Prognostic Value of Plasma Pentraxin-3 Levels in Patients with Stable Coronary Artery Disease after Drug-Eluting Stent Implantation

Liu Haibo,1,2 Guo Xiaofang,3 Wang Chunming,2 Yuan Jie,1 Chen Guozhong,2 Cao Yong,2 Fang Yu,2 Bao Yingchun,2 Yu Wangjun,3 and Ge Junbo1

1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
2 Department of Cardiology, Yinzhou People's Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, China
3 Clinical Laboratory Center, Yinzhou People's Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, China

Correspondence should be addressed to Yu Wangjun; nbywj967@outlook.com and Ge Junbo; jbge@zs-hospital.sh.cn

Received 4 July 2014; Revised 3 November 2014; Accepted 3 November 2014; Published 24 November 2014

Academic Editor: Teresa Zelante

Copyright © 2014 Liu Haibo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pentraxin-3 (PTX3) is an inflammatory marker thought to be more specific to cardiovascular inflammation than C-reactive protein (CRP). Our aim was to assess the prognostic value of PTX3 in patients with stable coronary artery disease (CAD) after drug eluting stent (DES) implantation. Plasma PTX3 levels were measured before percutaneous coronary intervention (PCI) and at 24 h post-PCI in 596 consecutive patients with stable CAD. Patients were followed up for a median of 3 years (range 1–5) for major adverse cardiovascular events (MACEs). We found that the post-PCI plasma PTX3 levels were significantly higher at 24 h after PCI than pre-PCI, patients with MACEs had higher post-PCI PTX3 levels compared with MACEs-free patients, patients with higher post-PCI PTX3 levels (median > 4.384 ng/mL) had a higher risk for MACEs than those with PTX3 < 4.384 ng/mL, and post-PCI PTX3, cTnI, multiple stents, and age but not high-sensitivity CRP (hsCRP) were independently associated with the prevalence of MACEs after DES implantation. The present study shows that post-PCI PTX3 may be a more reliable inflammatory predictor of long-term MACEs in patients with stable CAD undergoing DES implantation than CRP. Measurement of post-PCI PTX3 levels could provide a rationale for risk stratification of patients with stable CAD after DES implantation.

1. Introduction

Pentraxin-3 (PTX3) and C-reactive protein (CRP) are members of pentraxin family, and unlike CRP which is a short pentraxin synthesized in the liver in response to various inflammatory signals and cytokines and may represent a systemic response to local inflammation [1, 2], PTX3 is a long pentraxin produced mainly by dendritic cells, macrophages, and endothelial cells response directly to the local site of inflammation [3–6], and highly expressed in the cardiovascular system [7–9], and compared with CRP, PTX3 may be a more useful inflammatory marker for localized vascular inflammation and damage in the cardiovascular system.

Inflammation has been suggested to be associated with the adverse cardiovascular events in patients with coronary artery disease (CAD) [10–12]. Percutaneous coronary intervention (PCI) induces a significant inflammatory reaction in the injured vessel wall that leads to the adverse cardiovascular events [13, 14]; PCI with coronary stent implantation has become the most common treatment modality of CAD and there are two types of coronary stent: bare-metal stent (BMS) and drug-eluting stent (DES). Recent studies have shown that PTX3 levels were increased after coronary stenting [15–17] and PTX3 is associated with the cardiovascular events in patients after BMS implantation [17, 18]. However, DES can greatly reduce incidence of cardiovascular events because of its anti-inflammatory properties compared to BMS [19], whether PTX3 is still associated with the cardiovascular events after only DES implantation is not known. Hence, in this study, we aimed to assess the long-term prognostic
value of PTX3 in patients with stable CAD after DES implantation.

2. Materials and Methods

2.1. Patient Population. Study patients were consecutively enrolled and undergoing PCI at Yinzhou People’s Hospital, Medical school of Ningbo University, between July 2009 and June 2013. Patients were enrolled if they had implanted with DES for stable CAD. This study was approved by the ethics committees of Yinzhou People’s Hospital, Medical school of Ningbo University, and all patients gave their written informed consent. Exclusion criteria included patients with acute coronary syndromes, renal dysfunction (serum creatinine > 1.5 mg/dL), severe hepatic or lung disease, chronic or acute inflammation, and malignant disease.

In this study, demographics and clinical data including age, gender, diabetes mellitus, hypertension, hyperlipidemia, current smoking, the number and type of coronary stents, Canadian Cardiovascular Society Angina (CCSA) class, and percentage of left ventricular ejection fraction (LVEF%) on admission were collected from in-hospital medical records and patient interviews.

2.2. Venous Blood Samples and Laboratory Analyses. Venous blood samples were collected before and at 24 h after PCI in all patients. Whole blood was immediately collected into a tube containing ethylene diaminetetraacetate (EDTA); then, it was centrifuged at 2000 \(\times g \) for 15 min at room temperature and the plasma was frozen for PTX3 and stored at \(-80^\circ C\) until analysis. Plasma PTX3 concentrations were measured by enzyme-linked immunosorbent assay (ELISA; Perseus Proteomics Inc., Tokyo, Japan) as reported previously [20]. This assay can measure plasma PTX3 concentration linearly between 0.1 and 20 ng/mL. Plasma PTX3 levels were measured before and at 24 h after PCI, plasma hsCRP and cardiac troponin I concentrations were determined at 24 h after PCI.

2.3. Study Endpoint and Followup. All patients underwent clinical followup with a median period of 3 years (range 1–5) for MACEs after admission, the MACEs defined as (1) cardiac death, (2) nonfatal myocardial infarction (MI), and (3) target vessel revascularization (TVR). Clinical followup after PCI was performed via office visit or telephone contact at 1, 6, and 12 months and then every 6 months thereafter. All deaths were considered to be from cardiac causes unless an unequivocal noncardiac cause could be established. At these visits, data pertaining to patients’ clinical status, all interventions, and adverse events were recorded. Clinical, procedural, and outcome data were prospectively collected by two authors (Zhang Limei and Cao Yong) who were blinded to PTX3 levels.

2.4. Statistical Analysis. All data analyses were performed using SPSS, version 17.0 (SPSS, Chicago, IL, USA). Continuous data are presented as mean ± SD and were compared with an unpaired Student’s \(t \)-test, linear regression analysis, or Mann-Whitney \(U \)-test. Categorical variables are reported as frequencies (%) and were compared with the chi-square statistic or Fisher exact test, as appropriate. Relative risk with 95% confidence intervals (CI) is presented. Univariate and multivariate Cox proportional hazards regression were used to evaluate the prognostic value of clinical and biochemical variables. Survival analysis for patients between lower and higher PTX3 levels groups was performed using the Kaplan-Meier method, and the differences between groups were assessed by the log-rank test. A value of \(P < 0.05 \) was considered significant.

3. Results

3.1. Clinical Characteristics, Followup, and Plasma PTX3 Levels. The study group consisted of 596 patients (467 males, 129 females, mean age: 65.9 ± 8.1 years). DES implantation was performed successfully in all patients; types of DES used were sirolimus-eluting stents (65.5% of the population), zotarolimus-eluting stents (21.9%), paclitaxel-eluting stents (10.5%), and other DES (2.1%).

During the median of 3 years (range 1–5) of followup, the MACEs occurred in 82 (13.8%) patients, including 22 (3.7%) cardiac deaths, 14 (2.3%) nonfatal MI and 46 (7.7%) TVR.

Firstly, we wanted to know whether PTX3 levels were increased after DES implantation, then to assess the association between the PTX3 levels and MACEs after PCI. As can be seen from Figure 1, the plasma post-PCI PTX3 levels were significantly elevated at 24 h than pre-PCI (4.35 ± 0.94 versus 3.12 ± 0.63, \(P < 0.001 \)) and pre-PCI PTX3 levels were not significant different between MACEs and events-free groups (3.19 ± 0.71 versus 3.11 ± 0.62, \(P = 0.288 \)); however, 82 patients with MACEs had higher post-PCI PTX3 levels at 24 h after PCI compared with 514 events-free patients (5.36 ± 0.79 versus 4.19 ± 0.86, \(P < 0.001 \)).

Table 1 showed patients with a cardiac event had higher concentrations of post-PCI hsCRP (\(P < 0.001 \)) and cTnI (\(P < 0.001 \)) compared with those without a cardiac event.

![Figure 1](image_url)
Patients with a cardiac event had a higher prevalence of diabetes mellitus (P = 0.047), CCSA class > II (P = 0.015), LVEF < 50% (P = 0.037), multiple stents (P < 0.001), and higher age (P < 0.001).

3.2. Clinical Characteristics according to Median Value of PTX3. Patients were grouped into 2 according to median value of PTX3 at 24h after PCI (4.384 ng/mL); the baseline clinical characteristics of the study groups are summarized in Table 2. Patients with elevated PTX3 (>4.384 ng/mL) had a higher prevalence of LVEF < 50% (P = 0.020), multiple stents (P = 0.024), and higher concentrations of hsCRP (P < 0.001) and cTnI (P < 0.001) compared to patients without elevated PTX3; there were no significant difference in other clinical characteristics between elevated PTX3 group and nonelevated PTX3 group. Correlation analysis revealed that the serum of PTX3 was weakly but significantly correlated with hsCRP (R = 0.261, P < 0.001) and cTnI (R = 0.326, P < 0.001) (Figure 2).

Table 3 displayed patients with elevated post-PCI PTX3 levels (>4.384 ng/mL) had a significant higher risk of nonfatal MI (P = 0.033), TVR (P < 0.001) and MACEs (P < 0.001) compared to nonelevated PTX3 levels group (<4.384 ng/mL); the prevalence of cardiac death was higher in elevated PTX3 levels compared with nonelevated PTX3 levels group (4.7% versus 2.7%), but there was no significant difference between them (P = 0.20).

3.3. Univariate and Multivariate Predictors of MACEs. PTX3 (P < 0.001), cTnI (P = 0.002), hsCRP (P < 0.001), age (P < 0.001), CCSA class > II (P = 0.011), LVEF < 50% (P = 0.024), Diabetes mellitus (P = 0.031) and multiple stents (P < 0.001) were significantly associated with MACEs by the univariate Cox regression analysis. In a multivariate Cox regression analysis including PTX3, cTnI, hsCRP, age, CCSA class > II, prevalence of LVEF < 50%, diabetes mellitus, and multiple stents, PTX3 (RR 2.512, P = 0.001; 95% CI, 1.284–4.701), cTnI (RR 1.284, P = 0.001; 95% CI, 1.001–1.605), and PTX3 (RR 2.132, P = 0.002; 95% CI, 1.479–3.099) were independently associated with the prevalence of MACEs (Table 4).

In the Kaplan–Meier analysis, patients with elevated PTX3 levels had a higher risk for MACEs than those patients without elevated PTX3 (P < 0.001) (Figure 3).

4. Discussion

In this cohort of patients with stable CAD after DES implantation and during the median of 3 years (range 1–5) followup, we found that (1) the plasma PTX3 levels were significantly increased at 24h after PCI than before, (2) patients with elevated post-PCI PTX3 levels (above the median value of 4.384 ng/mL) had a significantly higher risk of MACEs, (3)
Table 2: Clinical characteristic according to median value of PTX3 at 24 h after PCI.

<table>
<thead>
<tr>
<th></th>
<th>PTX3 < 4.384 ng/mL (n = 299)</th>
<th>PTX3 > 4.384 ng/mL (n = 297)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>66.27 ± 8.5</td>
<td>65.53 ± 7.8</td>
<td>0.269</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>242 (80.9)</td>
<td>225 (75.8)</td>
<td>0.136</td>
</tr>
<tr>
<td>CCSA class > II, n (%)</td>
<td>86 (28.8)</td>
<td>98 (33.0)</td>
<td>0.288</td>
</tr>
<tr>
<td>LVEF < 50%, n (%)</td>
<td>76 (25.4)</td>
<td>102 (34.3)</td>
<td>0.020</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>38 (12.7)</td>
<td>54 (18.2)</td>
<td>0.070</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>163 (54.5)</td>
<td>156 (52.5)</td>
<td>0.408</td>
</tr>
<tr>
<td>Hyperlipidemia, n (%)</td>
<td>94 (31.4)</td>
<td>84 (28.3)</td>
<td>0.726</td>
</tr>
<tr>
<td>Current smoking, n (%)</td>
<td>98 (32.8)</td>
<td>98 (33.0)</td>
<td>0.248</td>
</tr>
<tr>
<td>PTX3 before PCI (ng/mL)</td>
<td>3.11 ± 0.62</td>
<td>3.13 ± 0.64</td>
<td>0.699</td>
</tr>
<tr>
<td>cTnI (ng/mL)</td>
<td>0.205 ± 0.11</td>
<td>0.251 ± 0.16</td>
<td>0.000</td>
</tr>
<tr>
<td>HsCRP (ng/mL)</td>
<td>3.045 ± 1.12</td>
<td>3.496 ± 1.12</td>
<td>0.000</td>
</tr>
</tbody>
</table>

In-hospital therapy

- Aspirin, n (%) 299 (100) 297 (100)
- Clopidogrel, n (%) 299 (100) 297 (100)
- β-Blockers, n (%) 238 (79.6) 227 (76.4) 0.374
- ACE-I or ARB, n (%) 272 (91.0) 260 (87.5) 0.188
- Statins, n (%) 299 (100) 297 (100)

Types of DES

- Sirolimus, n (%) 197 (65.9) 193 (65.0) 0.863
- Zotarolimus, n (%) 66 (22.1) 64 (21.5) 0.921
- Paclitaxel, n (%) 29 (9.7) 34 (11.4) 0.508
- Others, n (%) 7 (2.3) 6 (2.0) 0.999
- Multiple stents, n (%) 105 (19.5) 133 (32.9) 0.024

Abbreviations as in Table 1.

Figure 2: The relationship between PTX3 and hsCRP (a) and cTnI (b) by correlation analysis.

Patients with a cardiac event had higher concentrations of post-PCI PTX3, (4) PTX3, cTnI, hsCRP, age, CCSA class > II, LVEF < 50%, diabetes mellitus and multiple stents were significantly associated with cardiovascular events by univariate Cox regression analysis, and (5) in multivariate Cox regression analysis, the plasma concentration of post-PCI PTX3, but not hsCRP, remained an independent inflammatory predictor of cardiovascular events.

These findings suggest that post-PCI PTX3 may be a more reliable and independent inflammatory predictor for early
Table 3: Risk stratification of patients after coronary stent implantation based on increased PTX3 (above the median value of 4.384 ng/mL).

<table>
<thead>
<tr>
<th>PTX3 (ng/mL)</th>
<th>Overall</th>
<th>>4.384</th>
<th><4.384</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>596</td>
<td>297</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>MACEs, n (%)</td>
<td>82 (13.8)</td>
<td>61 (20.5)</td>
<td>21 (7.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Cardiac death, n (%)</td>
<td>22 (3.7)</td>
<td>14 (4.7)</td>
<td>8 (2.7)</td>
<td>0.200</td>
</tr>
<tr>
<td>Nonfatal MI, n (%)</td>
<td>14 (2.3)</td>
<td>11 (3.7)</td>
<td>3 (1.0)</td>
<td>0.033</td>
</tr>
<tr>
<td>TVR, n (%)</td>
<td>46 (7.7)</td>
<td>36 (12.1)</td>
<td>10 (3.3)</td>
<td>0.00008</td>
</tr>
</tbody>
</table>

MACEs: major adverse cardiovascular events; MI: myocardial infarction; TVR: target vessel revascularization.

Figure 3: Kaplan-Meier curves showing incidence of cardiac event after PCI according to PTX3 (above versus below the median of 4.384 ng/mL) in patients undergoing coronary stenting. P value is calculated by log-rank test.

PTX3 increasing, and PCI procedure also induces cardiac damage which makes cTnI elevated [23, 24].

Recently, several studies have mentioned that PTX3 was associated with the adverse cardiovascular events in the patients after PCI [17, 18]. Kotooka et al. [17] reported that PCI induced a significant inflammatory reaction in the injured vessel wall and increased the plasma PTX3 concentration at 24 h in the coronary sinus and peripheral blood. Other studies also found PCI could induce an increase of PTX3 [15, 16].

PTX3 may be a more sensitive marker of local inflammatory response due to vessel injury by BMS than hsCRP and the levels of PTX3 is associated with the MACEs after PCI. DES can greatly reduce incidence of cardiovascular events because of its anti-inflammatory properties compared to BMS [19], whether post-PCI PTX3 is still associated with the cardiovascular events after DES implantation is not known. In the present study, we illustrated that post-PCI PTX3 related with the long-term MACEs and as an independent risk factor in patients after DES implantation.
Table 4: Univariate and multivariate Cox regression analysis of major adverse cardiovascular events.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analysis RR (95% CI)</th>
<th>P</th>
<th>Multivariate analysis RR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.072 (1.040–1.106)</td>
<td>0.000</td>
<td>1.041 (1.008–1.074)</td>
<td>0.013</td>
</tr>
<tr>
<td>Male</td>
<td>1.002 (0.587–1.709)</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCSA > II</td>
<td>1.762 (1.137–2.730)</td>
<td>0.011</td>
<td>1.009 (0.563–1.808)</td>
<td>0.874</td>
</tr>
<tr>
<td>LVEF < 50%</td>
<td>1.662 (1.069–2.585)</td>
<td>0.024</td>
<td>1.061 (0.591–1.906)</td>
<td>0.842</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.760 (1.053–2.940)</td>
<td>0.011</td>
<td>1.009 (0.563–1.808)</td>
<td>0.874</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.125 (0.725–1.744)</td>
<td>0.599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>1.096 (0.694–1.731)</td>
<td>0.693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoking</td>
<td>1.254 (0.797–1.973)</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTX3</td>
<td>3.233 (1.968–5.311)</td>
<td>0.000</td>
<td>2.512 (1.466–4.305)</td>
<td>0.001</td>
</tr>
<tr>
<td>cTnI</td>
<td>1.029 (1.011–1.047)</td>
<td>0.002</td>
<td>1.012 (1.004–1.284)</td>
<td>0.008</td>
</tr>
<tr>
<td>HsCRP</td>
<td>1.832 (1.529–2.195)</td>
<td>0.000</td>
<td>1.093 (0.998–1.197)</td>
<td>0.056</td>
</tr>
<tr>
<td>Multiple stents</td>
<td>2.694 (1.724–4.211)</td>
<td>0.000</td>
<td>2.401 (1.479–3.899)</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Abbreviations as in Table 1.

In addition, our finding that cTnI was associated with MACES and independence of other risk factors; the finding was consistent with previous studies that cTnI elevation after nonemergent PCI was indicative of an increase in long-term all-cause mortality as well as the composite adverse events of all-cause mortality and MI [23, 24]. Meanwhile, in the present study, we demonstrated that multiple stents was an independent predictor of cardiovascular events which is consistent with prior reports [25, 26].

There were several limitations in this study. First, although this was a prospective study, our analysis was derived from a relatively small cohort in a single-center; compared with large clinical trials, this analysis could not be regarded as statistically robust; a large population of patients after DES implantation is necessary to generalize our PTX3 findings. Second, although we assessed the plasma PTX3 levels before and at 24 h after PCI, serial measurements of PTX3 might be more useful for evaluating changes in inflammatory status, estimating risk during the followup period, and directing in- and out-patient treatments. Third, multivariate COX regression modeling although effective at adjusting for variables included in the model cannot adjust for variables not recorded in the database.

5. Conclusion

In conclusion, compared with CRP, PTX3 may be a more reliable inflammatory predictor for long-term cardiovascular events in patients after DES implantation. Measurement of plasma PTX3 may substantially improve the early risk stratification of patients undergoing DES implantation.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ Contribution

Liu Haibo and Guo Xiaofang are co-first authors.

Acknowledgments

The authors thank Zhang Zhijie and Gao Wei for taking part in statistical analyses. This study was supported by General Program (Key Program, Major Research Plan) of National Natural Science Foundation of China, no. 81230007, National Natural Science Foundation of China, no. 81200417, and the Medical Science and Technology Foundation of the Department of Health of Zhejiang Province, no. 2011ZB134.

References

