Contact Investigation of Children Exposed to Tuberculosis in South East Asia: A Systematic Review

Rina Triasih,1,2,3 Merrin Rutherford,4 Trisasi Lestari,5 Adi Utarini,5 Colin F. Robertson,3 and Stephen M. Graham2,6

1 Department of Paediatrics, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55284, Indonesia
2 Centre for International Child Health, Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, University of Melbourne, Melbourne, VIC 3052, Australia
3 Department of Respiratory Medicine, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
4 Center for International Health, University of Otago, Dunedin 9050, New Zealand
5 Department of Public Health, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
6 Child Lung Health, International Union Against Tuberculosis and Lung Disease, 75006 Paris, France

Correspondence should be addressed to Rina Triasih, rina_triasih@yahoo.com

Received 17 August 2011; Revised 30 September 2011; Accepted 2 October 2011

A lower than expected case detection rate indicates that TB cases in the community are not being adequately identified and treated, which means ongoing transmission of TB infection [4]. The risk of transmission increases with the closeness of contact, overcrowded living conditions, and the degree of infectiousness of a TB case as determined by the positivity of sputum smear microscopy of acid-fast bacilli (AFB) and degree of lung field involvement in the chest X-ray (CXR) [5, 6]. Close contacts to a TB case such as those living in the same household are at higher risk of infection than casual contacts. Among those that are infected, young children (<5 years) or those with immunodeficiency (e.g., HIV infected) are at increased risk of developing TB disease, usually within two years following infection [7]. Therefore, the World Health Organization (WHO), the International Union against Tuberculosis and Lung Diseases (IUATLD) and the National TB Control Programs (NTPs) recommend screening of all children who are household contacts of sputum smear-positive TB cases [8]. Screening and management of child contacts has great potential to reduce TB-related morbidity and mortality in children [4, 9]. It may prevent progression from infection...
to disease by early initiation of preventive therapy. It also can identify contacts of any age with suspected TB disease at an earlier stage than they otherwise may have presented to health care services. It, therefore, has the potential to increase case finding and reduce transmission [10]. Finally, though the contribution of young children to transmission may be small, they may form a pool of infection from which future adult cases arise [11, 12].

Despite the benefits, contact investigation for child contacts is rarely implemented and reported in resource-limited TB endemic settings, such as in the South East Asia. This paper aims to collate published data reporting the prevalence of TB infection and TB disease among child household contacts of TB in the South East Asia region.

2. Methods

2.1. Search Strategies. The search strategies were developed using a combination of subject headings and keywords, including “tuberculosis,” “Mycobacterium tuberculosis,” “contact tracing,” “contact investigation,” “contact screening,” “household contact,” “close contact,” and “family contact.” The primary studies were searched electronically using databases PubMed, Embase, and Web of Science. Manual searching of the reference lists of the primary studies was performed to identify other eligible studies.

Published studies were included if they included children and adolescents (0–15 years), reported the yield of household contact investigation in children or provided data to calculate the prevalence of TB infection or TB disease in children, and were conducted in countries in the South East Asia region. Cross-sectional, prospective, and retrospective studies were included. The search was limited to published studies reported in English.

2.2. Data Extraction. Data were extracted using a modified Cochrane data extraction form. The data extracted included the following information: study site, design, description of index cases, description of household contacts, definition of household contacts, investigations performed (tuberculin skin test [TST], CXR, sputum smear microscopy of AFB, and culture of Mycobacterium tuberculosis), outcomes among child contacts (healthy, TB infection, or TB disease), and the criteria used to determine the outcomes.

3. Results

The literature search revealed 1087 references of which 11 studies satisfied the inclusion criteria. There have been systematic reviews and a meta-analysis on contact investigation of TB, but none specifically assessed the yield from household contact investigation among children in the South East Asia region [13, 14].

3.1. Study Characteristics. Eleven eligible studies were conducted in seven countries in South East Asia: India (four studies) [15–18], Thailand (two studies) [19, 20], and one study each from Cambodia [21], Indonesia [22], Lao People’s Democratic Republic [23], Pakistan [24], and Philippines [25]. Not all of the studies evaluated the prevalence of both TB infection and TB disease: five studies provided data on both; five studies evaluated the prevalence of TB infection only and one study of TB disease only. There was heterogeneity among studies with regards to epidemiology background, study design, the characteristics of the index case and child contact, and the criteria used for determining TB infection and TB disease (Table 1).

Most studies were cross-sectional in design, and only one study conducted in India in 1960s performed a prospective followup for a period of 5 years [18]. The index case in most studies was a case of sputum smear-positive pulmonary TB (PTB). The study from Indonesia evaluated household contacts of an index case with sputum smear-negative PTB [22], and two studies in India included sputum smear-positive and smear-negative cases with abnormal CXR [15, 16]. With regard to child contacts, three studies involved children under five only [15, 21, 22], the others included older children up to 14–18 years of age [16–20, 23–25].

There was no uniform definition of a household contact across the studies, but the most common definition was a child living in the same house as the index case. Four studies specified a period of at least 3 months of living at the same house to define household contacts [19, 22, 24, 25]. A study in India defined close contact as living, cooking, and eating in the same house as the index case for the period of three months immediately preceding the start of treatment for the index case [18].

All studies which provided data on TB infection defined it as a positive TST, evaluated 48–72 after administration of tuberculin solution. However, there was a variation in the definition for a positive TST. Four studies used a cutoff of 10 mm, whereas The Philippines study used 5 mm and the Thailand study used 15 mm. Similarly, the criteria used to diagnose TB disease were different across studies. The study from Indonesia used the local scoring system [22], whereas most other studies used clinical and radiological features.

3.2. The Yield of TB Infection and TB Disease among Child Contacts. The number of child contacts investigated in the studies ranged from 61 to 790 children of 50 to 342 index cases. In general, the prevalence of TB infection among child contacts under 15 years of age was higher (24.4–69.2%) than that of active TB disease (3.3–5.5%). TB disease was more commonly found among children aged less than 5 years, whereas TB infection was more common in older children (Table 2).

The results of household contact investigation across the eligible studies cannot be compared directly due to the heterogeneity, particularly in outcome definitions (TB disease or TB infection). Figure 1 presents the yield of TB infection from studies which used a cutoff of 10 mm of TST result for TB infection among sputum smear-positive index cases. It is shown that TB infection is more common in children aged more than 5 years. The prevalence of infection in all children ranged from 24.4% to 38.8%, with a weighted yield of 31%.
Table 1: Characteristic of the studies.

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Year of study</th>
<th>Epidemiology features</th>
<th>Characteristics of index case</th>
<th>Characteristics of contact</th>
<th>Criteria of TST (+)</th>
<th>TB disease diagnosis</th>
<th>Method of sputum collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews et al. [18]</td>
<td>India</td>
<td>1960s</td>
<td>NA</td>
<td>SS (+)</td>
<td>Adults and children</td>
<td>At 48–72 hrs,</td>
<td>Clinical, CXR, and/or microbiology</td>
<td>Laryngeal swab</td>
</tr>
<tr>
<td>Narain et al. [16]</td>
<td>India</td>
<td>1960/1961</td>
<td>NA</td>
<td>SS (+) or CXR (+)</td>
<td>Adults and children</td>
<td>Not explained</td>
<td>NA</td>
<td>No detail information for children</td>
</tr>
<tr>
<td>Kumar et al. [17]</td>
<td>India</td>
<td>1982/1983</td>
<td>NA</td>
<td>SS (+)</td>
<td>Adults and children</td>
<td>Not performed</td>
<td></td>
<td>Clinical, CXR, and/or microbiology</td>
</tr>
<tr>
<td>Singh et al. [15]</td>
<td>India</td>
<td>NA</td>
<td>NA</td>
<td>SS (+) and SS (−) but CXR (+)</td>
<td><5 yo</td>
<td>10 mm at 72 hrs</td>
<td>Clinical and CXR</td>
<td>Gastric lavage</td>
</tr>
<tr>
<td>Rathi et al. [24]</td>
<td>Pakistan</td>
<td>1999</td>
<td>NA</td>
<td>>15 yo SS (+)</td>
<td>Adults and children</td>
<td>At 72 hrs: 10 mm if BCG (−) 15 mm if BCG (+)</td>
<td>NA</td>
<td>Not performed</td>
</tr>
<tr>
<td>Salazar-Vergara et al. [25]</td>
<td>Philippines</td>
<td>2001</td>
<td>NA</td>
<td>SS (+)</td>
<td>0–15 yo</td>
<td>5 mm at 48–72 hrs</td>
<td>Clinical, CXR, and/or microbiology</td>
<td>Gastric aspirate if CXR suggestive of TB</td>
</tr>
<tr>
<td>Tornee et al. [19]</td>
<td>Thailand</td>
<td>2002/2003</td>
<td>NA</td>
<td>>15 yo SS (+)</td>
<td>1–14 yo</td>
<td>15 mm at 48 hrs</td>
<td>NA</td>
<td>Not performed</td>
</tr>
<tr>
<td>Tornee et al. [20]</td>
<td>Thailand</td>
<td>2003</td>
<td>NA</td>
<td>>15 yo SS (+)</td>
<td><15 yo</td>
<td>NA</td>
<td></td>
<td>Not performed</td>
</tr>
<tr>
<td>Iskandar et al. [22]</td>
<td>Indonesia</td>
<td>2006</td>
<td>incidence: 245/100000 prevalence: 675/100000</td>
<td>Adult, SS (−)</td>
<td>4–60 months of age</td>
<td>10 mm at 72 hrs</td>
<td>Indonesia scoring system</td>
<td>Not performed</td>
</tr>
<tr>
<td>Nguyen et al. [23]</td>
<td>Lao</td>
<td>2006</td>
<td>incidence: 151/100000 prevalence: 289/100000</td>
<td>>15 y.o. SS (+)</td>
<td>Adults and children</td>
<td>10 mm at 48–72 hrs</td>
<td>NA</td>
<td>Not performed</td>
</tr>
<tr>
<td>Okada et al. [21]</td>
<td>Cambodia</td>
<td>2005</td>
<td>NA</td>
<td>Adult, SS (+) and SS (−)</td>
<td><5 yo</td>
<td>10 mm at 72 hrs</td>
<td>Clinical, TST, and CXR</td>
<td>Not performed</td>
</tr>
</tbody>
</table>

NA: not available; SS (+): sputum smear positive; SS (−): sputum smear-negative; y.o.: years old; hrs: hours.

Table 2: The yields of household contact investigation among child contacts.

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Number of source case</th>
<th>Number of child contacts</th>
<th>Yield (%) for TB infection</th>
<th>Yield (%) for TB disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><5 yo</td>
<td>5–15 yo</td>
<td><15 yo</td>
<td><5 yo</td>
</tr>
<tr>
<td>Andrews et al. [18]</td>
<td>India</td>
<td>191</td>
<td>398</td>
<td>16.2</td>
<td>53.6</td>
</tr>
<tr>
<td>Narain et al. [16]</td>
<td>India</td>
<td>75</td>
<td>790</td>
<td>5.5</td>
<td>36.5</td>
</tr>
<tr>
<td>Kumar et al. [17]</td>
<td>India</td>
<td>50</td>
<td>142</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Singh et al. [15]</td>
<td>India</td>
<td>200</td>
<td>281</td>
<td>33.8</td>
<td>NR</td>
</tr>
<tr>
<td>Rathi et al. [24]</td>
<td>Pakistan</td>
<td>77</td>
<td>151</td>
<td>7.8</td>
<td>21.8</td>
</tr>
<tr>
<td>Salazar-Vergara et al. [25]</td>
<td>Philippines</td>
<td>62</td>
<td>153</td>
<td>51.2</td>
<td>76.9</td>
</tr>
<tr>
<td>Tornee et al. [19]</td>
<td>Thailand</td>
<td>325</td>
<td>480</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Tornee et al. [20]</td>
<td>Thailand</td>
<td>342</td>
<td>500</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Iskandar et al. [22]</td>
<td>Indonesia</td>
<td>54</td>
<td>61</td>
<td>10</td>
<td>NR</td>
</tr>
<tr>
<td>Nguyen et al. [23]</td>
<td>Lao</td>
<td>72</td>
<td>148</td>
<td>26</td>
<td>35.7</td>
</tr>
<tr>
<td>Okada et al. [21]</td>
<td>Cambodia</td>
<td>164</td>
<td>217</td>
<td>24</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: not reported.
The prevalence of TB infection and disease among children living in the same house as a case of pulmonary TB in South East Asia varies between settings. This variation may be due to the different epidemiology features amongst the countries or to the heterogeneity among studies with regards to the characteristics of the index case and the criteria used for determining TB infection and disease. Nonetheless, TB infection among child contacts was common and would support recommendations for routine screening and management of child household contacts. The finding that TB disease is more prevalent among young children (<5 years) is as expected given that young age is a well-established risk factor for disease following infection.

Various approaches and criteria were used to assess the outcome of contact investigation, indicating that there has not been a universal method accepted or implemented in South East Asia. For example, the study in The Philippines used a cut-off point of 5 mm induration to define positive TST, which is lower than the recommended 10 mm in a BCG-vaccinated population [26]. The use of the cutoff may explain why this group reported the highest prevalence (67.2%) of TB infection amongst the studies. For studies which defined why this group reported the highest prevalence (67.2%) of vaccinated population [26]. The use of the cutoff may explain why this group reported the highest prevalence of TB infection [26].

4. Discussion

The yield of TB infection (%)

<table>
<thead>
<tr>
<th>Weighted yield</th>
<th>The yield of TB infection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td>≥5 y.o.</td>
<td>10</td>
</tr>
<tr>
<td>≤5 y.o.</td>
<td>20</td>
</tr>
</tbody>
</table>

A more simple, cheap, feasible, efficient and patient-friendly method is required. The current WHO guideline [8] of symptom-based screening recommends symptom evaluation alone to decide whether the contact requires further investigation for TB disease or can be prescribed IPT directly. Asymptomatic child contacts aged less than 5 years can be provided IPT without further investigation. If TB is suspected at initial assessment or at subsequent followup, further investigation should be performed to establish or exclude a diagnosis of TB disease. Referral to a district or tertiary hospital may be necessary when there are uncertainties about the diagnosis. Therefore, TST or CXR is not necessarily performed in all child contacts [8].

A limitation of this systematic review is that it only includes published studies reported in English. More precise
yields from contact investigation among child household contacts in the South East Asia would have been gained if unpublished studies and the grey literature such as reports from NTPs of each country were included.

5. Conclusion

Contact investigation studies in South East Asia indicate the potential of screening and IPT to reduce the risk of TB disease in child contacts, yet it is rarely implemented. Research is required to determine patient and health service barriers to screening to enable targeted effective intervention programs to be developed. One such research strategy could include a qualitative review of problems around the implementation of contact investigation and IPT provision for child contacts in the region. This will provide valuable information for the design of community-based interventions to improve the management of child contacts. A simple method of contact investigation standardised in the region is required.

Acknowledgment

The authors acknowledge Dr. Anna Ralph, a Senior Clinical Research Fellow at Menzies School of Health Research Darwin Australia, for her feedback on the content of the paper.

References

Submit your manuscripts at http://www.hindawi.com