The relationship between the release of platelet activating factor (PAF), leukotriene C/D/E (LTC/D/E) and prostaglandin D2 (PGD2) from nasal mucosa in vivo was examined in 24 rhinitis patients allergic to the house dust mite (HDM). During a double blind placebo controlled cross-over study 200 μg fluticasone propionate aqueous nasal spray (FPANS) was administered twice daily for two weeks. In response to allergen provocation (100, 1 000, 10 000 Bu/ml) and during the 9.5 h after this challenge the nasal fluid was obtained by washing the nose with saline and the levels of PAF, LTC/D/E and PGD2, as indicators of mediator release, were measured at the following time-points: baseline (t 1/2), allergen provocation with 10 000 Bu/ml (t 0), 3.5 and 7.5 h (late phase). After allergen provocation the levels of the mediators increased in the nasal fluids of placebo treated patients (x-fold increase to baseline: PAF, 15; LTC/D/E, 12; PGD2, 1.5). In fluids of patients treated with FPANS these levels tended to decrease. At the time of provocation the levels of PAF, LTC/D/E and PGD2 showed a significant correlation. The results indicate that these mediators can be used as markers of allergic reactions against house dust mites and that fluticasone propionate aqueous nasal spray tended to reduce the release of mediators of inflammation correlated with beneficial effects on clinical symptoms in this type of allergic reactions.

Key words: Eicosanoids, Fluticasone propionate aqueous nasal spray, House dust mite, Platelet activating factor

Effect of fluticasone propionate aqueous nasal spray treatment on platelet activating factor and eicosanoid production by nasal mucosa in patients with a house dust mite allergy

I. M. Garrelds,1,2,CA T. de Graaf-in 't Veld,2 A. P. H. Jansen,2 R. Gerth van Wijk,2 and F.J. Zijlstra1

1Department of Pharmacology, Faculty of Medicine, Erasmus University Rotterdam; and 2Department of Allergology, University Hospital Rotterdam-Dijkzigt, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

CA Corresponding Author

Introduction

In the 1920s house dust allergy was recognized when dust extracts from mattresses and vacuum cleaners were found to give relevant positive reactions in skin test on asthmatics.1,2 Since 1964 it has been known that the majority of house dust sensitive patients show positive skin reactions to the mites of the genus Dermatophagoides farinae (DF) and D. pteronyssinus (Dp) as a major source in house dust.3 The faeces particles, in particular, contain allergenic material in a concentrated form. Practicable control measures, such as chemicals, cleaning, ventilation and temperature regulation have only been able to reduce the number of mites in houses to some extent but the clinical effect has been disappointing.1,3-6 As long as these methods are insufficient other forms of therapy are needed, such as immuno-therapy and symptomatic medication.7-10

House dust mites are the major cause of perennial rhinitis. The pathophysiology of allergic rhinitis, however, has been mainly studied in pollen allergy.

Naclerio et al.11 developed a model to explore the role of inflammatory mediators in ragweed pollinosis. As a consequence of cross-linking of IgE on mast cells and basophils by antigen mediators, such as prostaglandin D2 (PGD2), tryptase and histamine are released in the so-called early phase of the allergic process. These mediators cause sneezing, rhinorrhea and nasal congestion, which are the main symptoms of allergic rhinitis when they interact with neural elements, mucosal gland and blood vessels. After a quiescent period a second phase of the allergic process occurs. In this so-called late phase mediators are released again and symptoms recur.11-14

The effect of systemic steroids, such as prednisone, reduce symptoms and mediator release in the late phase of the process. They have little or no effect on the early phase.13,15 In contrast, topical steroids, such as flunisolide, used in the nose reduce symptoms and mediator release in the early phase as well in the late phase of the allergic process in a study with patients challenged with pollen antigens.15,16 The corticosteroid, fluticasone propionate (FP) has potent topical anti-inflammatory activity coupled with low systemic activity. It has more than nine times the anti-inflammatory activity of flunisolone acetonide and twice the activity of beclomethasone dipropionate.17,18

Nasal challenges and lavages were performed at the Department of Allergology and the measurements of platelet activating factor and eicosanoids at the Department of Pharmacology

© 1994 Rapid Communications of Oxford Ltd

Mediators of Inflammation · Vol 3 · 1994
The present study uses a nasal challenge model developed by Naclerio et al. to explore the role of PAF and eicosanoids in the early and late phase of the allergic process in patients with allergic rhinitis against house dust mites. PAF could be involved in respiratory allergies because PAF is a potent eosinophil chemotactic factor. However, to the authors' knowledge, there are so far no available data regarding in vivo PAF generation by human nasal mucosa of patients allergic to house dust mites. In this report, the effect of fluticasone propionate aqueous nasal spray, a new and potent corticosteroid, on the levels of platelet activating factor (PAF), leukotriene C/D/E, (LTC/D/E) and prostaglandin D, (PGD) after nasal challenge with house dust mite extract, is also described.

Materials and Methods

Patients: This study was performed in 24 patients. There were 11 women and 13 men aged 21 to 50 years (mean, 34 years). All were characterized by a test to house dust mite extract. All patients showed the levels of platelet activating factor (PAF), leukotriene C/D/E, (LTC/D/E) and prostaglandin D, (PGD) after nasal challenge with house dust mite extract, is also described.

To prevent nasal congestion caused by the allergen challenge, 0.250 ml oxymetazoline (0.1%) was sprayed into each nostril 5 min before the first challenge. Nasal lavage was performed as described by Naclerio et al. and Gerth van Wijk et al. Both nostrils were washed with 5 ml saline, prewarmed to 37°C. Lavage fluid was collected in plastic tubes that were kept on ice. These lavage fluids were centrifuged for 10 min at 400 x g and the supernatants were stored at -70°C until detection of PAF or eicosanoids. To obtain a control challenge, 0.125 ml phosphate buffered saline (PBS) was sprayed in each nostril and a nasal lavage was performed.

For allergen challenge 0.125 ml allergen extract was sprayed in each nostril and after 10 min thereafter a nasal lavage was performed. Allergen doses of 100, 1000, 10 000 Biological Units (Bu)/ml (extract of Dermatophagoides pteronyssinus; ALK, Groningen, The Netherlands) were administered. From 30 min up to 9.5 h after this challenge the nasal fluid was obtained every hour by washing the nose with saline. Allergen-induced secretion collected before nasal lavage was not used for analysis. From the series of lavages the levels of PAF, LTC/D/E, and PGD, as indicators of mediator release, were measured at the following time points: baseline (t = 0), allergen provocation with 10 000 Bu/ml (t = 0), 3.5, and 7.5 h. These time points were chosen based on recently described studies in which it was shown that between 3 and 10 h after antigen challenge the late phase reaction occurred.

Symptom score: Symptoms were scored according to a scoring system described by Lebel et al. These symptoms were observed in order to study the correlation between these clinical symptoms and the inflammatory mediators. The score was compiled before each lavage and after PBS and each allergen insufflation.

Mediator assays: The levels of PAF, LTC/D/E, and PGD, were measured by Scintillation Proximity Assay (SPA), Biotrak® and Radioimmunoassay (RIA) respectively (Amersham, UK). The limits of sensitivity of the assays were approximately 20, 3.1 and 0.75 pg/100 µl respectively. Cross-reactivity (50% B/B0 displacement) of: PAF assay, 1-hexadecyl-2-acetyl GPC-PAF(C16:0) (100%), 1-octadecyl-2-acetyl GPC-PAF(C18:0) (40%), racPAF (29%), 1-hexadecyl-2-lyso GPC-Lyso-PAF(C16:0) (< 0.01%); LTC/D/E assay: LTC,C (100%), LTE, (70%), LTB, (0.4%) and prostaglandins (0.006%); PGD, assay, PGD, (100%), PGJ, (7%), TxB, (0.3%), PGF, (0.04%) and other prostaglandins (< 0.02%).

Statistical analysis: Statistical analysis was performed with the Friedman two-way ANOVA followed by the Wilcoxon matched-pairs signed-ranks test. The Kruskal-Wallis rank test was used for correlations.
Fluticasone propionate aqueous nasal spray and mediators

For testing equality of the carry-over effect, within-patient totals over the two treatment periods are used. There is said to be no significant carry-over effect if the means of these within-patient totals do not significantly differ between the two treatment-order groups. For this test a p-value < 10% is considered significant.

Results

Nasal mediator release: The levels of the inflammatory mediators, PAF, LTC₄/D₄/E₄, and PGD₂, in nasal washings from allergic patients to house dust mites with and without fluticasone propionate aqueous nasal spray (FPANS) are presented in Table 1. No significant carry-over effect was observed. The baseline levels of the placebo group and FPANS group respectively are: PAF, 907 ± 177 (range 147-3172) and 780 ± 316 (range 95-7272) pg/ml; LTC₄/D₄/E₄, 112 ± 10 (range 37-233) and 106 ± 9 (range 10-209) pg/ml and PGD₂, 94 ± 26 (range 21-592) and 92 ± 30 (range 3-734) pg/ml. Because these baseline levels are in a large range, the levels are recalculated in percent change to baseline.

Nasal challenge with house dust mite extract caused an immediate influx of these inflammatory mediators. After allergen provocation the levels of the mediators increased in the nasal fluids of placebo treated patients (x-fold increase to baseline: PAF, 15; LTC₄/D₄/E₄, 12; and PGD₂, 1.5). In fluids of patients treated with FPANS these levels tended to decrease (x-fold increase to baseline: PAF, 6; LTC₄/D₄/E₄, 4; and PGD₂, 1.1). p Value between the placebo and FPANS group after the primary trigger initiated after challenge with 10 000 Bu/ml house dust mite extract of PAF, 0.2124; LTC₄/D₄/E₄, 0.1618; and PGD₂, 0.2227. At 3.5 and 7.5 h after this challenge a significant decrease of the symptom score is observed compared to the level at the time point of the challenge in both groups (p = 0.001). The symptom score of patients treated with FPANS is decreased in comparison to the placebo group.

Correlation between inflammatory mediators and symptom score. A significant correlation (p ≤ 0.05) is found immediately after the challenge with 10 000

Symptom score: The means (±S.E.M.) of the symptom score are shown in Fig. 1. Because a significant carry-over effect was observed, only the results of the first treatment period was used. A significant increase is observed immediately after the challenge with house dust mite extract in the placebo and FPANS group. At 3.5 and 7.5 h after this challenge a significant decrease of the symptom score is observed as compared to the level at the time point of the challenge in both groups (p = 0.001). The symptom score of patients treated with FPANS is decreased in comparison to the placebo group.

Symptom score at the following time points: baseline (B), allergen provocation with 10 000 Bu/ml house dust mite extract (t = 0), 3.5 and 7.5 h (late phase) of allergic patients treated with or without FPANS. Values are expressed mean ± S.E.M. Statistical significant difference to the HDM 10 000 is shown by an asterisk (p < 0.05). Statistical significant difference to the baseline is shown by a double asterisk (p < 0.05). Key: □, placebo; □, fluticasone propionate aqueous nasal spray.

![FIG. 1. Symptom score at the following time points: baseline (B), allergen provocation with 10 000 Bu/ml house dust mite extract (t = 0), 3.5 and 7.5 h (late phase) of allergic patients treated with or without FPANS. Values are expressed mean ± S.E.M. Statistical significant difference to the HDM 10 000 is shown by an asterisk, according to the Wilcoxon matched-pairs signed-ranks test (p < 0.05).](image)

Table 1. Platelet activating factor (PAF), leukotriene C/D/E (LTC₄/D₄/E₄) and prostaglandin D₂ (PGD₂) production in nasal lavages

<table>
<thead>
<tr>
<th>PAF</th>
<th>LTC₄/D₄/E₄</th>
<th>PGD₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>153 ± 28</td>
<td>105 ± 23</td>
<td>8 ± 16</td>
</tr>
</tbody>
</table>

Results were obtained at the following time points: allergen provocation with 10 000 Bu/ml house dust mite extract (t = 0), 3.5 and 7.5 h (late phase) of allergic patients treated with placebo or with fluticasone propionate aqueous nasal spray (FPANS). Because of scattered individual data values are expressed as percent change of baseline ± S.E.M. Statistical significant decrease to the HDM 10 000 is shown with an asterisk, according to the Wilcoxon matched-pairs signed-ranks test (p ≤ 0.05).
late phase allergic reaction occurs, in which convenient model for measuring inflammatory mediator measured in nasal washings. This is the first found that within a few minutes of exposure to an mite. In agreement with other investigators it was group (c 0.598). The present findings indicate that FPANS reduces not only the allergen induced symptoms (ratio placebo:FPANS, 1.68) but also tended to reduce the release of PAF (ratio placebo:FPANS, 2.69), LTC/C/E (ratio placebo:FPANS, 3.14) and PGD (ratio placebo:FPANS, 6.25) after the primary trigger initiated after challenge with 10 000 Bu/ml house dust mite extract at the time point of challenge. In conclusion, the results indicate that the inflammatory mediators platelet activating factor, leukotriene C/E and prostaglandin D can be used as markers of allergic reactions to house dust mites and that fluticasone propionate aqueous nasal spray counteracts the release of mediators of inflammation, correlated with beneficial effects on clinical symptoms in this type of allergic reaction.