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The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex
terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management,
and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003
to March 2008, used in the analysis. Themultiannual average wind speeds did not show significant increased trend with increasing
elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and
direction were modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence
between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods.
The spectral analysis shows significant annual periodicity with similar characteristics at all locations.The relatively high correlations
between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional
synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind
energy resource assessment, wind power plant operation, management, and grid integration.

1. Introduction

Wind energy represents a nonpolluting, never-ending source
of energy able to meet increasing energy needs domestically
and around the world. Wind power is replenished daily by
the sun, due to the uneven heating of the Earth’s surface.
Furthermore, the wind is accelerated by major land forms,
so that entire regions may be very windy while others are
relatively calm. A feasibility study of any wind energy project
should certainly include a study of the spatial, temporal, and
directional variations of wind velocity. On the other hand, the
development of predictive models in order to supervise and
operate wind-based electricity generation requires knowl-
edge of the wind vector characteristics. This is a very difficult
task because of the extreme transitions in the speed and direc-
tion of wind at most sites. In order to optimize wind energy
conversion systems and maximize the energy extraction,
annual, monthly, daily, hourly, and even by-minute frequency

distributions of wind data are required. In the last few years,
increasing attention has been paid to analyses of wind speed
and direction statistics and to mathematical representations
of wind speed and direction as being essential to wind engi-
neering and wind energy industry. Knowledge of the wind
characteristics and variability in the lower few hundred
meters of the atmosphere is important to, for example, exploi-
tation of wind energy, planning of tall buildings, and moni-
toring of dispersion of trace substances. For example, in the
field of energy production, knowledge of the wind character-
istics where wind turbine installations are planned is critical.
Moreover, the development of prediction models in order to
supervise and optimize the electricity generation and plan-
ning requires knowing the wind vector characteristics. An
extensive review of the main issues related to the assessment
and forecasting of the wind and wind energy has been shown
by Koracin et al. [1]. Their review includes limitations and
advantages of wind forecasting and assessment of the wind
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Table 1: Names, coordinates, and elevations of the instrumented meteorological towers used in this wind energy analysis.

Site name Lat. (deg) Long (deg) Alt. (m) Distance to Tonopah 24NW Tower (km)
Luning 5N 38.57 118.18 1523 80.52
Luning 7W 38.54 118.29 1354 91.80
Tonopah 24NW 38.37 117.47 1535 0.00
Kingston 14SW 39.05 117.00 1780 85.60
Stone Cabin 38.11 116.74 2012 85.20

power density, trends of increasing penetration of wind-
generated power into the utility grid, and storage of wind-
generated power.They discuss the influence of wind variabil-
ity, atmospheric stability, turbulence, and low-level jets on
wind power density in detail. Koracin et al. [1] also reviewed
prediction and assessment of climate projections of wind
resources and their economic implications as well as the
environmental concerns such as birds’ habitats and routes,
viewpoint aesthetics, and noise. The present study focuses
on the cyclic evolution and the characteristics of the wind
velocity fields in the complex terrain ofWesternNevada using
tall-tower long-term observations.

Time series of meteorological conditions are of special
interest to understanding, analyzing, and modeling atmo-
spheric phenomena, determining the climate of a geograph-
ical area, and forecasting the possibilities of occurrence of
some extreme situations. Several mathematical distribution
functions have been suggested to represent the wind speed,
and different methods have also been developed to estimate
the parameters of these distribution functions. However, the
Weibull distribution is the most appropriate and most com-
monly used for representing the wind speed, and a great deal
of work related to wind speed statistics has been reported
[2–20]. Much less work has been presented in the literature
regarding wind direction statistics, despite the fact that we
come across directional or circular data almost everywhere
in applied science. They are widely used in wind energy,
biology, meteorology, geography, astronomy, air pollution,
medicine, and many other areas. Data measured in the form
of angles or two-dimensional orientations are unlike linear
data, and they cannot be treated the same way as linear data.
Wind direction, 𝜃, is usually modeled in terms of the von
Mises distribution function or in terms of a normal two-
dimensional distribution function involving three parame-
ters: the mean values of the two horizontal components of
the wind speed, the RMSEs of these component values, and
the correlation factors between them [13–20]. On the other
hand,minimizing the fluctuations of wind energy production
requires the following: (i) selectingwind farm sites having not
only high wind speed but also low turbulence, (ii) optimizing
the spatial distribution of the wind turbine generators within
a farm by taking into account the spatial structure of the wind
turbulence, and (iii) choosing the geographical distribution
of the wind farms within a region or territory to favor a
smoothing of the overall available wind power.

In this study, we analyze the wind speed, wind direc-
tion, diurnal, seasonal, and annual periodicities, and turbu-
lence intensities at five sites located near Tonopah inWestern

Figure 1: Topographical map showing the locations of the four 50m
towers near Tonopah, Nevada (Luning 5N, Luning 7W, Kingston
14SW, and Tonopah 24NW), and the 80m tower (Stone Cabin).

Nevada (one 80m tower and four 50m meteorological
towers; see Figure 1 for the tower locations and Table 1 for
the towers’ geographical coordinates). The 50m towers were
operated for a period of over four and a half years from
August 2003 through March 2008, while the 80m tower was
operated from February 2007 until March 2008 [2, 21, 22].
In our analysis, we consider the wind velocity, pressure,
and temperature measurements. We compare, analyze, and
characterize the wind velocity characteristics and variabil-
ity measured at these five instrumented tower data. The
comparison and analysis are performed mainly on the basis
of the aforementioned criteria. First, we characterize each
measurement site by its distribution of both wind speeds
and directions. The Weibull distribution function is used
for the wind speed, while for wind direction the von Mises
distribution function is used to draw a first comparison
between these five sites [13–20]. We also analyze the peri-
odicity characteristics of the wind speed and direction for
each site. The investigation of the wind velocity for each
location also permits us to highlight the influence of the site
topography on the wind characteristics. A spectral charac-
terization of the wind velocities is also presented. Finally,
the analysis examines the spatial and temporal characteristics
and correlations of the wind among these five instrumented
towers.
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2. Experimental Setup, Analysis
Methodology, and Aspects of
the Observed Wind Climate

The data analyzed in this work were collected during an
experiment conducted by the Desert Research Institute near
Tonopah in Western Nevada from August 2003 to March
2008 (Figure 1). The study area for the wind energy assess-
ment conducted in this study is the complex terrain of West-
Central Nevada in the proximity of the Sierra Nevada and
Inyo Mountain Ranges in theWestern USA.The area around
the eastern slopes of the Sierra Nevada Mountains has a
complex pattern of wind climate which is governed by a
variety of non-linear and nonhydrostatic phenomena. A
number of studies have addressed the mesoscale meteoro-
logical phenomena in this region [1, 22]. The target area for
this study is located in West-Central Nevada some 100 km
east of the northern tip of Inyo Mountain Range of the Sierra
Nevada Mountains. Nevada is characterized by basins and
mountain ranges, characterized by several mostly north-
south oriented narrow mountain ranges. Secondary moun-
tain ranges in the area reach elevations as high as 3000m, and
on average stand some as high as 1500mover the surrounding
plains. The large-scale terrain tilt is greatest towards the
south. The climate is generally semiarid, and the vegetation
is sparse. The aridity of the region, especially in the warmer
part of the year, leads to large diurnal variations in the sensible
heating. Together with the orographic features of the region,
these properties are highly conducive to the onset and main-
tenance of thermally driven diurnal circulations. In summer,
the entire region is typically characterized by deep and
extremely well-mixed daytime convective boundary layers
and a strong stably stratified nocturnal boundary layer with
near-surface inversions [23]. On the other hand, in winter
months the atmospheric processes are mainly dominated
by the passages of frontal systems coming from the Pacific
Ocean. The current observational evidence of the near-
surface winds and their diurnal and seasonal variability in
Nevada is rather poor, except for knowledge from a sparse
network of surface stations and a few field experiments [1, 2,
21–23]. The experimental results suggest that, besides local
thermally driven circulations, regional southwesterly plain-
mountain flows driven by regional-scale heating contrasts
are important components of thermally driven flows over
the arid Southwest USA [1]. Some aspects of the wind speed
climate related to wind power resources in this region for
the aforementioned period were documented in [1, 2, 21, 22].
They showed that the strongest monthly mean wind speeds
are generally found in the late afternoon, while the weakest
winds are typically found in the early morning.

Wind direction 𝜃 and speed V data were measured at
every 10 minutes at five levels (10m, 20m, 30m, 40m, and
50m) at the 50m instrumented towers. The wind speed and
direction were measured in a horizontal plane, with three-
cup anemometers and wind vanes (wind direction was
measured only at 10 and 50m). The accuracy of these wind
measurements is 0.1m/s for the range 5m/s to 25m/s. The
wind velocity data collected from the 80m tower came from
sonic anemometers which were sampled at 20Hz at four

levels 10m, 40m, 60m, and 80m. Besides the wind velocity,
air temperature, atmospheric pressure, humidity, and solar
radiation were measured at a surface weather station located
near each tower base. The goal of the experiment was to
analyze and assess the wind energy potential in this area
of Western Nevada. Wind velocities less than 0.5m/s were
recorded as calm and were not included in this analysis.
Before the statistical and spectral analysis of the data, a quality
control check of all data was performed to remove outliers
and to interpolate over small data gaps that may be present.
Overall, the corrected data are of sufficient quality, with less
than 3% of the data removed as outliers or unacceptable data
[2, 22].

3. Data Analysis and Results

Assessment of the wind energy potential at a particular
site or area involves analyzing the wind characteristics, the
distribution of the measured wind speed and direction, the
maximum wind speed, the wind variability and seasonality,
and the diurnal variations of the wind speeds. Wind char-
acteristics were studied by using cumulative frequencies of
the observed wind velocities and the Weibull and the von
Mises probability distributions. To understand the diurnal,
seasonal, and annual variations of the wind speeds and
direction, a comprehensive statistical and spectral analysis
was performed.

3.1. Wind Speed and Wind Direction Distributions. First, we
performed a meteorological analysis of the composite 2003–
2008 50m tower datasets for the four 50m meteorological
towers and of the 14-month data measured at the 80m
tower. We analyzed the measured wind and meteorological
data using statistical descriptors (mean and variance) and
the relative and cumulative frequencies at each tower and
measurement level. The air density was calculated using
pressure and temperature measurements. The monthly and
annual averages of the wind speed, temperature, pressure,
and air density are summarized in Table 2. Due to location
elevations, the monthly values of the air density at each of
the five sites range from 0.950 to 1.100 kg/m3, which are
significantly lower than those the standard air density of
1.225 kg/m3. The Tonopah 24NW and Stone Cabin sites show
highermonthly wind speeds comparedwith the other towers.
Monthly wind speeds at the 30m level of the Luning 7W
Tower are higher than the values measured at the 50m level.
Similarly, the wind speeds at 60m for Stone Cabin are in
general higher than those at the 80m level. This pattern is
very likely due to the effects of the local complex topography
on the air flows. The towers are located in complex terrain
with a complex wind climate. The dominant directions (at
the 10m and 50m levels) for the wind at Tonopah 24NW are
north-northwest and south, while for Kingston 14SW they are
north-northeast and south-southwest. The Kingston 14SW
Tower is located on a high plain to the east of a mountain
ridge oriented almost north-south. The dominant directions
for the StoneCabin Tower are equally divided between north-
west and southwest. For Luning 7W, the dominant directions
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Table 2: Monthly average wind speed and air density based on 2003 to 2008 composite datasets for the 50m towers and February 2007 to
March 2008 Stone Cabin Tower data.

Tower parameter Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Annual average
Tonopah 24NW

𝑉mn (m/s), 50m 4.97 5.44 5.85 6.52 6.22 6.35 5.25 5.08 5.30 5.41 5.04 4.53 5.49
𝑉mn (m/s), 30m 4.69 5.09 5.50 6.13 5.83 5.94 4.90 4.79 5.01 5.12 4.79 4.33 5.17
𝑉mn (m/s), 10m 4.33 4.73 5.11 5.73 5.45 5.56 4.62 4.48 4.69 4.75 4.43 4.04 4.82
𝜌 (kg/m3) 1.084 1.071 1.053 1.038 1.016 0.997 0.985 0.994 1.015 1.039 1.081 1.086 1.036

Kingston 14SW
𝑉mn (m/s), 50m 3.73 4.21 4.81 5.51 4.93 5.27 4.69 4.66 4.35 4.22 3.45 3.99 4.53
𝑉mn (m/s), 30m 3.25 3.71 4.30 4.95 4.44 4.78 4.26 4.11 3.80 3.64 2.98 3.48 4.01
𝑉mn (m/s), 10m 2.81 3.20 3.81 4.34 3.94 4.22 3.80 3.69 3.44 3.29 2.70 3.06 3.56
𝜌 (kg/m3) 1.059 1.045 1.029 1.015 0.995 0.977 0.964 0.972 0.992 1.015 1.013 1.058 1.055

Luning 7W
𝑉mn (m/s), 50m 3.74 4.14 3.68 4.30 4.48 4.45 3.81 3.32 3.51 3.94 3.69 4.75 3.96
𝑉mn (m/s), 30m 4.02 4.12 4.09 4.53 4.33 4.23 3.66 3.52 3.59 4.01 3.80 4.68 4.03
𝑉mn (m/s), 10m 3.51 3.63 3.69 4.03 3.82 3.73 3.21 3.13 3.20 3.48 3.27 4.00 3.54
𝜌 (kg/m3) 1.108 1.092 1.072 1.057 1.033 1.015 1.000 1.010 1.032 1.067 1.093 1.105 1.055

Luning 5N
𝑉mn (m/s), 50m 3.11 3.77 4.14 4.63 4.50 4.40 3.69 3.51 3.41 3.63 3.26 3.81 3.81
𝑉mn (m/s), 30m 2.80 3.46 3.83 4.33 4.20 4.10 3.42 3.24 3.15 3.25 2.91 3.43 3.49
𝑉mn (m/s), 10m 2.52 3.00 3.48 3.88 3.73 3.60 2.99 2.06 2.86 2.90 2.70 3.05 3.12
𝜌 (kg/m3) 1.080 1.067 1.048 1.036 1.015 1.000 0.983 0.991 1.011 1.043 1.068 1.079 1.033

Stone Cabin
𝑉mn (m/s), 80m 5.123 5.562 5.525 5.752 5.883 5.667 5.061 3.985 4.514 6.463 4.536 4.988 5.255
𝑉mn (m/s), 60m 6.034 6.243 5.945 6.125 6.287 5.955 5.461 3.935 5.208 6.757 4.542 5.619 5.676
𝑉mn (m/s), 40m 5.652 5.908 5.661 5.751 5.883 5.673 5.163 3.793 4.683 6.255 4.197 5.352 5.445
𝑉mn (m/s), 10m 4.460 4.875 4.588 4.717 4.918 4.338 3.919 2.517 3.004 4.468 3.236 4.201 4.104
𝜌 (kg/m3) 0.982 0.962 0.945 0.936 0.941 0.962 0.984 0.997 1.025 1.025 1.014 1.008 0.982

of the wind are eastwest, while for Luning 5N they are north-
northwest and south-southeast. The shift of about 60∘ in the
wind directions for the Luning 7W Tower compared with
the Luning 5N Tower (the towers are in proximity of each
other, about 10 km distant, but with about 170m elevation
difference; see Table 1 for the tower altitudes and coordinates
and Figure 1) is accounted for by the effects of the local
topography and maybe the effect of the difference in the
altitude on flowpatterns.These two towers are in proximity of
a small mountain ridge with an eastwest orientation.

Themultiannualmonthlymeans ofwind speed and direc-
tion are in very good agreement with the climatologic values
for Nevada found in the literature [1, 22–24]. The Tonopah
24NW site seems to be the most promising wind energy site
of all four towers (with seasonal means from 5.25 to 6.20m/s
and with a multiannual value of 5.49m/s, class 3 or higher
wind power potential), at the 50m level. The Kingston 14SW
site has seasonal mean values between 3.97m/s and 5.08m/s
and a multiannual value of 4.53m/s, class 2 or higher wind
power potential. For the other two towers, the seasonal mean
values are around 4m/s or lower, class 1 wind power potential
[25]. The Stone Cabin Tower at the 60m level has seasonal
mean values between 5.12m/s and 6.12m/s and an annual
value of 5.68m/s, the same wind class potential as that of
the Tonopah 24NW site. For the other levels, these values

are smaller. The Stone Cabin site seems to be in the same
wind energy potential class as that of the Tonopah 24NWsite,
although this site has a much shorter period of observations,
only 14 months. Note that the monthly multiannual wind
speeds for the Tonopah 24NWand Stone Cabin Towers are in
the range of 6.5m/s to 7.5m/s (wind class 4) during the peak
season (February to June) and 5.5m/s to 6.5m/s (wind class
3) for the rest of the year. For the Kingston 14SW 50m Tower,
the wind speeds are in the range 4.7m/s to 5.8m/s during the
peak season (wind class 2) and between 3.7m/s and 4.3m/s
for the rest of the year.The other two 50m towers are showing
slightly lower wind potential than that of the Kingston 14SW
site. Table 2 summarizes the statistical data for all towers and
data sets.

Monthly values are for the 2003–2008 composite datasets
for the 50m towers and for 2007-2008 for the 80m towers.
The use of probability distribution functions to define, char-
acterize, and fit the field data has a long history. It is estab-
lished that the Weibull distribution [2–20, 26] can be used to
characterize wind speed regimes in terms of its probability
density and cumulative distribution functions, and it is com-
monly used to estimate and to assess wind energy potential.
Although efforts were made over the years to fit measured
wind data to other distributions such as exponential distri-
bution, Pearson’ type VI distribution, logistic distribution,
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Table 3: The Weibull parameters and wind characteristics derived from the Weibull distribution. Monthly values are for the 2003–2008
composite datasets for the 50m towers and for 2007-2008 for the 80m tower.

Tower (50m level) parameter Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Annual average
Tonopah 24NW

k (-) 1.505 1.630 1.730 1.748 1.919 1.939 1.924 1.932 1.830 1.721 1.600 1.487 1.703
c (m/s) 5.389 5.977 6.431 7.221 6.881 7.017 5.764 5.569 5.810 6.007 5.537 4.953 6.041
𝑉mn (m/s) 4.86 5.35 5.73 6.43 6.10 6.22 5.11 4.94 5.16 5.36 4.96 4.48 5.39

Kingston 14SW
k (-) 1.231 1.404 1.474 1.588 1.631 1.654 1.610 1.583 1.481 1.403 1.280 1.211 1.415
c (m/s) 3.913 4.519 5.182 5.988 5.350 5.754 5.103 4.994 4.698 4.506 3.973 4.228 4.821
𝑉mn (m/s) 3.66 4.12 4.69 5.37 4.79 5.14 4.57 4.48 4.25 4.11 3.68 3.97 4.39

Luning 7W
k (-) 1.248 1.361 1.182 1.298 1.475 1.506 1.550 1.365 1.315 1.304 1.297 1.409 1.346
c (m/s) 4.353 4.609 4.120 4.853 4.855 4.854 4.177 3.737 3.803 4.303 4.095 5.256 4.385
𝑉mn (m/s) 4.06 4.22 3.97 4.48 4.39 4.38 3.76 3.42 3.51 3.98 3.78 4.79 4.02

Luning 5N
k (-) 1.229 1.278 1.274 1.347 1.410 1.397 1.445 1.406 1.278 1.236 1.236 1.195 1.335
c (m/s) 3.166 3.945 4.306 4.900 4.746 4.668 3.958 3.672 3.552 3.736 3.348 3.949 3.992
𝑉mn (m/s) 2.96 3.66 3.99 4.50 4.32 4.26 3.59 3.35 3.29 3.49 3.13 3.72 3.67

Stone Cabin (60m level)
k (-) 1.369 1.271 1.877 1.814 2.298 1.990 2.049 2.041 1.956 1.897 1.996 1.273 1.812
c (m/s) 7.386 5.451 4.822 5.527 4.847 4.969 4.916 4.861 5.125 4.849 3.345 5.981 5.177
𝑉mn (m/s) 7.39 5.45 4.83 5.53 4.85 4.97 4.92 4.86 5.13 4.85 3.35 5.98 5.29

and so forth, the Weibull distribution is well accepted and
widely used for wind data analysis. The probability density
function of a Weibull distribution (𝑓WB) is given by

𝑓WB =
𝑘

𝑐
(
V

𝑐
)

𝑘−1

exp(−(V
𝑐
)

𝑘

) . (1)

The factors 𝑘 and 𝑐 featured in (1) are the shape and the
scale parameters, respectively, which are determined for each
measurement site. The function 𝑓WB(V) is the probability of
observing the particular wind speed, V. There are several esti-
mators of the Weibull parameters [3–8, 24], such as the
Moment,MaximumLikelihood, Least-Square, and Percentile
Estimatorsmethods.These estimators are unbiased, although
some of them, such as the method of Moments, may have
large variances, so there is no reason to prefer any of them.
We selected three estimators of the Weibull parameters: the
standard least-square, the maximum likelihood, and a vari-
ation of the maximum likelihood methods. The shape and
scale parameters are determined by taking the averages of the
estimates found by these methods. Table 3 gives the monthly
and annual values of the shape (𝑘) and scale (𝑐) parameters
of the wind speed distribution for all towers computed for
the composite datasets. As with the mean monthly wind
speed, the monthly scale parameter values are higher during
the peak season than for the rest of the year for all towers
and levels of observations. Figure 2 shows the wind speed
data distributions for the Tonopah 24NW and Kingston
14SW towers at the 50m height level and for the Stone
Cabin Tower at the 60m level. The fitted Weibull probability

distributions are in good agreement with our experimental
data for all towers. For themultiannualWeibull distributions,
the mean root-mean-square error (RMSE) and the Chi-
square 𝜒2 values are about 0.02 and 0.01, respectively.

The wind rose diagrams and wind direction frequency
histograms provide useful information on the prevailing
wind direction and availability of directional wind speed in
different wind speed bins. The wind roses were constructed
using the composite datasets of measurements of wind
velocities, and they are shown in Figure 3 for the 50m height
level for theTonopah 24NW,Kingston 14SW, and StoneCabin
Towers, respectively.

The wind direction was analyzed using a continuous var-
iable probability model to represent distributions of direc-
tionalwind speeds.Themodel is comprised of a finitemixture
of the von Mises distributions (vM-PDFs), following the
approaches given in [17, 18, 27].The parameters of themodels
are estimated using the least-square method [17, 18]. The
range of integration to compute the mean angle and standard
deviation of the wind direction is adjusted to minimum
variance requirements. The suitability of the distribution
is judged from the mean-square error (MSE), found to
be around 10% or lower. The proposed probability model
𝑚V𝑀(𝜃) is comprised of a sum of 𝑁 von Mises probability
density functions, V𝑀

𝑗
(𝜃), as

𝑚V𝑀(𝜃) =

𝑁

∑

𝑗=1

𝑤
𝑗
V𝑀
𝑗
(𝜃) , (2)
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Figure 2: Wind speed frequency distributions for the Tonopah 24NW Tower (a) at 50m, for 2003–2008 composite datasets, and the Stone
Cabin Tower (b) at 60m for 2007-2008 composite dataset.
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Figure 3: Wind rose diagrams for the composite 2003–2008 datasets at 50m for the Tonopah 24NW Tower (a) and the Kingston 14SW
Tower (b).

where 𝑤
𝑗
are nonnegative weighting factors that sum to one

[17]:

0 ≤ 𝑤
𝑗
≤ 1 (𝑗 = 1, . . . , 𝑁 ,

𝑁

∑

𝑗=1

𝑤
𝑗
= 1) . (3)

A random variable function has a vonMises distribution V𝑀-
PDFs if its probability is defined by the folowing equation:

V𝑀
𝑗
(𝜃; 𝑘
𝑗
, 𝜇
𝑗
) =

1

2𝜋𝐼
0
(𝑘
𝑗
)
exp [𝑘

𝑗
cos (𝜃 − 𝜇

𝑗
)] ,

0 ≤ 𝜃 ≤ 2𝜋,

(4)

where 𝑘
𝑗
≥ 0 and 0 ≤ 𝜇

𝑗
≤ 2𝜋 are the concentration and

mean direction parameters, respectively. In this paper, the
wind direction is where the wind is coming from, while the
angle corresponding to the northerly direction is taken as 0∘.
Note that, in meteorology, the angle is measured clockwise
from the north. Here, 𝐼

0
(𝑘
𝑗
) is a modified Bessel function of

the first kind and zero order and is given by

𝐼
0
(𝑘
𝑗
) =

1
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0
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𝑗
cos 𝜃] 𝑑𝜃 ≈
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Figure 4: Frequency histograms of wind directions and the fitted von Mises distribution functions at the Tonopah 24NW Tower (a) and the
Kingston 14SW Tower (b) at 50m using the composite 2003–2008 datasets.

The distribution law 𝑚V𝑀(𝜃), given by (2), can be numeri-
cally integrated between two given values of 𝜃 to obtain the
probability that the wind direction is found within a partic-
ular angle sector. Various methods are employed to compute
the 3N parameters on which the mixture of the von Mises
distribution depends [14–17]. In this paper, we follow the
approach presented in [18], employing the least-square (LS)
method. In this method, the 3N unknown values of the
parameters, 𝜇

𝑗
, 𝑘
𝑗
, and 𝑤

𝑗
, are estimated by minimizing the

sum of squares of the deviations between the experimental
and model data under linear inequality constraints. The
full description of this method can be found in [18, 19] or
elsewhere in the literature.We can also note that the presence
of calm winds in the wind data (wind speeds less than or
equal to 0.5m/s) leads to the appearance of gaps in the
speed and direction data series, which makes the calculation
of the statistical properties of the directional wind speed
biased. These values are excluded from our computation of
wind direction statistics. Figure 4 shows the wind direction
frequency histograms for the Kingston 14SW and Tonopah
24NW Towers using the composite 2003–2008 datasets and
Stone Cabin tower using the 2007-2008 composite dataset.
The fitted the vonMises distributions are also shown on these
graphs. The number of components (2) of the composite von
Mises distribution for these two datasets was 𝑁 = 2, while
the mean-square errors between the measurements and the
fitted distributions are in the range of 10% or lower. Similar
results were found for all other towers used in this analysis.

Turbulence intensity (TI), defined as the ratio of the
standard deviation over the wind speed, is an indicator of tur-
bulence and not an absolute value, a very useful indicator in
wind turbine operation and design.Notice that themaximum

distance between the 50m towers is about 200 km. Each site
is situated in a complex terrain area, but we expect to see
similar synoptic wind conditions. However, the comparative
analysis of the values in Table 4 shows that even on large time
scales (the four and half years period) thewind characteristics
are influenced by the location. Table 4 also gives us the two
following coefficients of variation, defined as:

TI = (
1

𝑁
)

𝑁

∑

𝑖=1

(
𝜎
𝑖

V
𝑖

) , (6)

where𝜎 is the standard deviation of thewind speed computed
at each site, using the composite 2003–2008 datasets of mea-
surements and thus including time scales ranging from ten
minutes up to fifty-four months. The symbols 𝜎

𝑖
and V
𝑖
stand

for the time-specific interval-averaged values of the wind
speed standard deviation and the wind speed.The coefficient
of variation corresponding to time scales larger than ten
minutes is TI

𝑇>10
, while TI

𝑇<10
is the mean coefficient of

variation for time scales smaller than ten minutes. Unlike
the mean wind speed which is influenced by the location,
these coefficients of variation remain rather similar for all five
sites. The values given in Tables 3, 4, and 5 are sufficient for
a first rough estimation of the mean wind power production
of each site. However, for the sake of complete wind energy
potential assessment, wind energy conversion operation, or
grid integration, some supplementary information is needed
concerning periodicity and more generally time variability
of the wind velocity for a given time scale. In the next two
subsections of this paper, a comprehensive analysis of the
wind velocity variability and periodicities will be performed.
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Table 4: Overall wind speed and direction characteristics, turbulence intensity, and coefficient of variations for the wind speed for time scales
larger than one month.

Tower Mean wind speed (m/s) Mean wind direction 𝜎 (m/s) TI
𝑇<10

TI
𝑇>10

𝑘 𝑐

Kingston 14SW 4.48 162 3.37 0.20 0.75 1.415 4.82
Tonopah 24NW 5.49 223 3.41 0.17 0.62 1.703 6.04
Luning 7W 3.96 191 3.06 0.25 0.77 1.346 4.39
Luning 5N 3.77 185 3.03 0.25 0.80 1.335 3.99
Stone Cabin (60m) 5.24 165 3.66 0.18 0.66 1.667 5.92

Table 5: Coefficient of variations for the wind speed for time scales
larger than one month.

Tower Coefficient of variation TI
𝑇>1month

Kingston 14SW 0.30
Tonopah 24NW 0.26
Luning 7W 0.36
Luning 5N 0.35
Stone Cabin (60m) 0.27

3.2. Wind Speed Seasonality and Variability for Time Scales
Larger Than One Month. To put in evidence the dynamical
behavior of the wind speed for time scales larger than one
month, a low-pass filter was applied to the measured wind
speed signal.We use here the simplest one, that is, themoving
average calculation:

𝑈
𝑁
(𝑘) =

𝑖=𝑘+(𝑁−1)/2

∑

𝑖=𝑘−(𝑁−1)/2

V
𝑖
. (7)

Themoving averages corresponding to an averaging period of
one month computed using the wind speed measured at each
site, for the 10m, 30m, and 50m levels, at the Tonopah 24NW
tower are shown in Figure 5. Figure 6 shows the moving
averages for all 50m towers, for the composite 2003–2008
datasets. These plots give a first indication of the seasonal
variations of the wind speed over the five sites and seem
to indicate a typical annual cycle, with a maximum during
spring and with a minimum during fall. It is clear that a
longer measurement period is required to further confirm
the seasonality in Figures 5 and 6. Another result is the
fairly good similarity of the variations of the large time scales
for the four 50m towers. This is confirmed by the cross-
correlation coefficients between the four sites. The cross-
correlation coefficient is defined by

𝑅
𝑥𝑦
(𝜏) =

{{{

{{{

{

𝑁−𝜏−1

∑

𝑘=0

𝑥
𝑘+𝜏

𝑦
𝑘

𝜎
𝑥
𝜎
𝑦

𝜏 > 0,

𝑅
𝑥𝑦 (𝜏) , 𝜏 < 0,

(8)

where 𝑥 and 𝑦 are zero-mean stochastic variables and 𝜎
𝑥
and

𝜎
𝑦
are their standard deviations.
The computed values of the cross-correlation coefficients

of the four 50m towers for smaller time lags are around 0.6,
showing quite similar wind climatology, for this area. This is
another very strong indication of the stability and uniformity
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Figure 5: Moving average time series of the wind speed for the
Tonopah 245NW Tower, at 50m, 30m, and 10m levels, and for the
composite 2003–2008 datasets.
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of the wind characteristics in Western Nevada. This is a very
important characteristic for wind energy assessment, as
well as wind power plant operation, management, and grid
integration.The coefficient of variation over time scales larger
than one month is given by

TI
𝑇>1month =

𝜎
𝑇>1month

𝑈
, (9)

where 𝜎
𝑇>1month is the standard deviation for wind varia-

tions for time scales larger than one month. Table 5 gives
TI
𝑇>1month for each of the four 50m towers and for the 2003–

2008 composite datasets. These coefficients of variations are
found to be rather similar. This is a consequence of the sim-
ilarity of the wind characteristics and the uniformity of the
wind variability of this region of Nevada [1–3, 21–24]. For a
statistical analysis of wind data, we computed autocorrelation
and cross-correlation functions of the wind speeds and wind
directions (with the longest lag of 28 days), for all towers and
for all levels of measurements. Using a similar relationship
as in (9), where the 𝑦 is replaced by 𝑥, the autocorrelation
coefficients can be computed.

Figure 7 shows the autocorrelation functions of the wind
speed, at the 50m, for all of the four 50m towers analyzed. It
can be observed that all of these functions are coincidental
and are showing similar periodicity. A similar pattern in
the autocorrelation functions was found for the Stone Cabin
Tower at all levels, even for the shorter dataset. Regular oscil-
lations exist, indicating that a quite well-defined periodicity
characterizes the wind speed in Western Nevada. A very
slow decrease in the amplitude of the oscillation as the lag
time 𝜏 increases indicates that the wind speed is not strictly
periodic, but it is randomly modulated in frequency and
phase. This behavior is also observed in the wind direction
autocorrelation functions illustrated in Figure 8. The main-
tained oscillatory character of these functions indicates that
the dominant frequencies associated with the wind speeds
and directions are roughly coincidental. Similar patternswere
found for all levels and towers, both for autocorrelations of
wind speed or wind direction and for cross-correlations of
wind speed and directions. This fact indicates that the wind
speed and wind direction signals are in phase. It can be
also noted that the lag times corresponding to the maximum
values of the autocorrelation functions are about 24 hours.
This period of 24 hours, as the dominant of the signals, shows
that this is the time interval that basically governs the changes
in wind speed and wind direction. This fact is related to the
different behavior of the day and night winds which roughly
maintain their structure during almost the five years of the
time interval analyzed.

Two facts are immediately apparent in all of the auto-
correlation data analyzed. First, the presence of a strong
sinusoidal component at diurnal frequency which is almost
constant as the lag value increases indicates that it is derived
from a deterministic period component. The second feature
is that the centerline of the diurnal component is not the
zero datum line, but it is offset above the lag axis. This
offset cannot be due to a zero mean (which is removed by
the autocorrelation algorithm), suggesting the presence of
another periodic component of a much lower frequency.
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Figure 7: Autocorrelation functions for 10min wind speed, for all
50m towers, and for 50m level; the 2003–2008 composite datasets,
with 95% confidence intervals, are also shown on the graph.
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Figure 8: Autocorrelation of 10min wind direction, for all 50m
towers and for 50m level; the 2003–2008 composite datasets, with
95% confidence intervals, are also shown on the graph.

The obvious candidate for investigation was an annual cycle.
This is also in agreement with the presence of a spring
maximum and a fall minimum in the wind speed moving
average time series (Figures 5 and 6). In order to investigate
the possible presence of an annual cycle, daily mean data for
the whole period August 2003–March 2008 were computed.
The autocorrelation functions for these data for all 50m
towers are shown in Figure 9.The presence of a deterministic
component with a period of about one year is clearly visible
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Figure 9: Autocorrelation of the daily mean, using the 2003–2008
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confidence intervals, is shown on the graph.

in these diagrams. Once again this is in very good agreement
with the periodicity found in Figures 5 and 6 of the moving
average wind speed diagrams.

4. Spectral Analysis of the Wind Speed

We decided to compute the power spectra by the standard
and well-proven method of Blackman and Tukey [28].This is
a two-stagemethod inwhich the autocorrelation is first calcu-
lated from the data and is then transformed and smoothed to
obtain the power spectrum.An analysis of thewind variations
for time scales, ranging fromoneweek to onemonth, does not
evidence any specific seasonality or periodicity. Considering
a random variable in the time domain 𝑥 = 𝑥(𝑡), the complex
Fourier components in the frequency domain are computed
considering a finite time factor by

𝑋(𝑓, 𝑇) = ∫

𝑇

0

𝑥 (𝑡) ⋅ exp (2𝜋𝑓𝑡𝑖) 𝑑t, (10)

where 𝑥 is a random variable in the time domain, 𝑡 is the
elapsed time, 𝑓 is the frequency, 𝑋 is the complex Fourier
components in the frequency domain, 𝑖 is the complex num-
ber unity, and 𝑇 is the finite time sequence. The transformed
component𝑋 is now a function not only of frequency but also
of the finite time length. For small time periods, (10) cannot
be satisfied due to lack of statistical significance and due to
ignoring the effects of related physical properties associated
with wind speed fluctuations. Power density spectra of wind
speed time series with time scales lower than one week for
all 50m towers are showing a distinct peak with a period of
one day, as the one shown in Figure 10 for the Kingston 14SW
Tower. This is in full agreement with the periodicities found
in the autocorrelations of the wind speed and direction.

Power spectrum
100

10

1

0.1

0.01

0.001

0.0001
0.001 0.01 0.1 1 10 100

Frequency (cycles/day)

Figure 10: Power density spectra of wind speed variations with time
scales smaller than 1 week, the Kingston 14W Tower.

4.1. The Macrometeorological Spectrum. Following the
approach of Harris [29], we decided to compute the spectra
of the autocorrelation functions by using the two-stage
method. First, we compute the autocorrelation functions
from the 10-minute and hourly data, using the 2003–2008
composite datasets, and use the Fourier transformation
and smoothing to obtain the spectra. There are several
reasons for this choice such as the following: (i) the effects
of various non-stationarities, offsets, and the various choices
of the smoothing on the result of the calculation are well
documented; (ii) the availability of the autocorrelation for
inspection as an intermediate product is a distinct advantage,
especially when the existence of deterministic period
components is suspected; and (iii) the principal disadvantage
of the methods compared with the FFT algorithm, the larger
computer time required, is not essential since PC time is
free. Given the autocorrelation functions, it is possible to
compute the normalized power spectrum for these functions
numerically:

∫

∞

0

𝑅 (𝜏) cos (2𝜋𝑛𝜏) 𝑑𝜏 = 𝑆 (𝑛)

𝜎2
. (11)

Here, 𝑅(𝜏) is the autocorrelation coefficient at lag 𝜏, 𝜎 is
the standard deviation, 𝑆(𝑛) is the power spectrum, and 𝑛

is the frequency. Hanning smoothing was applied to the
Blackman and Tukey algorithm. The results are shown in
Figure 11 for the Kingston 14SW composite dataset. The
macro-meteorological spectra obtained are very similar to
the ones found in the literature [19, 26]. These spectra are
showing a very strong diurnal component, in a very good
agreement with our findings in the previous analyses. This
is a very important result for wind energy system operation,
management, and grid integration.

5. Concluding Remarks

The annual mean wind speeds for the four towers’ wind
observations at 50m height were calculated as 5.49m/s



Journal of Wind Energy 11

0

2

4

6

8

10

12

14

16

18

20

Frequency (cycle/days)

Po
w

er
 sp

ec
tr

al
 d

en
sit

y

Autospectrum

10
−1

10
0

10
1

Figure 11: Macrometeorological spectrum of the Tonopah 24NW,
50m level dataset.

(Tonopah 24NW), 4.53m/s (Kingston 14SW), 3.96m/s (Lun-
ing 7W) and 3.81m/s (Luning 5N). For the StoneCabinTower
at the 60m level, this value was found to be 5.68m/s. The
observed data show that the maximum seasonal wind speeds
for all sites are during spring. The highest potential in terms
of wind energy was estimated at the Tonopah 24NW and
the Stone Cabin sites, with mean wind speeds above 5.5m/s
during the peak period of every year.The same pattern of the
monthly mean wind speeds was found at all other towers,
but with lower values, being less suited for wind energy
generation. The fitted Weibull and von Mises distributions
for the observed wind speed and wind direction datasets at
all towers and heights are in very good agreement with the
observed wind speed distributions.

The analysis of the wind speed variations at each of the
instrumented towers inWesternNevada shows the following:
(i) there is a strong coherence between wind speed and direc-
tion; (ii) for time scales smaller than 24 hours, the wind speed
is statistically independent, thus indicating the possibility
of smoothing the total available wind power for small time
scales; (iii), there is a strong diurnal periodicity in the wind
speed signals, for all towers and all heights, with a maximum
during the late afternoon, as found in the power spectra and
diurnal variations of the wind speeds, almost coincidental
with the daily peak-load demand [25]; (iv) for scales larger
than 24 hours, the wind speed coefficients (mean wind speed,
mean wind direction, and turbulence intensity) for each
site are rather the same and are quasi-synchronized; and
(v) there are strong annual oscillations in the wind speeds,
with a maximum during spring and with the minimum
during fall, for all towers and all heights of observation. To
complete the analysis for these small wind speed time-scale
variations, a higher frequency of wind velocitymeasurements
is needed.The spectral analysis further confirms the existence
of characteristic diurnal and annual time periods in the wind
speeds.

Although the mean wind speeds show differences due
to specifics of the measurement location, the coefficients of
variation of the turbulence intensity are quite similar for all
five sites. This confirms that the regional synoptic processes
are dominant for the variability of the wind speed on the
scale of the tower locations within a domain ranging more
than 200 × 200 km2. This is further supported by the notice-
ably high correlation coefficients of about 0.6 between the
towers for small time lags. Additional analyses, such as the
distance dependence of the correlation coefficients, copulas,
bootstrapping, or long-time variability of the correlations, are
planned in a future studywith the inclusion of additional data
(in the process of analysis) collected at the other four towers
in Nevada operated between 2006 and 2011.
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