The mixed leukocyte population obtained from the peritoneum of the August rat is a potentially important experimental model of inherent eosinophilia that has not been well characterized. In the present study, isolated cell preparations generated a concentration-dependent release of leukotriene (LT) C4 when exposed to the Ca\(^{2+}\) ionophore A23187, reaching maximal stimulation at 5.0 nM. This response was inhibited by the 5-lipoxygenase activating protein antagonist MK-886 (0.1 μM), nominally Ca\(^{2+}\) and Mg\(^{2+}\)-free incubation media and by activation of protein kinase C via phorbol 12-myristate 13-acetate (50 nM). These findings establish a model system for investigating LTC4 profiles contingent with innate peritoneal eosinophilia and are consistent with the hypothesis that cellular LTC biosynthesis is phosphoregulated.

Key words: August rat, Eosinophilia, Leukotriene C4, MK-886, Protein kinase C

Introduction

The functional repertoire of both infiltrating and in situ inflammatory cells includes the biosynthesis and release of leukotrienes (LTs) derived from the 5-lipoxygenation of arachidonic acid (AA). Functionally, these compounds can be divided into two classes: (1) the dihydroxy acid LTB4, which is a powerful chemotactic, aggregative and chemokinetic agent; and (2) the cysteinyl-containing LTs C4, D4 and E4; collectively termed the ‘slow-reacting substance of anaphylaxis’ or SRS-A. Whereas LTB4 has relatively few myotropic activities, the C6 amino acid-substituted cysteiny lLTs are potent contractants of both vascular and non-vascular smooth muscle. The relative potencies of these compounds and their prominence in biological fluids and inflammatory exudates suggest a role in the pathophysiology of human bronchial asthma and other immediate hypersensitivity reactions.

Under the appropriate conditions, it has now been shown that Ca\(^{2+}\) mobilization can synergize with protein kinase C (PKC) activation to enhance the formation of LTs in human eosinophils, human neutrophils and murine macrophages. This phenomenon can be demonstrated in vitro by the simultaneous application of the Ca\(^{2+}\) ionophore A23187 and phorbol 12-myristate 13-acetate (PMA), a tumour-promoting phorbol ester which can activate PKC directly without initiating the hydrolysis of phosphatidylinositol. It has been envisaged that the selective activities of these agonists may mimic the cellular events responsible for the release of free AA and/or the activation of 5-lipoxygenase (5-LO) as induced by physiologic stimuli. In fact, there is evidence to suggest that the phosphorylation of specific target proteins by PKC may enhance the A23187-stimulated release of AA in certain cell types as well as the biosynthetic activity of AA-selective phospholipase A2 (PLA2).

In contrast, Kreger et al. have shown that PMA can effectively block the interleukin-3 (IL-3)-dependent formation of LTC4 in human basophils, indicating that IL-3 signalling pathways and LTC4 production in these cells do not require the activation of PKC. More recently, other laboratories have demonstrated that co-stimulation with PMA specifically attenuates LTC4 production in differentiated human promyelocytic HL-60 cells challenged with ionophore or with saturating concentrations of exogenous LTA4, the labile epoxide precursor to both LTB4 and LTC4.

We designed the present study to evaluate the
capacity of August (AUG) rat mixed peritoneal leukocytes to generate LTC₄ when challenged with different concentrations of A23187 and to test the hypothesis that LTC₄ biosynthesis in this model is regulated via a PKC-specific phosphorylation mechanism. The AUG rat, which has a spontaneously high number of peritoneal eosinophils that can be harvested by a relatively simple lavage procedure, is a potentially important animal model of inherent eosinophilia that has not been well studied. Parasite-independent, non-induced examples of eosinophilia may prove particularly useful since both quantitative and qualitative differences exist between different preparations of eosinophils depending on the method of induction.

Materials and Methods

Except as noted, all reagents were purchased from Sigma Chemical Co. (St Louis, MO). Adult male AUG rats (Harlan/Olac, UK) aged 27–35 weeks were killed by CO₂ inhalation and the resident peritoneal cells harvested by washing the cavity with 50 ml of an ice-cold CaCl₂, MgSO₄ and NaHCO₃-free modified Hanks’ Balanced Salt Solution (HBSS-1) buffered with 20 mM HEPES (pH 7.3). The lavage fluid was then aspirated by syringe and centrifuged at 200 × g for 10 min at 4°C. Pelleted cells were washed, adjusted to yield 3.0 × 10⁶ cells/ml with HBSS-1 and differential counts then determined from cytocentrifuge slides (Cytospin 3, Shandon Inc., Pittsburgh, PA) fixed and stained with a Diff-Quik Stain Set (Baxter Scientific Products, McGaw Park, IL). Cell suspensions obtained from two to three animals were pooled for all experiments.

Agonist and inhibitor stock solutions were prepared in dimethyl sulphoxide (DMSO), stored at −20°C and were serially diluted immediately before use with a HEPES-buffered HBSS supplemented with 2.4 mM Ca²⁺ and 1.6 mM Mg²⁺ at pH 7.3 (HBSS-2). The concentration of DMSO in the final reaction mixture was never greater than 0.4% (v/v). To elicit LTC₄ biosynthesis, 1.5 × 10⁶ cells (500 μl) were incubated with different concentrations of A23187 in 500 μl of either HBSS-1 (Ca²⁺ and Mg²⁺-free) or HBSS-2 (final concentrations of 1.2 mM Ca²⁺ and 0.8 mM Mg²⁺) for 10 min (37°C, constant agitation). In other experiments, cells were stimulated with 0.5 μM A23187 in the presence of either 50 nM PMA or 0.1 μM MK-886, a potent 5-1ipoxygenase activating protein (FLAP) inhibitor generously provided by Dr Anthony W. Ford-Hutchinson, Merck Frosst Centre for Therapeutic Research, Montreal, Canada). Viability cell counting was performed in some preparations after incubating 100 μl of the treated cell suspension for an additional 2 min at room temperature with a mixture of ethidium bromide (0.1 μg in 100 μl 0.1 M phosphate buffer) and fluorescein diacetate (2.5 μg in 100 μl 0.1 M phosphate buffer, diluted from a 5 mg/ml acetone stock solution). All other reactions were terminated by the addition of 3 ml ice-cold methanol and samples were stored at −70°C until assayed.

LTC₄ content was determined by acetylcholinesterase (AChE) enzyme immunoassay (EIA) (Cayman Chemical, Ann Arbor, MI). To prepare for analysis, samples were thawed and centrifuged at 1500 × g for 10 min at 4°C to precipitate proteins. Supernatants were then evaporated to dryness in a heated (−50°C) water bath under a stream of nitrogen, reconstituted in 1 ml of assay buffer and stored overnight at 4°C. Each sample was assayed in duplicate according to the manufacturer’s instructions. Results were interpolated from standard curves fit by third or fourth-order polynomial regression (Sigma Plot software, San Rafael, CA) of percentage displacement of bound LTC₄ AChE tracer versus LTC₄ concentration (pg/ml).

All data are presented as mean ± SE. Homogeneity of variance was confirmed by Hartley’s test and a two-tailed, unpaired Student’s t-test was used where appropriate. A p value < 0.05 was considered significant.

Results

Cell preparations used in all experiments contained a mixture of macrophages (45 ± 1.0%), eosinophils (36 ± 0.8%), mast cells (11 ± 0.7%) and lymphocytes (8 ± 0.5%) (mean = 38.0 ± 2.0 × 10⁶ total cells/harvest, range = 29.5 × 10⁶–48.6 × 10⁶, n = 11). Figure 1 (inset) shows the dose-dependent stimulation of cellular LTC₄ biosynthesis with 0.5–10 μM A23187. The maximum measured LTC₄ concentration (5.2 ± 0.3 ng LTC₄/10⁶ cells; n = 5) was observed at 5.0 μM A23187, an increase nearly 65 times greater than the mean detected value observed in preliminary vehicle control experiments (56.0 ± 8.3 pg/10⁶ cells; n = 6). Removal of both CaCl₂ and MgSO₄ from the incubation medium dramatically reduced the stimulatory effects of 0.5 μM A23187, reducing elicited LTC₄ levels from 577.3 ± 60.9 pg/10⁶ cells (n = 14) to < 30 pg/10⁶ cells (n = 5) (not shown). The FLAP antagonist MK-886 also inhibited A23187-induced LT synthesis by over 12-fold (p < 0.05, mean = 46.3 ± 3.0 pg/10⁶...
cells, $n = 6$) (Fig. 1, column 1 vs column 2), indicating that the fundamental integrity of the biosynthetic pathway leading to the de novo formation of LTC₄ was retained in our isolates.

Next, we investigated the possible regulatory role of PKC in the synthesis of LTC₄ by co-incubating some isolates with 0.5 μM A23187 and 50 nM PMA, a myristoylated phorbol ester capable of directly activating PKC in vitro.¹¹ As evidenced in Fig. 1 (column 1 vs column 3), PMA reduced A23187-elicited LTC₄ release by nearly three-fold ($p < 0.05$, mean = 198.8 ± 26.1 pg/10⁶ cells, $n = 7$), suggesting that cysteinyl leukotriene production in this model may be phosphoregulated. Because we found a slight, but significant difference in viability between the cells exposed to PMA ($p < 0.05$, mean = 83.5 ± 1.5% viable, $n = 5$) vs isolates treated with ionophore alone (mean = 90.7 ± 1.1% viable; $n = 6$), statistical comparisons between the two groups were also confirmed after adjusting the LTC₄ concentrations produced by PMA-treated cells by the mean percentage difference in viability between the two treatment groups (0.072). In this fashion, we sought to eliminate differences that could be attributable to cell death.

Discussion

As part of a larger cooperative effort to understand the biology of the leukocyte population derived from the peritoneum of the syngeneic AUG rat strain, the present study demonstrates the concentration- and Ca²⁺/Mg²⁺-dependent stimulation of LTC₄ biosynthesis by the divalent cation ionophore A23187 and the inhibition of this response by MK-886,²² a specific antagonist of FLAP activity.²² Because MK-886 reportedly binds FLAP at a site corresponding to its putative AA binding domain,²³ thereby preventing the efficient transfer of AA to 5-LO, the findings presented here thus suggest crucial roles for Ca²⁺ influx and substrate availability for the rate-limiting 5-LO enzyme.²⁶

Previous studies have shown that PMA and suboptimal or threshold concentrations of A23187 synergistically potentiate the synthesis of LTC₄ in human eosinophils⁵ and murine macrophages.⁹,¹⁰ However, consistent with findings in human basophils¹⁰ and differentiated substrains of the human promyelocytic HL-60 cell line,¹⁷,¹⁸ our data suggest that PMA-mediated activation of PKC negatively regulates cysteinyl LT biosynthesis. Since it can also be demonstrated in other non-immunologic cell types that activation of PKC does not effectively modulate LTC₄ release in response to A23187,²⁶ it thus appears likely that the regulation of this biosynthetic pathway may differ substantially across species, compartments or cell phenotypes.

On the other hand, this interpretation does not fully explain the observations of other PMA-mediated effects, such as the potentiation of A23187-stimulated AA release,¹²,¹³ the activation of AA-selective PLA₂¹⁴,¹⁵ or the stimulation of prostanoid formation via the transcriptional activation of the cyclooxygenase-2 gene.²⁷,²⁸ In fact, PKC is known to stimulate or enhance prostanoid biosynthesis in several cell types.¹⁷,²⁹−³⁴ One plausible interpretation of these findings is the mechanism proposed by Ali et al.¹⁷,³⁵ whereby the phosphorylation of LTC₄ synthase, or a modulator of its activity, non-competitively inhibits LTC₄ biosynthesis, and the profile of eicosanoid mediators shifts from cysteinyl LTs towards the cyclooxygenase products of AA metabolism. The rapid accumulation of pharmacologically inactive LTA₄ would not necessarily be reflected in higher levels of LTB₄ production, since LTA₄ hydrolyase is saturated at 40 μM.¹⁷ If true, this hypothesis suggests a novel negative feedback mechanism whereby potent mediators such as LTD₄ can both attenuate their own production through binding receptors that trigger the activation of phosphatidylinositol-specific phospholipase C³⁶ and concomitantly stimulate the synthesis of other mediators (i.e. prostaglandins) some of which may counteract their physiological actions in tissues.¹⁷

Although it is unlikely that any one cell
phenotype is directly responsible for all of the clinical manifestations accompanying the pathogenesis of inflammation,57 it should be emphasized that secretory responses in our mixed cell population may not necessarily reflect the individual responses of the different cell types. Given the multitude of regulatory cascades that may be actively modulated by PKC,38 as well as the remarkably cell-specific expression of 5-LO and LTC\textsubscript{4} synthase,4 this complex issue requires further careful comparative study in order to identify the PKC protein substrates that affect the conversion of AA into various eicosanoids within each cellular context.

In conclusion, we now report that Ca
2+/MK-886 sensitive and is both Ca
2+/Mg
2+ and concentration dependent. This suggests that these cells retain some of the functional characteristics exhibited by myeloid cells derived from other systems as well as the incipient signal transduction cascade leading to the de novo formation of LTC\textsubscript{4}. Furthermore, we show that A23187-induced LTC\textsubscript{4} production is negatively regulated via PMA-mediated activation of PKC.

Inasmuch as LTC\textsubscript{4} is the predominant bioactive 5-LO product of AA metabolism liberated by human eosinophils,39 this model system of inherent eosinophila could ultimately be exploited to furnish a basis for drug development targeted at lessening the severity of tissue reactions associated with inflammation.

References

ACKNOWLEDGEMENTS. This work was supported by grants to J.M.H. from the Graduate Student Research Fund, Western Michigan University and conducted in part during the tenure of a fellowship to J.M.H. from the Center for Research in Environmental Signal Transduction (CREST) at this institution. W.E.J. was supported by PHS grant HL 52469. The authors gratefully acknowledge Dr Frank F. Sun and Bruce M. Taylor of Pharmacia & Upjohn, Inc. for their assistance with the EIA.

Received 14 August 1996; accepted in revised form 3 September 1996