Prostaglandin E2 affects differently the release of inflammatory mediators from resident macrophages by LPS and muramyl tripeptides

Peter Dieter1,CA, Ute Hempel1, Sabine Kamionka1, Angelika Kolada1, Birgit Malessa1, Edith Fitzke2 and Thuy-Anh Tran-Thi2

1Institute of Physiological Chemistry, Medical Faculty, Dresden University of Technology, Dresden, Germany; 2Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University, Freiburg, Germany

CACorresponding Author
Institute of Physiological Chemistry, Medical Faculty, Dresden University of Technology, Karl-Marx-Strasse 3, D01109 Dresden, Germany
Tel: (351) 8832 851
Fax: (351) 8832 869
Email: dieter@rcs.urz.tu-dresden.de

Introduction

Liver macrophages (Kupffer cells) are macrophages residing in the sinusoids of the liver. This strategic location makes them the first macrophages to come into contact with noxious materials that enter circulation via the portal vein. This location and the fact that they constitute the largest pool of macrophages in the body attributes to them an important function in the clearance of noxious material, the removal of migrating tumor cells, and in the pathophysiology of septic shock.3

Liver macrophages have been reported to secrete a wide array of biologically active compounds including cytokines, prostanooids, nitric oxide and oxygen radicals, which have been shown to be involved in the pathogenesis of septic shock, and in the cytotoxicity of Kupffer cells against tumor target cells.1–7

LPS and muramyl tripeptides are components of the outer cell membrane of most bacteria and display most of the immunological activities compared with an infection of whole bacteria.8–11 When administrated i.v., LPS and liposome-encapsulated \textit{N}-acetyl-muramyl-L-Lalanyl-D-isoglutaminyl-L-Lalaneine-2-([1,2-dipalmitoyl-sn-glycero-3-(hydroxy-phosphoryl-oxyl)] etylamide) induce in liver macrophages a synthesis and release of TNF-\textalpha, nitric oxide and prostanooids. Both agents induce an expression of mRNA's encoding TNF-\textalpha, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and of corresponding proteins. LPS and MTP-PE induce a rapid activation of the extracellular regulated kinase (ERK) isoenzymes-1 and -2. Inhibition of map kinase isoenzymes leads to a decreased release of TNF-\textalpha, nitric oxide and prostaglandin (PG) E\textsubscript{2} after both agents. The transcription factors NF-\textkappa B and AP-1 are strongly activated by LPS within 30 minutes. MTP-PE induces a weak activation of both transcription factors only after 5 hours. Inhibition of NF-\textkappa B inhibits the LPS- but not the MTP-PE-induced release of TNF-\textalpha, nitric oxide and PGE\textsubscript{2}. PGE\textsubscript{2} release after LPS is higher than after MTP-PE. Exogenously added PGE\textsubscript{2} inhibits the activation of map kinase and TNF-\textalpha-release by LPS, but not by MTP-PE. Release of nitric oxide after LPS and MTP-PE is enhanced after prior addition of PGE\textsubscript{2}. PGD\textsubscript{2} is without any effect. MTP-PE, but not LPS, induces a cytotoxicity of Kupffer cells against P815 tumor target cells. The MTP-PE-induced cytotoxicity is reduced by TNF-\textalpha neutralizing antibodies, indicating the involvement of TNF-\textalpha. Thus our results suggest that the different potencies of LPS and MTP-PE as immunomodulators probably result from different actions on Kupffer cells, resulting in differences in the amounts and kinetics of released TNF-\textalpha and PGE\textsubscript{2}, and that PGE\textsubscript{2} plays an important regulatory role in the action of LPS, but not in the actions of MTP-PE.

Key words: LPS, Macrophages, Muramyl tripeptides, Cytokines, Eicosanoids

LPS and MTP-PE (liposome-encapsulated \textit{N}-acetyl-muramyl-L-Lalanyl-D-isoglutaminyl-L-Lalaneine-2-([1,2-dipalmitoyl-sn-glycero-3-(hydroxy-phosphoryl-oxyl)] etylamide) induce in liver macrophages a synthesis and release of TNF-\textalpha, nitric oxide and prostanooids. Both agents induce an expression of mRNA's encoding TNF-\textalpha, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and of corresponding proteins. LPS and MTP-PE induce a rapid activation of the extracellular regulated kinase (ERK) isoenzymes-1 and -2. Inhibition of map kinase isoenzymes leads to a decreased release of TNF-\textalpha, nitric oxide and prostaglandin (PG) E\textsubscript{2} after both agents. The transcription factors NF-\textkappa B and AP-1 are strongly activated by LPS within 30 minutes. MTP-PE induces a weak activation of both transcription factors only after 5 hours. Inhibition of NF-\textkappa B inhibits the LPS- but not the MTP-PE-induced release of TNF-\textalpha, nitric oxide and PGE\textsubscript{2}. PGE\textsubscript{2} release after LPS is higher than after MTP-PE. Exogenously added PGE\textsubscript{2} inhibits the activation of map kinase and TNF-\textalpha-release by LPS, but not by MTP-PE. Release of nitric oxide after LPS and MTP-PE is enhanced after prior addition of PGE\textsubscript{2}. PGD\textsubscript{2} is without any effect. MTP-PE, but not LPS, induces a cytotoxicity of Kupffer cells against P815 tumor target cells. The MTP-PE-induced cytotoxicity is reduced by TNF-\textalpha neutralizing antibodies, indicating the involvement of TNF-\textalpha. Thus our results suggest that the different potencies of LPS and MTP-PE as immunomodulators probably result from different actions on Kupffer cells, resulting in differences in the amounts and kinetics of released TNF-\textalpha and PGE\textsubscript{2}, and that PGE\textsubscript{2} plays an important regulatory role in the action of LPS, but not in the actions of MTP-PE.

Key words: LPS, Macrophages, Muramyl tripeptides, Cytokines, Eicosanoids

Introduction

Liver macrophages (Kupffer cells) are macrophages residing in the sinusoids of the liver. This strategic location makes them the first macrophages to come into contact with noxious materials that enter circulation via the portal vein. This location and the fact that they constitute the largest pool of macrophages in the body attributes to them an important function in the clearance of noxious material, the removal of migrating tumor cells, and in the pathophysiology of septic shock.3

Liver macrophages have been reported to secrete a wide array of biologically active compounds including cytokines, prostanooids, nitric oxide and oxygen radicals, which have been shown to be involved in the pathogenesis of septic shock, and in the cytotoxicity of Kupffer cells against tumor target cells.1–7

LPS and muramyl tripeptides are components of the outer cell membrane of most bacteria and display most of the immunological activities compared with an infection of whole bacteria.8–11 When administrated i.v., LPS and liposome-encapsulated \textit{N}-acetyl-muramyl-L-Lalanyl-D-isoglutaminyl-L-Lalaneine-2-([1,2-dipalmitoyl-sn-glycero-3-(hydroxy-phosphoryl-oxyl)] etylamide) are delivered predominantly to macrophages, especially liver macrophages.12,13 While LPS has been shown to play a significant role in the pathogenesis of gram-negative septic shock, muramyl tripeptides have been demonstrated to be protective against LPS-induced septicemia.14,15 Furthermore, i.v. administered MTP-PE has been shown to induce antitumor reactivity, probably as a result of macrophage activation,16–19 and to inhibit HIV replication in macrophages.20 In contrast to LPS, very little is known about the intracellular signal transduction pathways of muramyl tripeptides. Recently, we showed that MTP-PE and LPS induce similar reactions in liver macrophages, like the formation of TNF-\textalpha, nitric oxide and prostanooids.21
Furthermore, we demonstrated, that cellular calcium and protein kinase C isoenzymes are not involved in the signal pathways of LPS and MTP-PE.21

Materials and methods

Materials

Medium RPMI 1640, newborn and fetal calf serum are purchased from Biochrom (Berlin, Germany); newborn calf serum is heat-inactivated at 56°C for 30 min.\textsuperscript{[γ32P]ATP} and [3H]thymidine are from Amersham Buchler (Braunschweig, Germany). P815 mouse mastocytoma and mouse L929 cells are purchased from American Type Culture Collection (Rockville, USA). Murine rTNF-α and rat TNF-α-neutralizing antibodies are from Boehringer Mannheim (Mannheim, Germany) and IC Chemikalien (Ismaning, Germany), respectively. BAY 11–7082 and PD 98059 are purchased from Calbiochem (Bad Soden, Germany). Monoclonal antibodies against COX-2 and iNOS are purchased from Natueuc (Frankfurt, Germany) and Transduction Laboratories/Dianova (Hamburg, Germany), respectively. MTP-PE is kindly provided by Ciba-Geigy (Basel, Switzerland). LPS R595 from Salmonella minnesota is a gift from Dr Galanos (Freiburg, Germany). Antibodies raised against prostaglandin (PG) E\textsubscript{2} and PGD\textsubscript{2} are generous gifts from Dr Brune (Erlangen, Germany) and Dr Hayaishi (Osaka, Japan), respectively. RTPCR reagents and enzymes are from Perkin Elmer (Weiterstadt, Germany). Specific primers (HPLC purified) are synthesized and purchased from Birsner & Grob (Denzlingen, Germany).

Cell culture

Livers of male Wistar rats (Charles River, Sulzfeld, Germany) are removed aseptically under Nembutal anesthesia, and the liver macrophages are isolated by a centrifugal elutriation procedure.22 Liver macrophages are maintained in primary culture with RPMI 1640 medium containing 30% newborn calf serum. All experiments are performed with cells kept in primary culture for 48–72 h. P815 mouse mastocytoma cells and L929 cells are grown in RPMI 1640 medium containing 10% FCS.

Determination of PGE\textsubscript{2} and PGD\textsubscript{2}

Macrophages are incubated in RPMI medium containing 10% newborn calf serum with or without LPS or MTP-PE, and after the indicated times cell media are removed and centrifuged. The amount of PGE\textsubscript{2} and PGD\textsubscript{2} in cell media is measured by ELISA and RIA, respectively, as described elsewhere.23

Determination of TNF-α activity

The release of TNF-α activity is measured using the L929 cell cytotoxicity assay in which lysis of actinomycin-D-treated L929 cells by TNF-α is measured by crystal violet staining of survival cells in monolayer culture.24 L929 cells are grown on 96-well microtest plates to the density of ~4×104 cells/well. Culture media to be tested are added to the wells together with actinomycin (400 ng/well). After 24 h, the supernatants are discharged and the remaining cells are stained with 0.5% crystal violet in 25% aqueous methanol for 10 min. The dye is removed by washing three times with 25% methanol, and 5% SDS is added to solubilize the adherent cells. Then the absorbance is read with a microplate reader (Titertek Multiskan Plus) at 550 nm. The absorbance is compared with that of a standard solution of murine rTNF-α. Units of TNF-α activity are the reciprocal dilution factor of a sample causing 50% lysis of L929 cells. The specificity is controlled by neutralization with rat TNF-α-neutralizing antibodies (dilution of 1:50).

Determination of nitric oxide

Macrophages are incubated in RPMI medium containing 10% newborn calf serum with or without LPS or MTP-PE, and after the indicated times cell media are removed and centrifuged. Nitric oxide formation is measured as NO\textsubscript{2–} accumulated in the cell media, which reflects the release of nitric oxide from macrophages.3 The Griess reaction using 20 μl of sulfanilamide (10 mM), 10 μl of HCl (2 M), 10 μl of naphtylethylenediamine dihydrochloride (1 mM), and 150 μl of supernatant is applied to each well of a microtiter plate; the pink azo dye is quantitated by a microplate reader (Titertek Multiskan Plus) at 550 nm. Standards are prepared using NaNO\textsubscript{2}.

In vitro cytotoxicity assay

Macrophages are cultured on 96-well plates at a density of ~105 cells/well. P815 target cells in the exponential growth phase are radiolabeled by a 24 h-incubation in RPMI medium with 10% FCS containing 20 μCi of [3H]thymidine/106 cells in 5 ml. Then the cells are washed three times to remove the radioisotope and resuspended in culture medium to a concentration of 105 cells/ml. 100 μl (104 [3H]thymidine-labeled target cells) is added to cultured macrophages in a total volume of 200 μl of medium/well. LPS or MTP-PE is added to macrophages 6 h before the addition of target cells. Radiolabeled target cells are also plated alone as an additional control. 48 h after the addition of target cells, the supernatants are collected and the radioactivity is measured in a liquid scintillation counter. Cytolysis is calculated as follows: % cytolysis = 100×(a−b)/(c−b), where a=cpm in
supernatants of target cells cocultured with macrophages, \(b = \text{cpm in supernatants of target cells cultured alone} \), \(c = \text{cpm in the total amount of target cells added per well} \).

Western blot analysis

Total protein (10 \(\mu \)g) is separated on 10\% polyacrylamide gels under reducing conditions. Proteins are transferred to nitrocellulose membranes, and nonspecific binding is blocked by incubation in PBS containing 0.1\% Tween 20 and 5\% milk powder. The blots are probed with antibodies against COX-2 and iNOS. After extensive washing, the blots are incubated with the secondary antibodies, washed extensively and developed using the ECL Western blotting detection system (Amer sham). For quantitative analysis, the bands are scanned densitometrically.

In situ map-kinase assay

Map kinase activity is performed by an *in vitro* renaturation assay.25,26 Cells are washed with PBS and lysed in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1\% (w/v) Triton X-100, 0.1 mM Na\(_3\)VO\(_4\), 1 mM phenylmethylsulfonyl fluoride, 0.1 mM aprotinin, vortexed and centrifuged at 15000\(\times g \) for 30 min. The supernatants are matched for protein content (BioRad protein dye assay) and diluted to 1 mg/ml protein in 62.5 mM Tris-HCl, pH 6.8, containing 2.3\% (w/v) SDS, 5 mM EDTA, 10\% (v/v) glycerol and 100 mM DTT and heated at 86\°C for 5 min before SDS-PAGE. The gels are polymerized with 0.2 mg/ml myelin basic protein and, after electrophoresis, denatured in 6 M guanidine hydrochloride. After renaturation, the gels are preincubated in 25 mM HEPES, pH 7.4, 2 mM 2-mercaptoethanol, 10 mM MgCl\(_2\), 0.1 mM Na\(_3\)VO\(_4\) and 0.5 mM EGTA at 30\°C for 30 min. The kinase reaction is performed by incubation of the gels in 25 mM HEPES, pH 7.4, 2 mM 2-mercaptoethanol, 10 mM MgCl\(_2\), 0.1 mM Na\(_3\)VO\(_4\), 0.5 \(\mu \)M EGTA, 25 \(\mu \)M ATP and 250 \(\mu \)G [\(\gamma^{32}\)P]ATP.

Electrophoretic mobility shift assay

Determination of the DNA-binding capacity of NF-\(\kappa \)B and AP-1 is performed exactly as described previously.27

RT-PCR studies

RNA from macrophages is prepared according to Chomczynski and Sacchi.28 In brief, 1–2\(\times 10^6 \) macrophages are frozen in liquid nitrogen, taken up in guanidinium thiocyanate and extracted with acidified phenol/chloroform. After centrifugation, RNA is precipitated from the aqueous phase with isopropanol. The pellet is washed once with 80\% ethanol and then taken up in 10 \(\mu \)l H\(_2\)O. The total amount of RNA is determined spectrophotometrically and reverse transcribed (22\°C/10 min–42\°C/60 min–95\°C/5 min/4\°C, Perkin Elmer PCR System 2400) using recombinant moloney murine leukemia virus reverse transcriptase (2.5 units/\(\mu \)l) in 500 mM KCl, 100 mM Tris–HCl, pH 8.3, 5 \(\mu \)M MgCl\(_2\), 2.5 \(\mu \)M random hexamers, 1 unit/\(\mu \)l RNase inhibitor, 2.5 \(\mu \)M of each dATP, dCTP, dGTP, dTTP and approximately 0.5 mg RNA in a total volume of 10 \(\mu \)l. For PCR analysis, a master mix is prepared containing buffer (500 mM KCl, 100 mM Tris–HCl, pH 8.3), MgCl\(_2\) (final concentration 1 mM) and AmpliTaq DNA Polymerase (final concentration 1.25 units/50 \(\mu \)l). For single PCR analysis, 35 \(\mu \)l of master mix solution, 5 \(\mu \)l of specific primers and 10 \(\mu \)l of reverse-transcribed cellular RNA are added. To compare the levels of mRNA in cells treated for different times without or with LPS or MTP-PE, \(\beta \)-actin is chosen to standardize the different samples. mRNA levels encoding \(\beta \)-actin did not change upon treatment of macrophages with LPS or MTP-PE (data not shown). In previous experiments, using different amounts of RNA and different amplification cycles, the amount of RNA for the different PCR reactions was then chosen so that the amount of specific amplified products increased roughly logarithmically between 25 and 35 cycles. Final PCR conditions are as followed (Perkin Elmer PCR System 2400):

\[\begin{array}{l}
\beta\text{-actin [1 ng cDNA, 0.5 \(\mu \)M primer]} \\
\text{(CTCCTTAATGTCACGCCAGATTC/}} \\
\text{GTGGGGGCGCCCCGGCCACCA),} \\
\text{94\°C/5 min, 52\°C/5 min–72\°C/2 min–94\°C/1 min} \\
\text{(30 cycles)–52\°C/2 min–72\°C/10 min–4\°C];} \\
\text{TNF-\(\alpha \)[100 ng cDNA, 0.5 \(\mu \)M primer]} \\
\text{(ATGAGCACAGAAAGCATGATC/}} \\
\text{CAGAGCAATGACTCAAAAGTA),} \\
\text{94\°C/5 min, 52\°C/5 min–72\°C/2 min–94\°C/1 min–} \\
\text{52\°C/2 min (30 cycles)–72\°C/10 min–4\°C];} \\
\text{COX-1 [10 ng cDNA, 0.5 \(\mu \)M primer]} \\
\text{(TGCAATGTCGTGAGGTCTCATCAA/}} \\
\text{CACTAAGACACCCGCTTCTTCCA),} \\
\text{94\°C/5 min, 65\°C/5 min–72\°C/2 min–94\°C/1 min–} \\
\text{65\°C/2 min (30 cycles)–72\°C/10 min–4\°C];} \\
\text{COX-2 [100 ng cDNA, 0.5 \(\mu \)M primer]} \\
\text{(ACTCACTCGTTTGATGTGGTCA/}} \\
\text{TTTTGATTAGTACTGGTGTTAAATG),} \\
\text{94\°C/5 min, 55\°C/5 min–72\°C/2 min–94\°C/1 min–} \\
\text{55\°C/2 min (30 cycles)–72\°C/10 min–4\°C];} \\
\text{iNOS [100 ng cDNA, 500 ng primer]} \\
\text{(GCTTGGCCCTGGAAGTTTTC/}} \\
\text{CGAACCTGTGTTGCCACTGTG),} \\
\text{94\°C/5 min, 65\°C/5 min–72\°C/2 min–94\°C/1 min–} \\
\text{65\°C/2 min (30 cycles)–72\°C/10 min–4\°C].} \\
\end{array} \]

10 \(\mu \)l of the PCR reaction are loaded onto a 1.5\% agarose gel. The bands (\(\beta \)-actin: 610 bp, TNF-\(\alpha \): 710 bp, COX-2:
583 bp, iNOS: 818 bp) are visualized on a transilluminator after ethidium bromide staining and, for semi-quantitative analysis, scanned densitometrically (E.A.S.Y. RH, Herolab, Germany). To compare mRNA expression in cells treated different times with or without LPS or MTP-PE, corresponding mRNA levels are first calculated as expression compared to β-actin mRNA, the resulting values of control cells are set to 1 and levels of mRNA in LPS- and MTP-PE-treated cells are expressed as ‘fold of control cells’.

Results

Release of TNF-α, nitric oxide and prostaglandins

LPS and MTP-PE induce a synthesis and release of TNF-α, nitric oxide and prostanoids in macrophages (Fig. 1). LPS induces a rapid and transient accumulation...
of TNF-α, MTP-PE-induced TNF-α release shows a lag phase of about 6h, and increases thereafter up to 48h (Fig. 1A). The release of nitric oxide (Fig. 1B) and PGD$_2$ (Fig. 1C) is almost identical for both agents. The release of PGE$_2$ after LPS is higher than after MTP-PE (Fig. 1C).

mRNA and protein levels

In order to investigate at which levels LPS and MTP-PE induce the formation of TNF-α, nitric oxide and prostanoids, corresponding mRNA and protein levels are determined by RTPCR and Western blot analysis, respectively. Figure 2 shows that unstimulated macrophages contain very small amounts of mRNAs encoding TNF-α, iNOS and COX-2. mRNAs encoding β-actin and COX-1 are expressed at much higher levels (Fig. 2). LPS induces a rapid and transient accumulation of TNF-α mRNA with a maximum at about 1.5h (Fig. 3A). In contrast, TNF-α mRNA after MTP-PE becomes detectable only after a lag phase of about 4h. Both, LPS and MTP-PE induce a rapid accumulation of iNOS mRNA (Fig. 3B). The level of iNOS mRNA after LPS peaks at about 4h, and declines thereafter. In contrast, MTP-PE induces an increase of iNOS mRNA up to 12h, which remains thereafter elevated at this level. COX-2 mRNA increases rapidly to similar levels after the addition of LPS and MTP-PE (Fig. 3C). Resting macrophages show no detectable amounts of iNOS and COX-2 protein (Fig. 4). Addition of LPS and MTP-PE induce an expression of both proteins, which becomes detectable at first after 6–8h. LPS induces a higher expression of iNOS protein (24h), COX-2 protein is higher expressed after MTP-PE.

Activation of ERK-1 and –2

Recently we demonstrated that calcium and protein kinase C isoenzymes are not involved in the actions of LPS and MTP-PE in macrophages.21 Here we show (Fig. 5), that both agents induce a rapid activation of the map kinase isoenzymes extracellular regulated kinase (ERK)-1 and ERK-2.

Activation of NF-κB and AP-1

LPS induces a rapid activation of the transcription factors NF-κB and AP-1 (Fig. 6). No activation of both transcription factors at this early time-point is seen with MTP-PE. Activation of NF-κB and AP-1 by MTP-PE becomes detectable only after a lag phase of about 5h, and is weaker pronounced than with LPS.

Effect of inhibitors of ERK-1, -2 and NF-κB on the release of TNF-α, nitric oxide and PGE$_2$

Inhibition of the map kinase isoenzymes ERK-1 and ERK-2 by PD 98059 leads to a decreased release of TNF-α, nitric oxide and PGE$_2$ (Table 1). TNF-α release after LPS and MTP-PE, and PGE$_2$ release after MTP-PE is

Table 1. Effect of PD 98059 and BAY 11-7082 on the release of TNF-α, nitric oxide and PGE$_2$*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TNF-α (% of control cells)</th>
<th>Nitric oxide (% of control cells)</th>
<th>PGE$_2$ (% of control cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>+PD 98059</td>
<td>2 ± 4</td>
<td>28 ± 9</td>
<td>37 ± 7</td>
</tr>
<tr>
<td>+BAY 11–7082</td>
<td>1 ± 2</td>
<td>4 ± 5</td>
<td>40 ± 11</td>
</tr>
<tr>
<td>MTP-PE</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>+PD 98059</td>
<td>1 ± 2</td>
<td>69 ± 12</td>
<td>1 ± 2</td>
</tr>
<tr>
<td>+BAY 11–7082</td>
<td>111 ± 2</td>
<td>126 ± 29</td>
<td>159 ± 38</td>
</tr>
</tbody>
</table>

*Macrophages (48h) are incubated in RPMI medium containing 10% newborn calf serum in the absence or presence of PD 90859 (10 μM, 4h) or BAY 11–7082 (10 μM, 1h). Thereafter, LPS (500 ng/ml) or MTP-PE (25 μg/ml) is added. TNF-α is measured 4h after LPS and 24h after MTP-PE; NO$_2$ and PGE$_2$ are measured 24h after LPS and MTP-PE in cell media as described in Materials and Methods. Values represent means±SD of four to seven experiments.
completely inhibited by PD 98059. The release of nitric oxide after LPS and MTP-PE, and of PGE\(_2\) after MTP-PE, is inhibited by PD 98059 by about 70%, 30% and 60%, respectively (Table 1). Inhibition of the transcription factor NF-\(\kappa\)B by BAY 11–7082 has no effect on the MTP-PE-induced release of TNF-\(\alpha\), nitric oxide and PGE\(_2\) (Table 1). However, the LPS-induced release of TNF-\(\alpha\) and nitric oxide is completely inhibited by BAY 11–7082. The release of PGE\(_2\) after LPS is inhibited by BAY 11–7082 by about 60% (Table 1).

Effect of PGE\(_2\) and PGD\(_2\)

PGE\(_2\), exogenously added to macrophages, inhibits TNF-\(\alpha\) release by LPS but not by MTP-PE (Table 2). In contrast, the release of nitric oxide after LPS and MTP-PE is enhanced by prior addition of PGE\(_2\). PGD\(_2\) is without any effect (Table 2). In order to investigate at which level PGE\(_2\) exerts its action, the effect of exogenously added PGE\(_2\) on the activation of map kinase isoenzymes ERK-1 and ERK-2 is determined. PGE\(_2\) has no effect on the MTP-PE-induced activation of ERK-1 and ERK-2 (Fig. 6). However, map kinase activation by LPS is completely suppressed.

Effect of LPS and MTP-PE on the cytotoxicity of macrophages

MTP-PE but not LPS activates macrophages to cytotoxicity against P815 tumor target cells (Fig. 7). Addition of neutralizing antibodies against TNF-\(\alpha\) reduced the cytotoxic effect of MTP-PE by about 75% indicating that TNF-\(\alpha\) is involved in the cytotoxic reaction.

Discussion

Here we show that LPS and MTP-PE induce a release of TNF-\(\alpha\), nitric oxide, PGE\(_2\) and PGD\(_2\) in macrophages. Both agents increase mRNA’s encoding TNF-\(\alpha\), iNOS and COX-2 indicating their action at the transcriptional level. We demonstrated recently that macrophages do not express constitutive NOS, which suggests that the observed release of nitric oxide after LPS and MTP-PE is catalysed by iNOS. The formation of prostanoids after LPS is probably due to the enhanced expression of COX-2 (Fig. 3C) and an enhanced expression of cytosolic phospholipase A\(_2\). Since MTP-PE has no effect on cytosolic phospholipase A\(_2\), prostanoic release after MTP-PE seems to be triggered only by the enhanced expression of COX-2. We could also demonstrate recently that LPS and
MTP-PE have no effect on COX-1 levels, and that the constitutive nitric oxide synthase and secretory phospholipase A₂s are not expressed in these cells.

While the release of nitric oxide and PGD₂ is almost identical for both immunomodulators, the formation of TNF-α and PGE₂ after LPS and MTP-PE is different. (1) Accumulation of TNF-α mRNA and TNF-α activity after LPS is transient, a sustained release of TNF-α is induced by MTP-PE. The finding, that PGE₂ inhibits TNF-α release after LPS, but not after MTP-PE (Table 2), indicates that the mechanisms underlying TNF-α formation are different for both immunomodulators. It has been shown recently that the inhibition of the LPS-induced TNF-α release by PGE₂ can be mimicked by cAMP, suggesting that intracellular cAMP mediates the effect of PGE₂. (2) PGE₂ release after LPS is higher than after MTP-PE. It has been suggested recently that the high PGE₂ formation after LPS might be due to an activation of the PGE₂ synthase.

We demonstrated recently that both immunomodulators do not induce an activation of the 'phosphatidylinositol cycle', of protein kinase C isoenzymes or a change of the intracellular calcium concentration. Here, we show that LPS and MTP-PE induce a rapid activation of the map kinase isoenzymes ERK-1 and ERK-2. Inhibition of map kinase by PD 98059 completely suppresses TNF-α release after LPS and MTP-PE, and PGE₂ release after MTP-PE. Release of nitric oxide and PGE₂ after LPS are partially inhibited by PD 98059. These data indicate that activation of the map kinase isoenzymes ERK-1 and ERK-2 is an essential step for TNF-α release by LPS and MTP-PE, and for PGE₂ formation by MTP-PE. Nitric oxide release, and PGE₂ formation by LPS seem only to be partially mediated by map kinase. In addition, we demonstrate here, that the transcription factors NF-κB and AP-1 are activated by LPS. Activation of both transcription factors by LPS is observed already after 30 min, and persists for more than 24 h. The activation of NF-κB and AP-1 by MTP-PE is much weaker pronounced, and becomes detectable only after 5 h. Since mRNAs encoding TNF-α, iNOS and COX-2 are expressed at much earlier time-points, it is very unlikely that NF-κB and AP-1 are involved in these actions of MTP-PE. This conclusion is supported by the finding that BAY 11–7072, an inhibitor for NF-κB, has no effect on MTP-PE-induced responses. BAY 11–7072 completely suppresses the release of TNF-α and nitric oxide by LPS, and inhibits PGE₂ release by LPS by 60% indicating an involvement of NF-κB in these actions of LPS.

The LPS- but not the MTP-PE-induced release of TNF-α is specifically inhibited by PGE₂. In contrast, nitric oxide release by LPS and MTP-PE is enhanced by PGE₂. PGE₂ has been shown earlier to exert its suppressing effect on TNF-α release by LPS at the transcriptional level. However, PGE₂ does not affect the activation of NF-κB or AP-1 by LPS. Here we show, that PGE₂ inhibits map kinase activation by LPS, but not by MTP-PE. This indicates that the mechanisms of LPS and MTP-PE leading to activation of map kinase are different.

FIG. 8. Tentative scheme for the actions of LPS (A), MTP-PE (B) and PGE₂ in macrophages.
MTP-PE, but not LPS, induces a cytotoxicity of macrophages against tumor target cells. The MTP-PE induced cytotoxicity is reduced by TNF-α neutralizing antibodies, indicating that TNF-α is involved in the cytotoxic action. The lack of cytotoxicity after LPS might be due to the transient release of TNF-α, in contrast to the sustained accumulation of TNF-α after MTP-PE. These findings are in line with the fact, that MTP-PE, when administered i.v., induces an antitumor reactivity in animal models. Recently, it has been proposed that the cytotoxicity of macrophages against the adenocarcinoma line MCA26 is mediated by TNF-α, and not by nitric oxide. Our data support these findings, since LPS and MTP-PE induce an identical release of nitric oxide, but differ in their cytotoxic potencies.

Based on the results presented here, we propose the following scheme for the regulatory role of PGE₂ in the action mechanisms of LPS and MTP-PE in macrophages (Fig. 8). LPS (Fig. 8A) activates rapidly the map kinase isoenzymes ERK-1 and ERK-2 and the transcription factors NF-κB and AP-1, which results in a synthesis and release of nitric oxide, TNF-α and PGE₂. PGE₂ reduces in a negative feedback loop the activation of ERK-1 and ERK-2, nitric oxide release is enhanced, TNF-α formation is suppressed, cytotoxicity against tumor target cells is low. MTP-PE activates rapidly map kinase isoenzymes ERK-1 and ERK-2, but not the transcription factors NF-κB and AP-1. Activation of yet unknown transcription factors results in a synthesis and release of nitric oxide, TNF-α and PGE₂. PGE₂ has no inhibitory effect on the map kinase isoenzymes ERK-1 and ERK-2, TNF-α release is not suppressed, and the macrophages show a high cytotoxicity against tumor target cells. Further experiments have to be carried out to elucidate in detail the molecular mechanisms of the regulatory function of PGE₂. These experiments include the investigation of other kinases and other transcription factors, which have been demonstrated in other cells to be involved in the action of LPS, and in the formation of TNF-α, nitric oxide and eicosanoids.

ACKNOWLEDGEMENTS. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Di 357/7–1/8–1), the Dr. E. Wetzel Stiftung and the K. H. Schott Foundation. W. G. gratefully acknowledge the assistance of Mrs. Kathryn Asman in the preparation of the manuscript.

References

Accepted 24 January 2000
Submit your manuscripts at http://www.hindawi.com