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The sparse arrays using two uniform linear arrays have attracted considerable interest due to the capability of giving analytical
expression of sensor location and owning robust direction-of-arrival (DOA) facing strong mutual coupling and sensor failure. In
order to achieve the maximum consecutive virtual uniform linear array in difference coarray, in this paper, a design method of a
novel sparse array using two uniform linear arrays (NSA-U2) is proposed. We first analyze the relationship between the values
of displacement of two subarrays and difference coarray, and then we give the analytical expressions of the displacement and the
number of consecutive lags. By discussing the selection of number of subarray sensors, the design of NSA-U2 is completed.
Moreover, through choosing a proper compressed interelement spacing, NSA-U2 can be robust to mutual coupling effect.
Numerical experiments prove the effectiveness and favorable performance of DOA estimation with mutual coupling.

1. Introduction

Direction-of-arrival (DOA) estimation is one of the key tech-
nologies in the field of passive location. It is widely used in
seismic detection, military early warning, astronomical
observation, radar monitoring, underwater targets position-
ing, and so on [1, 2]. Traditionally, the researchers apply
the super resolution methods, such as subspace methods, to
solve DOAs mainly in uniform nonsparse arrays, such as
uniform linear arrays (ULAs). In recent years, many experts
and scholars have focused on nonuniform sparse arrays,
whose sensor spacing can be larger than the half of wave-
length of impinging signals. Minimum redundancy arrays
(MRAs) [3], coprime linear arrays (CLAs) [4, 5], and nested
linear arrays (NLAs) [5, 6] are the typical sparse arrays. Com-
pared with ULAs, the nonuniform sparse arrays can con-
struct the larger array aperture with the same number of
sensors, which also means the higher resolution. In order to
solve DOAs without any ambiguous values, spatial smooth-
ing multiple signal classification (SS-MUSIC) [7] and direct
augmentation approach (DAA) [8] are proposed, respec-
tively. Two algorithms both try to transform the physical
array to a virtual nonsparse array, where they both use the

difference coarray. [9] demonstrated the effectiveness of
two algorithms and concluded that the two share the same
performance.

The performance of DOA estimation is mainly decided
by the array aperture. While in sparse array, it is changed
to be decided by the aperture of consecutive ULA belonging
to the difference coarray. Although MRA has the largest vir-
tual ULA aperture in theory, they have no closed-form
expression. Thus, a structure named generalized coprime lin-
ear array (GCLA) is proposed, where NLA and CLA are the
typical arrays. The sensors location of GCLA has an analyti-
cal expression, which reduces the complexity of array design.
And [10–13] proves that this structure can be much more
robust facing sensors failures compared with other sparse
arrays. Then, to enlarge the aperture of virtual ULA under
the fixed number of sensors, coprime array with compressed
interelement spacing (CACIS), coprime array with displaced
subarrays (CADiS) [14, 15], coprime array with multiperiod
subarrays (CAMpS) [16], and shifted coprime array (SCA)
[17] are proposed. CACIS and CADiS show that setting one
subarray with a smaller interelement spacing can have the
larger aperture of virtual ULA. CAMpS demonstrate that,
in order to expand the aperture of virtual ULA, only one
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subarray can have a compressed interelement spacing. SCA
reveals that the displacement between two subarrays is the
main factor to the aperture of virtual ULA. Based on sparse
array using two ULAs, although many valuable researches
have been proposed, the solution of how to maximize virtual
ULA aperture corresponding to different parameters has not
been answered and is still deserved to study.

Moreover, besides the array aperture, the mutual cou-
pling is another factor affecting the performance of DOA
estimation. The severe mutual coupling causes the degrade
of accuracy. To tackle the problem, the researchers aim to
enlarge the interelement spacing and propose super nested
arrays (SNAs) [18, 19], the augmented nested array (ANA)
[20], and the maximum interelement spacing constraint
(MISC) [21]. Based on the GCLA, they divide the dense sub-
array into three or four sparse subarrays, which decreases the
weight of interelement spacing equal to half of wavelength.
However, when the mutual coupling is strong, the weight of
interelement spacing bigger than half of wavelength should
be considered.

Hence, in this paper, based on GCLA configuration, we
propose a novel sparse array using two ULAs (NSA-U2).
We first derive the analytical expression of displacement
between two subarrays, which can decrease the complexity
of array design, and then discuss the selection of interelement
spacing of each subarray to suppress the strong mutual cou-
pling. Moreover, the effectiveness of conclusion is demon-
strated by simulation experiments. The main contribution
of this paper is summarized as follows:

(1) Under the fixed number of sensors and same intere-
lement spacing, the paper gives the design of NSA-
U2, which can obtain the biggest aperture of the vir-
tual ULA compared with other arrays using two
ULAs. Moreover, the paper derives the analytical
expression of displacement and the aperture of the
consecutive virtual ULA and gives a low-complexity
array design method

(2) The paper analyzes the selection of interelement
spacing of each subarray, which ensures that the
weight of small interelement spacing is low. When
mutual coupling is strong, robust DOA estimation
can be obtained

The rest of this paper is organized as follows: Section II
presents the model of sparse array. Section III proposes the
design method of NSA-U2 in detail. Section IV analyzes the
performance facing mutual coupling in NSA-U2. Section V
is the simulation experiments. Section VI summarizes the
paper. Throughout the paper, we make use of the following
notations shown in Table 1.

2. Problem Formulation

Assume that there are T sensors. Based on GCLA [15],
NSA-U2 is made of two ULAs, having M ′ =M − 1 and N
sensors, respectively, where T =M ′ +N and M and N are
coprime integers (generally assuming M <N). We set the

unit interelement spacing to λ/2, where λ is the wavelength
of impinging signals. So, the sensors’ location set is all inte-
gers, defined as

D = �Mn ∣ 0 ≤ n ≤N − 1
� �

∪ �M N − 1ð Þ + L +Nm ∣ 0 ≤m ≤M′ − 1
n o

,

ð1Þ

where �M =M/p and �M and p are integers. Here, p is the
compressed factor, �M,N are still coprime integers, and L
is the displacement between two subarrays. Suppose that
there are K far-field narrowband signals impinging on this
array from fθ1,⋯,θKg with power fσ21,⋯,σ2Kg. Then, the
received data is

X tð Þ = 〠
K

k=1
aD θkð ÞSk tð Þ +N tð Þ =A θð ÞS tð Þ +N tð Þ, ð2Þ

where the manifold matrix AðθÞ is denoted as

A θð Þ = aD θ1ð Þ,⋯,aD θKð Þ½ �T , ð3Þ

and the steering vector aDðθÞ can be given by

aD θð Þ = 1, e−jπℓ1 sin θ,⋯,e−jπℓT−1 sin θ
h iT

, ð4Þ

where ℓm ∈D,m = 1,⋯, T − 1. The signal data vector is

S tð Þ = S1 tð Þ,⋯,SK tð Þ½ �T , ð5Þ

where t = 1,⋯, J , and J is the number of snapshots. And the
noise vector is usually Gaussian random variables with zero
means and variance σ2n. From the references mentioned
above in Section I, the covariance matrix is use to construct
the virtual array. Then, we can have the covariance matrix
of the received data denoted as

RX = 1
J
XXH =ARSAH + σ2

nIM , ð6Þ

Table 1: Key notations used in this paper.

Transpose •ð ÞT

Conjugate •ð Þ∗

Hermitian transpose •ð ÞH

Vectorization operation vec •ð Þ
Khatri-Rao ∘

Kronecker product ⊗

Diagonal matrix diag •½ �
Floor integer •b c
Identity matrix with size M ×M IM
Number of elements <• >
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where RS = diag ½σ21,⋯,σ2K �. Vectorize the covariance matrix
RX and obtain the vector

Z = vec RXð Þ = Bp + σ2ne, ð7Þ

where B =A∗ ∘A, e = vecðIÞ, and p are the diagonal ele-
ments of RS. Hence, the vector Z can be seen as the received
data of a virtual linear array [4, 15], whose location is
defined as the difference coarray, given by

Dv =Ds ∪D−
s ∪Dc ∪D−

c , ð8Þ

where the difference coarray is the union of self-difference
coarray Ds, where

Ds = ℓs ∣ ℓs = �Mn
� �

∪ ℓs ∣ ℓs =Nmf g, ð9Þ

crossdifference coarray Dc, where

Dc = ℓc ∣ ℓc = �M N − 1ð Þ + L +Nm − �Mn
� �

, ð10Þ

and the corresponding mirrored coarray D−
s = f−ℓs ∣ ℓs ∈Dsg

and D−
c = f−ℓc ∣ ℓc ∈Dcg. And the aperture of virtual ULAs

in coarray is equivalent to the maximum number of consec-
utive lags in Dv .

CACIS and CADiS [14, 15], respectively, set L = − �MðN
− 1Þ and L = �M +N . Comparing CACIS with CADiS, we
notice that CACIS has the bigger consecutive integer range
while it can still be improved, and CADiS has the bigger
number of unique coarray lags while its consecutive integer
range is much smaller. Hence, the value of L is a main factor
to the number of consecutive lags. SCA in [17] gives a solu-
tion that when p = 1, setting L = bM/2cN − �MðN − 1Þ can
obtain the maximum number of consecutive lags. Then, we
need to find a more general solution of L under different p.
Because p =M is a special case, where nested CADiS in [?]
reveals that L =N + 1 can have the maximum number of
consecutive lags, we will take the 1 ≤ p <M into consider-
ation in the following section.

3. Proposed Array Design Method

In order to have the maximum number of consecutive lags,
defined as Sv , the key of the NSA-U2 design method is to
solve the value of L and the selection of M,N with the fixed
T . In this section, we will, respectively, give the setting of L
and M,N with the detailed proof.

3.1. The Analytical Expression of L. Based on (8), we solve the
analytical expression of L in two steps. The first step is solv-
ing L to obtain the maximum number of consecutive lags
in Dc ∪D−

c . The second step is adjusting L when considering
the effect of Ds ∪D−

s to Dv.
In first step, in order to obtain the maximum number of

consecutive lags of Dc ∪D−
c , the positive and negative lags

must be connected. Before solving L, we introduce the prop-
osition proposed in [15], which tells the analytical expression
of lags and holes in Dc:

Proposition 1.

Dc contains the continuous integer ℓc, where ð �M − 1ÞðN
− 1Þ + L ≤ ℓc ≤M ′N − 1 + L

Dc contains the holes located at �MðN − 1Þ − ðp �M + qNÞ
+ L, where p ≥ 0, q > 0 are integers

Then, we further propose the proposition 2 based on Prop-
osition 1:

Proposition 2. Dc meets the following properties:

(a) The lags in Dc can be divided into three parts, which
are given by Dcn = fℓc ∣ ℓc = L + a �M + bN , ℓc < ð �M − 1
ÞðN − 1Þ + L, a ≥ 0, b ≥ 0g, Dcc = fℓc ∣ ð �M − 1ÞðN − 1Þ
+ L ≤ ℓc ≤M ′N − 1 + Lg, and Dcp = fℓc ∣ ℓc = �MðN −
1Þ + L + ðM ′ − 1ÞN − a �M − bN , ℓc >M ′N − 1 + L, a
≥ 0, b ≥ 0g

(b) The holes in Dc can be divided into two parts, which
are given by Dhn = fℓh ∣ ℓh = ð �M − 1ÞðN − 1Þ + L − 1
− ða �M + bNÞ, ℓh > L, a ≥ 0, b ≥ 0g and Dhp = fℓh ∣ ℓh
=M ′N + L + ða �M + bNÞ, ℓh ≤ �MðN − 1Þ + L + ðM ′
− 1ÞN , a ≥ 0, b ≥ 0g

Proof.

(a) Due to the property (a) of Proposition 1, we can have
that Dcc contains all consecutive integers of Dc. Dcn
contains the values, which are not consecutive and
less than ð �M − 1ÞðN − 1Þ + L. The minimum value
of Dcn is L, where m = 0, n =N − 1. The value no less
than L can be denoted by Nð0 + bÞ − �MðN − 1 − aÞ,
where a ≥ 0, b ≥ 0. So, any value in Dcn is given by ℓc
= L + a �M + bN . Dcp contains the values, which are

not consecutive and more than M ′N − 1 + L. Simi-
larly, The maximum value of Dcp is �MðN − 1Þ + L +
ðM ′ − 1ÞN , where m =M ′ − 1, n = 0. The value no
more than it can be denoted by NðM − 2 − bÞ − �Mð0
+ aÞ, where a ≥ 0, b ≥ 0. So, any value in Dcp is given

by ℓc = �MðN − 1Þ + L + ðM ′ − 1ÞN − a �M − bN

(b) The holes can be divided into two parts, where Dhn
corresponds to the holes in Dcn, and Dhp corresponds
to the holes in Dcp. The maximum value of Dhn is ð
�M − 1ÞðN − 1Þ + L − 1. Considering the property (b)
of Proposition 1, any hole no more than ð �M − 1ÞðN
− 1Þ + L − 1 is given by ℓh = ð �M − 1ÞðN − 1Þ + L − 1
− ða �M + bNÞ, where a ≥ 0, b ≥ 0. Similarly, the mini-
mum value of Dhp is M ′N + L. So, any hole no less

than M ′N + L is given by ℓh =M ′N + L + ða �M + bN
Þ, where a ≥ 0, b ≥ 0

The maximum number of consecutive lags of Dc ∪D−
c

means that positive and negative lags are connected. Thus,

3Journal of Sensors



we should let the number of holes in Dcn be aligned by D−
cn as

many as possible. Through the analysis in Appendix A, we
give the theorem about the expression of L: ☐

Theorem 3. Dc ∪D−
c can achieve the maximum number of

consecutive lags defined as Sc = 2ðMN + LÞ − 1, when

L = −
1
2

�MN − �M −N + a1 �M + a2N
� �

, ð11Þ

where the integers a1, a2 ∈ f0, 1g and a1, a2 cannot equal to 0
simultaneously. Moreover, the values of a1, a2 are depended
on the odevity of �M,N .

Proof. See Appendix A.
In second step, with the theorem 3, we use Ds ∪D−

s to fill
the holes inDcp ∪D−

cp and obtain the detailed expression of L,
which is the function of �M,N . We propose the theorem 4,
which states that ☐

Theorem 4. The analytical expression of L and Sv are showed
in Table 2.

Proof. See Appendix B.
We show an example in Figure 1, where M = 6, N = 7,

and p = 2. Thus, L = −ð �MN −NÞ/2 = −7 from Table 2. The
physical sensors of two subarrays have one common sensor
located at the Nth sensor of subarray 1 and ð �M/2 + 1/2Þth
sensor of subarray 2, which proves the Table 3. And ℓc = �M
N − �M −N + L = 4; so, positive holes in Dc can be aligned

Table 2: The analytical expressions of L and Sv .

Parameters L Sv
p = 1,
�M is even, and N is odd

− �MN − �M
� �

/2 MN +M + 2N − 1

p = 1,N > 2 �M,
�M is odd, and N is even

− �MN −N
� �

/2 MN + 2N − 1

p = 1,N ≤ 2 �M,
�M is odd, and N is even

− �MN/2 MN +N + 2M − 1

p = 1,
�M is odd, and N is odd

− �MN − �M
� �

/2 MN +M + 2N − 1

p > 1,
�M is even, and N is odd

− �MN/2 2MN − �MN + 2 �M − 1

p > 1,
�M is odd, and N is even

− �MN −N
� �

/2 2MN − �MN +N + 2 �M − 1

p > 1,
�M is odd, and N is odd

− �MN −N
� �

/2 2MN − �MN +N + 2 �M − 1

Physical array

Virtual array

Dhn

Dcn

lc

Dcc

Dhp

Dcp

Subarray 1
Subarray 2
Dc

Dh

Dc

Ds

100−10 20 30 40 50

−

Figure 1: An example when M = 6, N = 7, and p = 2.

Table 3: The values of L, m, and n meeting equation (A.3).

Parameters L m n

�M is odd
N is even/odd −

�MN −N
2

�M − 1
2

N − 1

�M is even
N is even/odd −

�MN
2

�M
2

N − 1

�M is even/odd
−
�MN − �M

2
0 N − 1

2N is odd
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by D−
c , which proves the Theorem 3, and the minimum value

in Dhp can be aligned by Ds, which proves the Theorem 4.
Hence, the figure demonstrates that the proposed theorems
are right. ☐

3.2. The Selection of Sensor Number of Each Subarray. From
Table 2, we have the analytical expression of L and Sv , which
is determined by �M andN . With a fixed number of sensors T ,
the values of ð �M,NÞmeet the following theorem to maximize
the value of Sv.

Theorem 5. With the fixed values of T and p, when ðM,NÞ
satisfies

M = T
2
,N = T

2
+ 1 T is even

M = T − 1
2

,N = T + 3
2

T is odd

8>><>>: , ð12Þ

the value of Sv achieves the maximum. Moreover, under the
selection of ðM,NÞ, with the increase of p, Sv increases.

Proof. See Appendix C.
In conclusion, with a fixed T , we take the values of �M,

N , L into (1) and can have the sensors location of NSA-U2.
☐

4. The Proposed Sparse Array Facing
Mutual Coupling

4.1. The Mutual Coupling and DOA Estimation. When there
exists mutual coupling between physical sensors, (2) can be
changed to

X tð Þ = CA θð ÞS tð Þ +N tð Þ, ð13Þ

where C is the mutual coupling matrix with size T × T . Gen-
erally, in linear array, C can be a B-band symmetric Toeplitz
matrix [22–27]. The element in mth row and nth column is
defined as

C½ �m,n =
c ℓm−ℓnj j, ℓm − ℓnj j < B

0, otherwise,

(
ð14Þ

where c0, c1,⋯, cB are coupling coefficients satisfying c0 = 1
> c1 >⋯ > cB. (14) reveals that the sparse array that has a
much larger interelement spacing can have weaker mutual
coupling. To quantify the effect of mutual coupling, we intro-
duce the following definitions [18–21]:

Definition 6. The weight function of the virtual array Dv is
defined as the number of coarray lags index ℓ, which can be
expressed as

w ℓð Þ = < ℓm, ℓnð Þ ∣ ℓm − ℓn = ℓf g > , ℓm, ℓn ∈D: ð15Þ

When ∣ℓ ∣ <B, the value of wðℓÞ is smaller, and the mutual
coupling is less significant.

Definition 7. The coupling leakage is defined as

Le = C − diag Cð Þk kF
Ck kF

, ð16Þ

where the smaller value of Le implies the weaker mutual
coupling.
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Figure 2: The weight function of Dvunder different p with T = 16.
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Thus, we can have the corresponding proposition about
the mutual coupling of NSA-U2:

Proposition 8. The weight function of Dv is as follows:

(a) The weight function of Dc has wðℓÞ = 1

(b) The weight function of Dc ∪D−
c has

w ℓð Þ =
2 ℓ = 0

2 ℓ = ± �ℓc + a �M + bN
� �

, ℓj j≤−L,
1 otherwise

8>><>>: ð17Þ

where a ≥ 0, b ≥ 0 and a, b cannot be 0 at the same time.

(c) The weight function of Ds ∪D−
s has

w 0ð Þ = T ,w ± �M
� �

=N − 1,w ±Nð Þ =M − 1: ð18Þ

(d) The weight function ofDv is the sum of that ofDc ∪D−
c

and Ds ∪D−
s

Proof. See Appendix D.
Due to Proposition 8, in order to have the weak mutual

coupling, the value of wðℓÞðℓ < BÞ should be small. So, the
value of p, which decides the value of �M, is important to
the values of wðℓÞ and L. The detailed analysis will show in
the next part.

Applying DAA to the received data (7) of virtual sen-
sors, we can have the MUSIC spectrum and obtain the
DOA of signals. ☐

1 2 3 4 5 6 7 8
50

100

150

0

0.2

Le

0.4

p

S
𝜐

(a)

80 100 120

p = 1

140 160 180 200
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0.35

Le

S𝜐

p = 2

p = 4

p = 8

NLA
MISC
ANAI-1

ANAII-1
NSA-U2

(b)

Figure 3: The relationship between Sv and Le, (a) under different p and (b) under different sparse arrays.
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4.2. The Relationship between p and Le.With a fixed value of
T , although a big p can have a big Sv, a small �M can cause a
big Le. In order to show the relationship, we set T = 16, and
based on Proposition 8, M = 8,N = 9. Thus, p can be f1, 2,
4, 8g. Firstly, we resolve the weight function of difference
coarray Dv corresponding to different values of p, which is
shown in Figure 2. The figure presents that if p is small,
when ℓ is small, wðℓÞ can be 1. In order to quantify the influ-
ence of mutual coupling, we assume that B = 3, c1 = 0:3ejπ/3,
and cb = c1e

−jπðb−1Þ/8. Moreover, we compare NSA-U2 with
the existing sparse arrays, such as NLA [6], MISC [20],
ANAI-1, and ANAII-1 [20], under the same number of sen-

sors. Figure 3(a) shows the relationship between Sv, Le and p
in NSA-U2. With the increase of p, Sv increases, but Le also
increases. When mutual coupling is severe, a big array aper-
ture may not obtain the high accuracy. Figure 3(b) com-
pares Sv, Le of different kinds of sparse arrays with same T
. When p = 1 and p = 2, NSA-U2 can have a small Le but
also a small Sv. ANAII-1 and MISC have the larger Sv and
also the bigger Le.

In conclusion, the selection of p needs to balance the
values of Sv and Le to obtain a favorable performance, where
the influence to DOA estimation will be presented by simula-
tion experiments.
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5. Simulation Results

The definition of root mean square error (RMSE) is given as
follows,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
QK

〠
Q

q=1
〠
K

k=1
θ∧k,q − θk
� �2vuut ð19Þ

Q is the number of Monte Carlo, K is the number of tar-

get signals, and bθk,q is the DOA of the kth estimated source
by the qth Monte Carlo experiment.

Simulation 9. The MUSIC spectrum in NSA-U2 under dif-
ferent p.

When we use DAA [?] to estimate DOAs, the maximum
number of detectable signals is ðSv − 1Þ/2 in theory, which is
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Figure 6: (a) RMSE of NSA-U2 under different p versus SNR (b) RMSE of different sparse arrays versus SNR.
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much more than T . In first simulation, we present the
MUSIC spectrum with mutual coupling, when there are mul-
tiple signals more than T . Assume K = 25 located at θk = 0∘
+ ΔθðK/2 + 1/2 − kÞ, 1 ≤ k ≤ 25 and SNR = 10dB, J = 5000.
Set T = 16, M = 8,N = 9, and Δθ = 3:75∘ and p can be f1, 2,
4, 8g. Moreover, set B = 3, c1 = 0:3ejπ/3, and cb = c1e

−jπðb−1Þ/8.

Thus, we apply DAA and obtain the spectrum under differ-
ent p, which is shown in Figure 4. The figure shows that we
can estimate underdetermined signals in NSA-U2. However,
with the increase of p, the influence of mutual coupling to
DOA estimation is more obvious, where the peaks (blue
lines) gradually deviate from the true DOAs (red lines).
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Figure 7: (a) RMSE of NSA-U2 under different p versus snapshot (b) RMSE of different sparse arrays versus snapshots.
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Moreover, we set p = 2 and vary the Δθ from f5∘, 6:67∘,
2:5∘, 1:67∘g. The spectrum is shown in Figure 5. When the
target angle difference increases, if the DOAs of signals are
more close to 90∘, the accuracy will decrease or even deterio-

rate. The RMSE of Δθ = 5∘ is 0:087∘, while the RMSE of Δθ
= 3:75∘ is 0:071∘. And when Δθ = 6:67∘, the DOA estimation
of signal from the direction higher than 60∘ fails. When the
target angle difference decreases, it can have the higher
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accuracy, such as Δθ = 2:5∘, whose RMSE is 0:04∘. But if the
difference is lower than the resolution of NSA-U2, such as
Δθ = 1:67∘, the DOA estimation fails.

Simulation 10. RMSE performance comparison of different
SNRs.

In this simulation, we show the RMSE performance with
mutual coupling under different SNRs. The mutual coupling
coefficients and the structure of NSA-U2 are the same as sim-
ulation 9, and SNR is from −30dB to 15dBwith 5dB intervals.
Set Q = 500, and results are shown in Figure 6(a). When
SNR > −20dB, the RMSEs decrease with SNR increasing,
but when SNR > −5dB, the RMSEs go to be flat due to the
mutual coupling. When p > 2, Le is the main factor to affect
the RMSEs, but when p ≤ 2, Sv is the main factor. So, when
p = 2, NSA-U2 can obtain the highest accuracy. Moreover,
we compare the NSA-U2 under p = 2, with NLA, MISC,
ANAI-1, and ANAII-1, where the RMSEs are shown in
Figure 6(b). Considering Figure 3, this figure shows that the
RMSE of NSA-U2 is lower than NLA, ANAI-1, and MISC
due to the weaker mutual coupling. ANAII-1 has the lowest
RMSE because it has the largest Sv , but the complexity to
design ANAII-1 is much higher than NSA-U2, especially
when T is big.

Simulation 11. RMSE performance comparison of different
snapshots.

Similar to the simulation 10, we set SNR = 10dB and vary J
from f50,100,200,500,1000,2000,5000g. The RMSEs are
shown in Figure 7. The simulation results show that the per-
formance of RMSEs is improved with the increase of snapshot

numbers, but when J > 500, RMSEs are gradually flatted.
Other conclusions are the same as that in simulation 10.

Simulation 12. RMSE performance comparison of different T
.

Based on the setting of simulation 10, we further con-
sider the RMSEs of NSA-U2 with different numbers of
sensors defined as T under p = 2. We vary T from f8,12,
16,20,24,28,32g. Through the conclusion in Table 2, we
can have the corresponding values of Sv as f33,75,115, 1
85,245,343,423g. The results are shown in Figure 8. The fig-
ure shows that the bigger T can cause the bigger Sv, which
means the higher accuracy. But due to the mutual coupling,
the RMSEs goes to be flat when SNR > −5dB, and the gap
between the RMSEs corresponding to the bigger T is not
obvious. Although the difference of Sv between T = 28 and
T = 32 and that between T = 20 and T = 24 is big, the RMSEs
between T = 28 and T = 32 and that between T = 20 and T
= 24 are very close.

Simulation 13. RMSE performance comparison of different K
.

In this simulation, we do the experiments about the effect
of number of signals to the RMSEs. Based on the setting of
simulation 10, we set θk = 0∘ + ΔθðK/2 + 1/2 − kÞ, 1 ≤ k ≤ K ,
Δθ = 3:75∘, and vary K from f3, 9, 15,19,25,33g. The results
in Figure 9 show that when SNR > −5dB, with the increase
of K , the RMSEs increase. If K is small, such as K = 3, the
threshold, defined as the value of SNR when RMSE = 1∘, is
even smaller than −15dB. The threshold becomes bigger with
K increasing. Moreover, the RMSEs of K = 25 and K = 33
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also prove that the feasibility of estimating underdetermined
signals under enough SNR, where it needs SNR ≥ 0dB shown
in figure.

Simulation 14. RMSE performance comparison of different
∣c1 ∣ .

∣c1 ∣ determines the strength of mutual coupling. So, in
this simulation, we compare the RMSEs of different sparse
arrays under different ∣c1 ∣ . The sparse arrays are the same
as simulation 10. We set SNR = 10dB and J = 5000. ∣c1 ∣ var-
ies from 0:1 to 0:8 with 0:05 intervals. The RMSEs are shown
in Figure 10. For all array geometries, as ∣c1 ∣ increases, which
causes more severe mutual coupling effect, the associated
RMSEs increase. And NSA-U2 under p = 1 and p = 2 has
the similar robust DOA estimation as MISC and ANAII-1
facing severe mutual coupling.

6. Conclusion

In this paper, based on GCLA, the design of sparse array
using two ULAs is proposed, named NSA-U2. The paper
analyzes the relationship between the displacement L
between two subarrays and the number of consecutive lags
Sv in difference coarray. Then, the selection of the number
of subarray sensors and the analytical expressions of L, Sv
are derived, which can obtain the maximum number of con-
secutive lags. At last, facing mutual coupling, the paper ana-
lyzes the balance between Sv and Le in NSA-U2. Through the
simulations, NSA-U2 both has a low-complexity design
method and obtains the robust DOA estimation facing severe
mutual coupling under proper p. Considering the advantages
of NSA-U2, the design of sparse array using P ULAs can be
conducted in the future research.

Appendix

A. Proof of Theorem 3

Lemma 15. If there exists a positive value −�ℓc, where both −
�ℓc ∈Dhn and �ℓc ∈Dc, then any positive hole, where ℓh ∈Dhn
and ℓh ≤ −�ℓc, can have ℓh = −ℓc, where −ℓc ∈D−

c .

Proof. Let �ℓh = −�ℓc. Due to the property (b) of Proposition 2,
other positive holes are located at D′hn = fℓ′h ∣ ℓ′h = �ℓh − ða
�M + bNÞg, where a ≥ 0, b ≥ 0. Then, considering the property
(a) of Proposition 2, other negative lags of Dc, which are no
less than �ℓc, are located at D′cn = fℓ′c ∣ ℓ′c = �ℓc + ða′ �M + b′N
Þg, where a′ ≥ 0, b′ ≥ 0. When −�ℓc = �ℓh, we have known that
a, a′ and b, b′ have the same range of values; so, D′hn = −D
′cn. Due to −D′cn ⊂D−

c , the lemma is true. ☐

lemma 15 reveals that all positive holes in Dhn can be aligned
by D−

c , when −�ℓc = ð �M − 1ÞðN − 1Þ + L − 1. Therefore, let �ℓc
= L + a1 �M + a2N , where a1 ≥ 0, a2 ≥ 0, and

− L + a1 �M + a2N
� �

= �M − 1
� �

N − 1ð Þ + L − 1, ðA:1Þ

which can be simplified to

L = −
1
2

�MN − �M −N + a1 �M + a2N
� �

: ðA:2Þ

Then, Sc can be 2ðM ′N + L − 1Þ + 1. (A.2) requires that L
should be divisible by 2 and as big as possible. The former
requirement is depended on the odevity of �M,N and values
of a1, a2. The latter requirement means that a1 = 0or1 and
a2 = 0or1. When a1 = a2 = 0, L can never be divided by 2;
so, a1, a2 cannot be 0 simultaneously.

Moreover, we find that some values of L let two subarrays
have one common sensor, where L meets that

Nm + �M N − 1ð Þ + L = �Mn: ðA:3Þ

The possible values of some parameters are listed in
Table 3. Thus, with a fixed value of T , the number of sensors
of subarray 2 can beM; so, Sc can be bigger as 2ðMN + LÞ − 1.

B. Proof of Theorem 4

Situation 16. We first consider the situation that Sc reaches
the maximum values, and then all values in Dhn can be
aligned. Based on theorem 3, the number of consecutive lags
in Dc ∪D−

c is Sc = 2ðMN + LÞ − 1. Next, we expect that the
minimum value in Dhp can be aligned by Ds; so, we have

MN − 1 + L + 1 =Nm, ðB:1Þ

MN − 1 + L + 1 = �Mn: ðB:2Þ
(B.1) and (B.2), respectively, tell that L should be divisible

by N and �M.

Case 17. If L meets (B.1), the next hole is located at MN + L
+ �M, which cannot be divisible by N . So, Sv is given by Sv
= Sc + 2 �M.

Case 18. In order to let L meet (B.2), �Mn should be no less
thanMN + L. When p > 1,MN + L > �MðN − 1Þ for any value
of L. Thus, if p = 1 and L meets (A.3), the hole located at M
N + L +N cannot be divisible by �M; so, Sv = Sc + 2N .

If L = ð �MN − �MÞ/2, which can be divisible by �M, Sv = Sc + 2
N = 2MN − �MN + 2N + �M − 1. If L = ð �MN −NÞ/2, which
can be divisible by N , Sv = Sc + 2 �M = 2MN − �MN +N + 2 �M
− 1. And If L = �MN/2, which can be divisible by both �M
and N , both Sv = 2MN − �MN + 2N − 1 and Sv = 2MN − �M
N + 2 �M − 1. Hence, Sv = 2MN − �MN + 2N + �M − 1 is the
biggest, Sv = 2MN − �MN +N + 2 �M − 1 and Sv = 2MN − �M
N + 2N − 1 that which one is bigger is depended on N − 2
�M are positive or not, and Sv = 2MN − �MN + 2 �M − 1 are
the smallest. In order to maximize value of Sv, we need to
let L be as large as possible and also meet (B.1) or (B.2). Thus,
we need to discuss odevity of parameters to make sure the
values of Sv.

We first consider p = 1. If N is odd and no matter �M is
even or odd, L = −ð �MN − �MÞ/2 can be divisible by 2, and Sv
=MN +M + 2N − 1. If N is even and �M is odd, L = −ð �MN
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−NÞ/2 and L = − �MN/2 can be divisible by 2, then ifN < 2 �M,
Sv =MN +N + 2M − 1; otherwise, Sv =MN + 2N − 1. And
we then consider p > 1. If �M is odd and no matter N is even
or odd, L = −ð �MN −NÞ/2 can be divisible by 2, and Sv = 2
MN − �MN +N + 2 �M − 1. If �M is even and N is odd, L = −
�MN/2 can be divisible by 2, and Sv = 2MN − �MN + 2 �M − 1.
At last, for the sake of clarity, we list the value of L and the
analytical expression of Sv in Table 2 under different
situations.

Situation 19. In this part, we consider the situation that the
hole ð �M − 1ÞðN − 1Þ + L − 1 cannot be aligned by D−

c ; so, it
must be aligned by Ds. Assume that �ℓc = ð �M − 1ÞðN − 1Þ + L
− 1 − a1M − a2N , where a1 ≥ 0, a2 ≥ 0. If ð �M − 1ÞðN − 1Þ +
L − 1 =Mn, then a1 = 0, a2 = 1; otherwise, if ð �M − 1ÞðN − 1Þ
+ L − 1 =Nm, then a1 = 1, a2 = 0. Considering that L should
be as big as possible, we set −L = �ℓc; so,

L = −
1
2

�MN − �M −N − a1 �M − a2N
� �

: ðB:3Þ

In order to ensure whether there is a common sensor in
this situation, take (B.3) into (A.3), and each side is divided
by �M, which can be expressed as

N
�M
m +N − 1 − 1

2 N − 1 − a1 −
N + a2N

�M

� �
= n⟶

N
�M

m + 1 + a2
2

� �
= n + 1 − a1 −N

2 :

ðB:4Þ

So, m + ð1 + a2Þ/2 = �M and n + ð1 − a1 −NÞ/2 =N , but
n + ð1 − a1 −NÞ/2 <N ; thus, (B.4) is false, and two subarrays
have no common sensors. Then, we make sure whether the
minimum value of Dhp given by M ′N + L can be aligned by
Ds, so we have

MN −N + L =NmorMN −N + L =Mn: ðB:5Þ

Take (B.3) into (B.5), and each side of each equation is
divided by N and �M, respectively; then,

M − 1 − 1
2

�M −
�M
N

− 1 − 1
� �

=mor,

pN −
N
�M

−
1
2 N − 1 − N

�M
− 1

� �
= n:

ðB:6Þ

(B.6) indicates that there are no integer valuesm and n to
satisfy (B.5); so, the values in Dhp cannot be aligned by Ds. As

a result, the maximum number of consecutive lags Sv is 2ð
M ′N + LÞ − 1.

Hence, we compare Sv that we can obtain in two situa-
tions. In situation 19, the maximum values of Sv can be 2M
N − �MN + �M − 1, when L = ð �MN − �M −N −NÞ. Thus, when

p = 1, Sv =MN +M − 1 is smaller than any case in situation
16. And when p > 1, Sv = 2MN − �MN + �M − 1 is also smaller
than any case in situation 16. So, we can obtain the maximum
number of consecutive lags in situation 16, and the theorem
is proved.

C. Proof of Theorem 5

Considering that Sv is decided by �M,N , we define a function

f Nð Þ = 2MN −
MN
p

+ a
M
p

+ bN − 1, ðC:1Þ

where M = T −N + 1,1 ≤ p ≤ T , and a, b are integers chose
from f0, 1, 2g. Then, take the derivative of the function and
have

f ′ Nð Þ = df
dN

= 2T − 4N + 2N
p

+ b + 2 − T + a + 1
p

: ðC:2Þ

Let f ′ðNÞ = 0 and have N = ð2Tp + 2p + bp − T − a − 1Þ/
ð4p − 2Þ. Thus, define a new function about p as gðpÞ = ð2T
p + 2p + bp − T − a − 1Þ/ð4p − 2Þ. Take the derivative of it
and have g′ðpÞ = dg/dp = ð8 + 4a − 2bÞ/ð4p − 2Þ2, where g′ð
pÞ ≥ 0 for every p, a, b. Thus, we only discuss the situations
that p = 1 and p = T . Based on the conclusions in Table 2,
we give the detailed analysis.

Case 19. When p = 1, gðpÞ = ðT + 1 + b − aÞ/2. If M is even
and N is odd, T is even, and a = 1, b = 2 and N = T/2 + 1,M
= T/2. If M is odd and N is even, due to N ≤ 2M, T is even,
and a = 2, b = 1 and M = T/2 + 1,N = T/2. Those two situa-
tions are same. Because we assume N >M, when T is even,
N = T/2 + 1,M = T/2. If M is odd and N is odd, T is odd,
and a = 1, b = 2 and N = T/2 + 1/2,M = T/2 + 1/2. Because
M,N are coprime integers, when T is odd, and N = T/2 + 3
/2,M = T/2 − 1/2:

Case 20. When p = T , a = 2 and gðpÞ = ð2T2 + T + bT − 2Þ/ð
4T − 2Þ. If M is even and N is odd, T is even, b = 0, and N
= ð2T2 + T − 2Þ/ð4T − 2Þ < T/2 + 1/2. So, N = T/2 + 1 and
M = T/2. If M is odd and N is even, T is even, b = 1, and N
= ð2T2 + 2T − 2Þ/ð4T − 2Þ < T/2 + 1/2. So, N = T/2 + 1 and
M = T/2. If M is odd and N is odd, T is odd, and b = 1 and
N = T/2 + 1/2,M = T/2 + 1/2. Because M,N are coprime
integers, when T is odd, N = T/2 + 3/2,M = T/2 − 1/2.

In conclusion, when T is even, N = T/2 + 1,M = T/2 and
when T is odd, N = T/2 + 3/2,M = T/2 − 1/2:

When M,N are the fixed integers, we consider the func-
tion of p, where

f pð Þ = 2MN −
MN
p

+ a
M
p

+ bN − 1: ðC:3Þ
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Take the derivative of it and have

f ′ pð Þ = df
dp

= N − að ÞM
p2

: ðC:4Þ

Obviously, f ′ðpÞ > 0 for every p, which means with the
increase of p, Sv increases.

D. Proof of Proposition 8

(a) If we assume that there exists another pair ðm′, n′Þ
meeting that

�M N − 1ð Þ + L +Nm −Mn = �M N − 1ð Þ + L +Nm′ −Mn′,
ðD:1Þ

which can be rewritten as

N m −m′
	 


= �M n − n′
	 


: ðD:2Þ

Because �M,N are coprime integers and −N + 1 ≤ n − n′
≤N − 1, then m −m′ = n − n′ = 0 and m =m′, n = n′. Thus,
the assumption is false. And each element in Dc only corre-
sponds to one unique ðm, nÞ; so, wðℓÞ = 1, ℓ ∈Dc.

(b) Due to D−
c = −Dc, it also satisfies the property (a).

Based on theorem 3, D−
c and Dcn have no common

part. However, D−
c and Dcc have one common part

fℓ ∣ ℓ = �ℓc + a �M + bNg, where a ≥ 0, b ≥ 0. And due
to �ℓc ∈Dcn, a, b cannot be 0 at the same time. Because
the maximum value of D−

c is −L, every ℓ in the com-
mon part has ℓ ≤ −L. Hence, considering property
(a), the value of weight function of the common part
is 2. Moreover, the two subarrays have one common
sensor; so, wð0Þ = 2.

Ds ∪D−
s is the self-coarray lags; so, the weight function of

each uniform linear subarray is wð0Þ = T , and wð± �MÞ
=N − 1,wðNÞ = �M − 1.
(d) Because Dv =Dc ∪D−

c ∪Ds ∪D−
s , the value of weight

function of Dv is the sum of that of the weight func-
tion of each subset.
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