some machine learning methods. DeepWalk considers a
set of short truncated random walks on our miRNA-
disease network as its corpus and the network vertices as
its vocabulary. The random walk generator samples uni-
formly a random vertex vi as the root of the random walk
w, €R™ (y is the walks per vertex). A walk sample

coequally from the neighbors of the last vertex visited until
the hyperparameter length t that we set before is reached.
In our method, we set that the window size w is 5, walk
length t is 10, walks pervertex y are 80, and the embedding
size d is 128. We iterate all over the nodes in our miRNA-
disease network. For each node vertex vi of the miRNA-
disease network, we generate a random walk W, [ =1, then

use it as our corpus to update our node vertex representa-
tions. We use the Skip-Gram algorithm to adjust these
node vertex representations based on our objective function
in Eq. (1).

Min — logPr <(W_ww+w) ICD(vi)), (1)

Vi

where ®v eV — RV is a mapping function, and
this mapping function @ represents the potential node
embedding representation of each vertex v in the network.

2.5. Multilayer Perceptron. The multilayer perceptron is the
classical machine learning model. We splice the representa-

tions of each miRNA @(v,, ) and disease <D(vdj) as the data-
set of our MLP model.

Xjj = splicing(P(v,,;), @(v4;))» (2)

where v,, is a vertex index of miRNA i, v; is a vertex

index of disease j, and X;; € R is the concatenating repre-

sentation of miRNA i and disease j. |X|=|v,,| x |v,| is the
order of matrix X.

We use a part of the dataset X,,,;, as the training data of
the MLP model. The dimension of the MLP input layer is
128, and the dimension of the MLP hidden layer is 4. We
use tanh as the activation function to compute the hidden
layer values [55]. The calculation process is shown in Eq. (3).

foy = tanh (Xp,0, Wiy + b ), (3)
where tanh is the activation function of the hidden layer,
and W4, and b are learnable parameters of our MLP model.

There is only one value for the output layer of our MLP

model. We choose the sigmoid function as the output layer
activation function.

score;; = out = sigmoid (f(l) Wi + bdxl) , (4)

where score;; represents the correlation score between
miRNA vertex v,, and disease vertex v, .
! ]

We use binary cross entropy between our target and out-

put score. Then, we use stochastic gradient descent to opti-
mize our parameters.

Loss = ZBCELoss(scoreij, MDAjj). (5)

The framework of our method is in Figure 2.

2.6. DEMLP-PLUS. To further verify the validity of the
model in the task of association prediction of miRNA dis-
eases, we add the similarity information of miRNAs and dis-
eases separately into the model to observe whether the
prediction results would be improved. The new framework
is named DEMLP-PLUS. We refer to the IMCMDA [31]
model for the integration network construction process after
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adding the similarity of genes and diseases, respectively, and
the integration network is a fusion of genetic associations,
disease associations, and gene-disease associations, which
construction process is shown in Figure 3.

3. Experiments and Result

There are a large number of negative samples in the whole
data, and we use the undersampling method to make the
positive sample and negative sample reach 1:1 equilibrium.
Firstly, to verify the validity of the model in the task of asso-
ciation prediction of gene-disease, we apply fivefold crossva-
lidation to evaluate the availability of our method in the
miRNA-disease network from HMDD v3.2. Then, we com-
pare DEMLP with the other three baseline models:
LineMLP, node2vecMLP, and SDNEMLP. In the training
process, we applied fivefold crossvalidation on each model
and performed 100 iterations to find the optimal parameter
with the smallest error. Secondly, we add the similarity
information of miRNAs and diseases separately into the
model to observe whether the prediction results would be
improved. In this section, we use HMDD v2.0 as our dataset.
Based on the HMDD v2.0 dataset, we compared the perfor-
mance of the model in a fusion network with gene-disease
similarity information and a normal network. At the same

TaBLE 1: PR-AUC and ROC-AUC of each model.

Method PR-AUC ROC-AUC
LineMLP 0.910 0.916
node2vecMLP 0.910 0.919
SDNEMLP 0.840 0.861
DEMLP 0.937 0.943

time, we compare our model with other known state-of-
the-art models based on the network from HMDD v2.0’s
associated data set of miRNA disease. Thirdly, we did a case
study of lung tumors and breast tumors, and we examine the
miRNAs in HMDD v2.0 for these diseases and used
dbDEMC v3.0 to verify the top 20 rankings association we
predicted.

3.1. Performance Evaluation. We use effective indicators
ROC-AUC and PR-AUC to estimate the association predic-
tion effect. A test example is labeled as a positive example
while the prediction score of miRNA-disease association is
more than 0 (0 is a threshold). If not, it is considered as a
negative example [56]. We use TN and TP to represent the
numbers of correctly identified negative and positive exam-
ples, respectively. FN and FP, respectively, represent the
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TaBLE 2: PR-AUC and ROC-AUC of DEMLP and DEMLP-PLUS.

Method PR-AUC ROC-AUC
DEMLP 0.908 0.923
DEMLP-PLUS 0.921 0.924

TaBLE 3: Comparison with other SOTA models.

Method ROC-AUC
DEMLP 0.923
NCFM 0.912
CGMDA 0.891
Metapath 0.880
BNPMDA 0.889

numbers of positive and negative examples. The formulas
for these indicators, TPR (true positive rate), FPR (false pos-
itive rate), precision, and recall (recall rate), are defined,
respectively, as follows:

TP FP
TP= ———  FPR= —— |
TP + FN TN + FP ( 6)
o TP TP
Precision= ————,Recall= —————.
TP + FP TN + FP

Table 1 shows the average ROC-AUC and PR-AUC of
the 5-fold crossvalidation of our experiments.

Then, we plot the ROC and PR curve of each method in
Figure 3 and the ROC-AUC and PR-AUC bar graph in
Figure 4.

3.2. DEMLP-PLUS Experiments. To further verify the valid-
ity of the model in the task of association prediction of
miRNA diseases, we add the similarity information of miR-
NAs and diseases separately into the model to observe
whether the prediction results would be improved. In the

TaBLE 4: Prediction results of the top 20 predicted breast
neoplasm-related miRNAs based on HMDD v2.0.

TOP 20 miRNAs Evidence
hsa-mir-1236 dbDEMC
hsa-mir-592 dbDEMC
hsa-mir-487a dbDEMC
hsa-mir-548¢ dbDEMC
hsa-mir-431 dbDEMC
hsa-mir-1909 dbDEMC
hsa-mir-376b dbDEMC
hsa-mir-384 dbDEMC
hsa-mir-1183 dbDEMC
hsa-mir-596 dbDEMC
hsa-mir-2861 dbDEMC
hsa-mir-3196 dbDEMC
hsa-mir-188 dbDEMC
hsa-mir-671 dbDEMC
hsa-mir-519b dbDEMC
hsa-mir-572 dbDEMC
hsa-mir-371a dbDEMC
hsa-mir-3148 dbDEMC
hsa-mir-569 dbDEMC
hsa-mir-720 dbDEMC

first step, we construct the integration network using
HMDD v2.0; then, we apply fivefold crossvalidation on the
model DEMLP and DEMLP-PLUS.

Table 2 indicates that there is only a small improve-
ment in the model after adding add the similarity informa-
tion of miRNAs and diseases separately into the model
DEMLP. In the face of higher time and space complexity,
our model has better generalization and application advan-
tages when using only the association network of genes and
diseases.



TaBLE 5: Prediction results of the top 20 predicted lung neoplasm-
related miRNAs based on HMDD v2.0.

TOP 20 miRNAs Evidence
hsa-mir-1236 dbDEMC
hsa-mir-592 dbDEMC
hsa-mir-487a dbDEMC
hsa-mir-548¢ dbDEMC
hsa-mir-431 dbDEMC
hsa-mir-1909 dbDEMC
hsa-mir-376b dbDEMC
hsa-mir-384 dbDEMC
hsa-mir-1183 dbDEMC
hsa-mir-596 dbDEMC
hsa-mir-2861 dbDEMC
hsa-mir-3196 dbDEMC
hsa-mir-188 dbDEMC
hsa-mir-671 dbDEMC
hsa-mir-519b dbDEMC
hsa-mir-572 dbDEMC
hsa-mir-371a dbDEMC
hsa-mir-3148 dbDEMC
hsa-mir-569 dbDEMC
hsa-mir-720 dbDEMC

To verify the validity of the model in the task of associ-
ation prediction of miRNA diseases, we compare our model
with other four known state-of-the-art models (NCFM [40],
CGMDA [57], metapath [58], and BNPMDA [59]) based on
the network from HMDD v2.0’s associated dataset of
miRNA disease by the 5-fold crossvalidation.

Table 3 indicates that our model has a good performance
in predicting genetic disease association.

3.3. Case Study. Studies have shown that microRNA
(miRNA) alterations are involved in the initiation and pro-
gression of human cancer [6, 8, 60-68]. We conduct a case
study of lung tumors [69, 70] and breast tumors [71, 72],
where we examine the miRNAs in HMDD v2.0 for these dis-
eases and use dbDEMC v3.0 to verify the top 20 rankings
association we predict. The prediction results of lung tumors
and breast tumors computed by DEMLP are shown in
Tables 4 and 5, respectively.

The prediction results show that our model has a good
effect on predicting the unknown association between genes
and disease.

4. Conclusions

Taking expense and difficulty into consideration, to predict
the potential miRNA-disease associations, a lot of high-
efficiency computational methods by computer have been
developed, based on a network generated by miRNA-disease
association dataset. More efficient prediction methods which
only utilize miRNA-disease association information are
urgently needed. To predict the potential miRNA-disease

Journal of Sensors

associations in this research, we innovatively integrate graph
node embedding with multilayer perceptron and propose a
method DEMLP. DEMLP can predict the miRNA-disease
association effectively utilizing only the miRNA-disease asso-
ciation information. Through the combination of the random
walk and the multilayer perceptron, DEMLP can learn the
node embedding representation which is rich in network
structure information and heighten nonlinear fitting ability.
Compared with other models, DEMLP achieves the best result
in the task of miRNA-disease association prediction. More-
over, in the future, we will consider referring to models such
as EGES [73] to solve the problem of cold start in the predic-
tion of genetic disease association.
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