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An alternative electric power source, such as wind power, has to be both reliable and autonomous. An accurate wind speed
forecastingmethod plays the key role in achieving the aforementioned properties and also is a valuable tool in overcoming a variety
of economic and technical problems connected to wind power production. The method proposed is based on the reformulation of
the problem in the standard state space form and on implementing a bank of Kalman filters (KF), each fitting an ARMAmodel of
different order. The proposed method is to be applied to a greenhouse unit which incorporates an automatized use of renewable
energy sources including wind speed power.

1. Introduction

Energy is considered amongst the most significant factors
that are closely related to both economic and social develop-
ments. It is also a fact that nowadays the majority of the elec-
trical energy production is based on the fossil fuels, which on
one hand are, without any doubt, highly efficient but on the
other are responsible for the emission of greenhouse gases
and their reserves are limited.

Consequently renewable sources of energy, such as wind,
biomass, solar power, and wave power, have been already
adopted for electric power production. It is well known that
the wind power generation raises issues of reliability due
to the fact that the wind speed is significantly and directly
affected by various factors such as the type of the terrain, the
height, season of the year, atmospheric conditions, obstacles
present, and many more. This leads to the conclusion that
unless the reliability of the wind power generation is at
an acceptable level, wind power is not eligible for constant
electrical energy supply to the power system [1, 2].

Recent studies have shown that combined forecasting
methods can offer robust solutions and can be efficiently
implemented to various real-life problems in diverging fields
such as chemical processes, economics, load forecasting,
tourism demand, environmental issues, medicine, and many
more [3–7].

In this study a hybrid model is presented that reveals
the advantages of an ARMA and SVM model in wind speed
modelling and prediction problem. Initially successful model
identification andparameter estimation have to be performed
in order to choose the most appropriate ARMA models. For
tackling this task the well-established MMPA was used. This
approach was introduced by Lainiotis [8, 9] and summarizes
the parametric model uncertainty into an unknown, finite
dimensional parameter vector whose values are assumed to
lie within a known set of finite cardinality. A nonexhaustive
list of the reformulation, extension, and application of the
MMPA approach as well as its application to a variety of
problems can be found in [10–19].
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In this research real data were used, provided by Vestas
Hellas; the simulation results appear to be very promising.

2. Hybrid Model Presentation

2.1. The ARMA Model. The problem of fitting an ARMA
model in a given time series is present for more than half a
century and is still appearing in many different fields such as
in remote monitoring of civil infrastructure [20], predicting
the demand for auto spare parts in China due to the fierce
market competition [21], forecasting equipment failures in
order to adjust maintenance policies in manufacturing plants
[22], estimating retail sales volumes [23], predicting the
outbreak and development of animal infectious diseases [24],
and many more.

Considering the general case an 𝑚-variate (i.e., multi-
variate) ARMA model of order (𝑝, 𝑞) [ARMA(𝑝, 𝑞)] for a
stationary time series of vectors 𝑦 observed at equally spaced
instants 𝑘 = 1, 2, . . . , 𝑛 is defined as

y𝑘 =
𝑝

∑

𝑖=1

Α𝑖y𝑘−𝑖 +
𝑞

∑

𝑗=1

B𝑗k𝑘−𝑗 + k𝑘,, 𝐸 [k𝑘k
𝑇

𝑘
] = R, (1)

where the 𝑚-dimensional vector k𝑘 is uncorrelated random
noise, not necessarily Gaussian, with zero mean; covariance
matrix R, 𝜃 = (𝑝, 𝑞) is the order of the predictor; and
A1, . . . ,A𝑝, B1, . . . ,B𝑞 are the 𝑚 × 𝑚 coefficient matrices of
the multivariate (MV) ARMAmodel.

It is obvious that the problem requires both the predictor’s
order 𝜃 = (𝑝, 𝑞) determination and computation of the
predictor’s matrix coefficients {A𝑖,B𝑗}.

The major disadvantage of the ARMA models is that
their performance can be limited by any significant data non-
linearities.

2.2.Multimodel PartitionAlgorithm (MMPA). Due to the fact
that the wind speed does not have a constant or periodic
behaviour, it was noted, by trial and error, that not a single
ARMA model that was able to describe the whole data set
satisfactory. It is actually the combination of various ARMA
models, each one used for different time intervals and applied
for different time durations that describes in the best manner
the existing data. So instead of having various ARMAmodels
of different order 𝜃 running in parallel with the SVM it was
decided to load all the data to an adaptive filter programmed
with the MMPA, and it will be the job of that filter to decide
which ARMAmodel will be used each time.

If we assume that the model order fitting the data is
known and is equal to 𝜃 = (𝑝, 𝑞), we can rewrite (1) in
standard state-space form as

x (𝑘 + 1) = x (𝑘) ,

y (𝑘) = H (𝑘) x (𝑘) + k (𝑘) .
(2)

Now assign a new variable 𝜆 such as 𝜆 = max(𝑝, 𝑞). Then
x(𝑘) is an𝑚2 (𝜆+𝜆)×1 vectormade up from the coefficients of
thematrices {A1, . . . ,Α𝜆,B1, . . . ,B𝜆};H(𝑘) is an𝑚×𝑚

2
(𝜆+𝜆)

observation history matrix of the process {y(𝑘)} up to time
𝑘 − (𝜆 + 𝜆).

If the general form of the matrices A𝜆 and B𝜆 is, res-
pectively,
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then
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(4)

If 𝑝 > 𝑞 then 𝜆 = 𝑝; the last (𝑚2(𝑝 − 𝑞)) MA coefficients are
zero. If 𝑞 > 𝑝 then 𝜆 = 𝑞; the last (𝑚2(𝑞 − 𝑝)) AR coefficients
are zero. Consider

H (𝑘) ≜ [𝑦1 (𝑘 − 1) I ⋅ ⋅ ⋅ 𝑦𝑚 (𝑘 − 1) I
... ⋅ ⋅ ⋅

...𝑦1 (𝑘 − 𝜆) I

⋅ ⋅ ⋅ 𝑦𝑚 (𝑘 − 𝜆) I
...V1 (𝑘 − 1) I ⋅ ⋅ ⋅ V𝑚 (𝑘 − 1) I

... ⋅ ⋅ ⋅
...V1 (𝑘 − 𝜆) I ⋅ ⋅ ⋅ V𝑚 (𝑘 − 𝜆) I] ,

(5)

where I is the𝑚 × 𝑚 identity matrix.
Assuming that the system model and its statistics were

completely known, the Kalman filter (KF) in its various forms
would be the optimal estimator in the minimum variance
sense.

However, if the system model is not completely known
the MMPA, introduced by Lainiotis [8, 9], is one of the most
widely used approaches for similar problems [10–19, 25–28].

In the case under consideration assume that the model
uncertainty is the lack of knowledge of the model order 𝜃. Let
us further assume that the model order 𝜃 lies within a known
sample space of finite cardinality; that is, 1 ≤ 𝜃 ≤ 𝑀, 𝜃 ∈ I,
where I denotes the set of integers. The MMPA operates on
the following discrete-time model:

x (𝑘 + 1) = F(𝑘 + 1,

𝑘

𝜃

) x (𝑘) + w (𝑘) ,

y (𝑘) = H(

𝑘

𝜃

) x (𝑘) + k (𝑘) ,

(6)

where 𝜃 is the unknown parameter, the model order in this
case; F is the state transition matrix; and w(𝑘) is indepen-
dent, zero mean, white noise not necessarily Gaussian with
covarianceQ which is usually set to a small positive nonzero
constant.The optimal MMSE (minimummean square error)
estimate of x(𝑘) is given by

x̂(𝑘

𝑘

) =

𝑀

∑

𝑗=1

x̂(𝑘

𝑘

; 𝜃𝑗)𝑝(

𝜃𝑗

𝑘

) . (7)

A set of𝑀models is designed, eachmatching one value of the
parameter vector, {(1, 1), (2, 2), . . . (𝑀,𝑀)}. The probabilities
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𝑝(𝜃𝑗/𝑘) for each model are set to 1/𝑀, where 𝑀 is the
cardinality of the model set.

A bank of Kalman filters is then applied, one for each
model, which can be run in parallel, thus saving enormous
computational time. At each iteration, the MMPA selects
the model that corresponds to the maximum a posteriori
probability as the correct one.This probability tends (asymp-
totically) to one, while the remaining probabilities tend to
zero. The overall optimal estimate can be taken either to be
the individual estimate of the elemental filter exhibiting the
maximum posterior probability, for example, a value of 0.9 or
higher [14], or theweighted average of the estimates produced
by the elemental ARMA filters, as described in (7), which is
the case used in this paper.

The probabilities are calculated on-line in a recursive
manner as it is shown by
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(8)

where the innovation process

ỹ(𝑘

𝑘

− 1; 𝜃𝑗) = y (𝑘) −H (𝑘; 𝜃𝑗) x̂(
𝑘

𝑘

− 1; 𝜃𝑗) (9)

is a zero mean white process with covariance matrix

Pỹ (
𝑘

𝑘

− 1; 𝜃𝑗) = H (𝑘; 𝜃𝑗)P(

𝑘

𝑘

; 𝜃𝑗)HT
(𝑘; 𝜃𝑗) + R. (10)

For equations (8)–(10) 𝑗 = 1, 2, . . . ,𝑀.

2.3. Support Vector Machines (SVM). In support vector
machines, as they were proposed in [29], the training data set
𝑥𝑖 ∈ 𝑅

𝑑, 𝑖 = 1, . . . , 𝑁, is mapped into a higher dimensional
feature space via an operator Φ.

A mathematical representation of the SVM function is

𝑦 = 𝜔 ⋅ Φ (𝑥) + 𝑏, (11)

where 𝜔 and 𝑏 can be found by the minimization of the
following equations:

𝑆 (𝐶) = 𝐶

1

𝑀

𝑀

∑

𝑗=1

𝐿𝑓𝑒 (ℎ𝑗 − 𝑦𝑗) +

1

2

‖𝜔‖
2
, (12)

𝐿𝑓 (ℎ, 𝑦) = {
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󵄨
󵄨
≥ 𝑒,

0 others,
(13)

where parameters𝐶 and 𝑒 are user-defined.The term ℎ𝑖 is the
actual wind speed at the time instant 𝑗 and term 𝐿𝑓𝑒(ℎ𝑖 − 𝑦𝑖)

is the loss function. By looking at (13) it is obvious that there
is any penalty for errors below 𝑒. The width of the function
is given by the term (1/2)‖𝜔‖

2 and finally the training error
term is given by 𝐶(1/𝑀)∑

𝑀

𝑗=1
𝐿𝑓𝑒(ℎ𝑖 − 𝑦𝑖), where 𝐶 is the

tradeoff between the width of the function and the minimum
training error. For dealing with nonlinear cases, like wind
speed data, one may introduce slack variables 𝜉 and 𝜉

∗ into
(11) such that

𝜔 ⋅ Φ (𝑗) + 𝑏𝑗 − ℎ𝑗 ≤ 𝑒 + 𝜉
∗

𝑗
,

− (𝜔 ⋅ Φ (𝑗) + 𝑏𝑗) + ℎ𝑗 ≤ 𝑒 + 𝜉𝑗,

(14)

where 𝜉𝑗, 𝜉
∗

𝑗
≥ 0, and 𝑗 = 1, 2, . . .𝑀.

By considering the above slack variables and in order to
include any extra cost of the training errors, (12), which rep-
resents the objective function to be minimized, is rearranged
to

𝑆 (𝜔, 𝜉, 𝜉
∗
) = 𝐶
∗
(

𝑀

∑

𝑗=1

(𝜉𝑗 + 𝜉
∗

𝑗
)) +

1

2

𝜔𝜔
𝑇
, (15)

where again𝐶∗ is user-defined and is the tradeoff between the
maximummargin defined by ‖𝜔‖ and the minimum training
error as defined by ∑𝑀

𝑗=1
(𝜉𝑗 + 𝜉

∗

𝑗
).

Finally by introducing positive Lagrangian multipliers
and maximizing (15) the latter equation is reformed to

𝑆 (𝑎𝑗 − 𝑎
∗

𝑗
) =

𝑀
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∗

𝑗
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𝑀
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(𝑎𝑗 − 𝑎
∗

𝑗
)

−

1

2

𝑀

∑

𝑗=1

𝑀

∑

𝑖=1

(𝑎𝑗 − 𝑎
∗

𝑗
) × (𝑎𝑖 − 𝑎

∗

𝑖
)𝐾 (𝑥𝑗 − 𝑥𝑖)

(16)
subject to

𝑁

∑

𝑗=1

(𝑎𝑗 − 𝑎
∗

𝑗
) = 0, 0 ≤ 𝑎𝑗, 𝑎

∗

𝑗
≤ 𝐶, (17)

where 𝑗 = 1, 2, . . .𝑀.
The Lagrangian multipliers 𝑎𝑗, 𝑎

∗

𝑗
satisfy 𝑎𝑗 ∗ 𝑎

∗

𝑗
= 0 and

also

𝑓 (𝑥, 𝑎, 𝑎
∗
) =

𝑙

∑

𝑗=1

(𝑎𝑗 − 𝑎
∗

𝑗
)𝐾 (𝑥 − 𝑥𝑖) + 𝑏. (18)

The Kernel function 𝐾(𝑥 − 𝑥𝑖) introduced in (18) is defined
such that𝐾(𝑥𝑗 −𝑥𝑖) = Φ(𝑥𝑖) ⋅Φ(𝑥𝑗), meaning that its value is
equal to the inner product of the vectors 𝑥𝑖 and 𝑥𝑗, included
in the featured space Φ(𝑥𝑖) and Φ(𝑥𝑗).

In this study the Gaussian kernel function (19), also
known as radial basis function (RBF), is used. Consider

𝐾(𝑥𝑗 − 𝑥𝑖) = 𝑒
(−‖𝑥𝑗−𝑥𝑖‖

2
/2𝜎
2
)
. (19)

The most significant feature of the SVM compared to other
similar algorithms is that they manage to achieve optimum
performance by restricting the decision’s function complexity
so that is the most suitable according to the quantity of the
data present.
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+ Δt
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Model detection

̃

+

NL

ÑL

Figure 1: Proposed method.

2.4. The Hybrid Model. The wind speed behaviour is unpre-
dictable and it is difficult to be represented.This is the reason
for combining two different techniques for modelling the
linear and the nonlinear parts of the series.The hybrid model
proposed is based on a linear pattern, 𝐿(𝑡) produced by the
MMPA, and a nonlinear one,𝑁𝐿(𝑡) produced by the SVM. It
can be represented as

𝑄 (𝑡) = 𝐿 (𝑡) + 𝑁𝐿 (𝑡) . (20)

Both parts are directly calculated from the wind speed time
series.

If 𝑒(𝑡) is theMMPA estimation error at any time instant 𝑡,
then

𝑒 (𝑡) = 𝑍 (𝑡) − 𝐿̃ (𝑡) . (21)

It is now the SVM that models these residuals as

𝑒 (𝑡) = 𝑓 (𝑒(𝑡−1), 𝑒(𝑡−2), . . . , 𝑒(𝑡−𝑛)) + Δ𝑡, (22)

where𝑓 is nonlinear andΔ𝑡 is random error. It is obvious that
𝑁𝐿(𝑡) is the forecast of (22).

Consequently the forecast of the hybrid model is

𝑄 (𝑡) = 𝐿̃ (𝑡) + 𝑁𝐿 (𝑡) . (23)

The proposed method is schematically represented in
Figure 1.

3. Results and Discussion

3.1. Results. In this method the weighted average of the
estimates produced by the elemental ARMA filters was used
as a data preprocessor in order to detect the data’s linearities.
This was succeeded using a bank of 10 Kalman filters of order
(1, 1), (2, 2), (3, 3), . . . , (10, 10) programmedwith theMMPA.
Then the MMPA’s estimation error was applied as input to
the SVM that were able to achieve a further error reduction
and come up with a better forecasting outcome. As far as the
SVM are concerned the three parameters (𝐶, 𝜎, and 𝑒) had to
be carefully adjusted. Unsuitable values for these parameters
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Figure 2: November 2010: predicted and observed (raw) time series.

may lead to either overfitting or underfitting of the training
data. The values used in this research were 𝐶 = 35, 𝜎 = 2.5,
and 𝑒 = 0.6.

This research was conducted based on the hour average
of daily wind speed recorded by the Vestas Hellas from
November 2010 up to February 2011.The obtained time series
did not follow any periodic pattern and it was also presenting
irregular amplitudes, making it hard to both model and
predict (Figures 2, 3, 4, and 5; “raw” data).

The aimof this work is to generate a single-step prediction
based on past observations.The data were normalized to take
values from zero to one, before using them as input data to
the hybrid model.

From the 2725 available data points, 720 were for Novem-
ber, 744 for December, 744 for January, and 517 for February.
For each month 20% of the available data was used for
training, 20% for validation, and 60% for testing.

The performance of the hybrid method is judged by (a)
comparing the predicted and the observed (raw) wind time
series (Figures 2, 3, 4, and 5), (b) drawing scatter diagrams
of the predicted and the observed sequences (Figures 6, 7, 8,
and 9), and (c) computing themean percentage absolute error
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Figure 3: December 2010: predicted and observed (raw) time series.
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Figure 4: January 2011: predicted and observed (raw) time series.

Table 1: Performance of the hybrid model.

Month MAPE % 𝑅
2

November 2.78 0.8815
December 3.27 0.8533
January 3.19 0.8635
February 3.02 0.8758
Average 3.01 0.8685

(MAPE) for the testing data set, using the mathematical for-
mula given in (22). Table 1 summarizes the results. Consider

MAPE =

1

𝑀

𝑀

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
Preal,𝑗 − Ppredicted,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

Preal,𝑗
) × 100. (24)

3.2. Discussion. Figures 2–5 indicate that the predictions are
very close to the real values of the wind speed time series.
Additionally the hybrid model is capable of following satis-
factorily the irregularities of the observed series. The value
of MAPE between the real and the predicted series can be
considered quite low since it has an average value below 3.01%
and the individual value for each month is not above 3.3%.
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Figure 5: February 2011: forecasted predicted and observed (raw)
time series.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

R2 = 0.8815

Observed wind speed (m/s)

Pr
ed

ic
te

d 
w

in
d 

sp
ee

d 
(m

/s
)

Figure 6: November 2010: scatter of predicted and observed wind
speed time series.
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Figure 7: December 2010: scatter of predicted and observed wind
speed time series.

Furthermore the value of 𝑅2 is another indication of close
is the predicted to real series. A value of 𝑅2 = 1 indicates a
straight line of the form 𝑦 = 𝑎𝑥 meaning that the predicted
values are exactly the same as the real ones. In this study 𝑅2 is
at an average of 0.8685 which means that the predicted series
is indeed very close to the real one.
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Table 2: Summary of results.

Month MAPE % 𝑅
2

Hybrid MMPA-ARMA SVM Hybrid MMPA-ARMA SVM
November 2.78 4.93 4.73 0.8815 0.7462 0.7861
December 3.27 4.75 4.32 0.8533 0.7225 0.7689
January 3.19 5.23 4.12 0.8635 0.7349 0.7921
February 3.02 5.64 4.43 0.8758 0.7182 0.7783
Average 3.01 5.14 4.25 0.8685 0.73045 0.78135
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Figure 8: January 2011: scatter of predicted and observedwind speed
time series.
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Figure 9: February 2011: scatter of predicted and observed wind
speed time series.

For the sake of completeness of this research the results
of forecasting using only the adaptive combination of MMPA
with the ARMA models as well as using only the ANN
architecture with the SVM are also presented. The first
method was applied successfully in [22] for electric load
modeling and forecasting. The difference is that electric load
data is seasonal and after careful manipulation it can be
converted to Gaussian, something that cannot be done with
a wind speed time series.

Using the data for November, Figures 10 and 11 compare
the predicted and the observed (raw) wind time series and
Figures 12 and 13 show the scatter diagram of the predicted
and observed sequences for MMPA-ARMA and SVM,
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Figure 10: November 2010: predicted and observed (raw) time
series, MMPA-ARMA.
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Figure 11: November 2010: predicted and observed (raw) time
series, SVM.

respectively. Table 2 summarizes the performance of the
aforementioned methods and the hybrid method proposed
for the whole data set.

At this point it should be mentioned that when dealing
with the wind speed forecasting problem it is quite difficult
to attain very high prediction accuracy. The hybrid method
proposed gave some very satisfactory results and the accuracy
level reached can be considered sufficient for decisionmaking
as far as electric power production is concerned.
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Figure 12: November 2010: scatter of predicted and observed wind speed time series, MMPA-ARMA.
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Figure 13: November 2010: scatter of predicted and observed wind speed time series, SVM.
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Figure 14: December 2010: MMPA probability sequence (ARMAmodel order selection) for the whole data set provided.

Last but not least it should be also mentioned that a
designer’s crucial taskwhenusingMMPA is to assign a proper
value for the cardinality 𝑀. Trying to find an answer to that
problemone has to take inmind the following considerations:

(i) the quality of the overall MMPA estimate (in terms of
MAPE) increases with the number of the elemental
filters applied, so a small value of𝑀 leads to estimates
of a poor quality;

(ii) the computational load of the MMPA is proportional
to the number of filters implemented; so a large value

𝑀 increases the computational burden, a factor that
makes the implementation of theMMPA for real time
problems difficult.

A way of assigning the proper value of𝑀 is to record the
behaviour of MMPA during its operation. It is already men-
tioned that, at each iteration, the MMPA selects the model
that corresponds to the maximum a posteriori probability
as the correct one. This probability tends (asymptotically) to
one, while the remaining probabilities tend to zero. Figure 14
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shows the behaviour of the MMPA for the whole data set
concerning December.

It can be seen that the highest order 𝜃 of the appropriate
ARMAmodel for the time series under investigation is (4, 4)
which makes the choice of 𝑀 = 10 acceptable. Another
also significant conclusion is that if a model change is
required, the algorithm senses the variation and increases its
corresponding a posteriori probability while decreasing the
remaining ones.Thus, the algorithm is adaptive in the sense of
being able to trackmodel changes in real time.This procedure
incorporates the algorithm’s intelligence.

4. Conclusions

The area of forecasting is very demanding and it is over 50
years that ARMA models were exclusively used for tackling
real-life problems. Recently ANN were applied in difficult
prediction problems showing very satisfactory results espe-
cially due to their ability of manipulating the nonlinearities
of the dataset. The aim of this work was not to just add yet
another technique of wind speed prediction but to actually
validate the fact that different forecasting methods fulfil each
other and lead to accurate results. As it was shown the
two individual forecasting methods, adaptiveMMPA-ARMA
and SVM, cannot match the performance of the hybrid
method proposed. The results of the proposed method are
to be applied to a greenhouse unit which incorporates an
automatized use of renewable energy sources including wind
speed power. Future work can include adjustments for wind
speed prediction for time intervals smaller than 1 hour, say
ten-minute intervals, and also for on-line wind speed predic-
tion.
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