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Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We
hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the
pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of
lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40mg/kg) dramatically decreased the total
cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed
total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue.
Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to
protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating
acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.

1. Introduction

Acute lung injury (ALI) is a life-endangering syndrome fea-
tured by serious lung inflammation and noncardiogenic pul-
monary edema; acute respiratory distress syndrome (ARDS)
presents the most severe form of ALI [1]. Severe bacterial
infection is one of the most common contributors of
ALI/ARDS [2]. Although various protective strategies includ-
ing extracorporeal membrane oxygenation (ECMO), prone
position ventilation (PPV), and continuous high-volume
hemofiltration (CHVH) have been wildly used, the mortality
of ALI/ARDS is still unacceptable [3, 4]. Thus, novel effective
medicines and a more meaningful intelligence of the underly-
ing pathogenic mechanisms are urgently required.

Recent studies have illuminated the crucial role of cal-
cium in the occurrence and development of ALI [5–7]. An

increase in intracellular Ca2+ gives rise to transformations
in endothelial cell morphology and the expanding of adher-
ent junctions, leading to increasing of endothelial perme-
ability [8, 9]. The Ca2+ oscillations are also involved in
controlling neutrophil activation and endothelial cellular
inflammatory responses, including regulation of gene
expression and cell death, which are mainly modulated by
NF-κB [10–12]. Therefore, blocking calcium influx into
effector cells is an attractive therapeutic strategy for lung
injury, since it yields remission in both increases of endo-
thelial permeability and neutrophilic inflammation.

T-type calcium channels are low-voltage-activated chan-
nels, which contain three different subunits: α1G, α1H, and
α1I, also known as Cav3.1, Cav3.2, and Cav3.3, respectively
[13]. The physical roles of T-type channels have been
reported in different tissues, such as smooth muscle
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contraction [14], fertilization [15], pain neurotransmission
[16], pacing of the heart [17], or adrenal steroid biosynthesis
[18]. The effects of T-type calcium channels in pulmonary
microvascular endothelium have been also investigated [19,
20]. Wu et al. demonstrated that Cav3.1 channel is expressed
in lung microvascular endothelial cells, while lung macrovas-
cular endothelial cells do not express it [21]. Importantly,
Cav3.1 channel has been reported to regulate the expressions
of P-selectin and vWF in pulmonary microvascular endothe-
lial cells [22, 23].

In this study, we hypothesize that T-type calcium channel
is a potential target for treating ALI. A lipopolysaccharide-
(LPS-) induced ALI mice model was used because of its
reproducibility and handleability characteristics. LPS expo-
sure causes a rapid influx of neutrophils, overwhelming
release of inflammatory cytokines, and severe protein leakage
in the lung, which admirably mimic the pathophysiologic
alterations observed in ALI/ARDS patients [24]. Mibefradil
is an acknowledged T-type calcium channel inhibitor that
was first launched on the market as antihypertensive and
antianginal agent [25]. We explored the potentially protec-
tive role of mibefradil on LPS-induced lung injury model.
In addition, the protective effect of flunarizine, an antimi-
graine agent with potent inhibition of T-type calcium chan-
nel, was further evaluated.

2. Materials and Methods

Mibefradil dihydrochloride (Purity: 98.49% by LC-MS) was
purchased from MedChem Express (Shanghai, China). Flu-
narizine hydrochloride and LPS (Escherichia coli 055:B5)
were purchased from Sigma-Aldrich (St, Louis, MO, USA).
ELISA kits for examination of mouse TNF-α and IL-6 were
purchased from Dakewe Biotech Co. Ltd (Beijing, China).
Antibodies for phosphorylated p65 and β-actin were pur-
chased from Cell Signaling Technology (Danvers, Massachu-
setts, USA).

2.1. Animals and Procedures. All animal care and experimen-
tal procedures were abided by the National Institutes of
Health Guidelines for the Care and Use of Laboratory Ani-
mals and were approved by The Medical Ethics Committee
of The First Affiliated Hospital of Guangzhou Medical
University.

Male BALB/c mice (6-8 weeks old; 18-22 g) were
obtained from Experimental Animal Center of Guangdong
province (Foshan city, China) and were housed in standard-
ized conditions in animal facilities at 20 ± 2°C room temper-
ature, 40 ± 5% relative humidity with a 12h light/dark cycle.
LPS-induced ALI was processed as described in our previous
study [26]. Mice were placed in a plexiglass chamber
(20 × 30 × 40 cm) throughout the LPS exposure (30min).
LPS solution (0.5mg/mL) was aerosolized through an ultra-
sonic nebulizer (NB-150U, Omron Co., Kyoto, Japan).

Mibefradil was dissolved in saline. In a set of experiments
to investigate the effects of flunarizine, the solvent is distilled
water. Drugs were freshly prepared and intraperitoneally
injected 30min before or after LPS exposure. The dosages
of mibefradil (20 and 40mg/kg) [27, 28] and flunarizine

(30mg/kg) [29] were according to the previous studies. Mice
were sacrificed 6h after end of LPS exposure.

Bronchoalveolar lavage fluid (BALF) collection for total
cell count, as well as measurements of total protein concen-
tration and cytokines level, BALF collection was performed
as our previously described [26]. Briefly, after tracheostomy
was processed, a cannula was placed into the trachea and
tightened with surgical silks; the lungs were lavaged 3 times
with cold PBS (0.5mL for each time). A part of BALF
(0.1mL) was used for the total cell counting by using a hemo-
cytometer; the rest was centrifuged at 500 g for 10min at 4°C.
Total protein concentration and the levels of TNF-α and IL-6
in the supernatant were measured.

2.2. Evans Blue Assay. To further test the protein leakage,
Evans blue dye- (EBD-) albumin conjugate (0.5% EBD/4%
BSA solution in saline) was injected through the tail vein
(30mg/kg) 30min before sacrifice. Mice were killed by an
overdose of pentobarbitone (200mg/kg, i.p); then, the EBD
in the systemic circulation system was rinsed with saline.
After that, lungs were excised then placed in 2mL formamide
to extract EBD (72h, 42°C). Optical density was examined at
620 nm, and the EBD concentration was calculated with
expression as μg/g of tissue.

2.3. Histological Evaluation and MPO Activity Measurement.
Left lobe was fixed with 10% formalin for 48 h and then
embedded in paraffin. Sections with 5μm thick were stained
with hematoxylin and eosin. Lung injury score was per-
formed as described by previous study [30]: (1) alveolar con-
gestion, (2) hemorrhage, (3) infiltration or aggregation of
neutrophils in airspace or vessel wall, and (4) thickness of
the alveolar wall. For each subject, a five-point scale was
applied: 0, minimal (little) damage; 1+, mild damage; 2+,
moderate damage; 3+, severe damage; and 4+, maximal dam-
age. Points were added up and are expressed as median ±
range of injury score.

The rest of lung lobes were homogenized in PBS; MPO
activity in the homogenate was measured according to the
manufacturer’s instruction (Nanjing JianCheng Bioengineer-
ing Institute, Nanjing, China) and was expressed as units per
gram of protein.

2.4. Western Blot. The total protein was extracted from lung
tissues, and protein concentration was measured by the
BCA method. Protein samples were solubilized in SDS buffer
and separated on SDS-PAGE gels and then transferred to
PVDF membranes. The membranes were blocked with 5%
nonfat milk and then incubated with primary antibody
(phosphorylated p65, p65, IκB-α or β-actin) and conjugated
secondary antibody in succession. ECL detection kit (Milli-
pore, Billerica, USA) was used to detect protein bands, and
the protein signals were quantified.

2.5. Statistical Analysis. The SPSS 13.0 software was used for
data analysis. All values are expressed as means ± standard
error of themean (SEM). Data were analyzed by using one-
way analysis of variance followed by LSD test. Two-tailed p
values < 0.05 were considered statistically significant.
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Figure 1: Mibefradil decreased cell counts and inflammatory cytokines level in BALF of LPS-induced ALI mice. Mibefradil (20 and 40mg/kg)
was administrated 30min before LPS exposure. Mice were sacrificed 6 h after LPS exposure and bronchoalveolar lavage was processed. The
total cell number (a), TNF-α (c), and IL-6 (d) levels in BALF were measured. (b) Six hours after LPS exposure, mice were sacrificed and the
right lung tissues were homogenized with PBS for MPO assay. All values are mean ± SEM (n = 6). #p < 0:05, significant compared with
vehicle-treated control; ∗p < 0:05, significant compared with LPS alone; ∗∗p < 0:01, significant compared with LPS alone.
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Figure 2: Mibefradil decreased total protein concentration in BALF and inhibited Evans blue extravasation in lung tissue. Mibefradil (20 and
40mg/kg) was administrated 30min before LPS exposure. Mice were sacrificed 6 h after LPS challenge and bronchoalveolar lavage was
processed. (a) The concentration of total protein in BALF was measured. (b) Evans blue dye (30mL/kg, i/v) was injected 0.5 h before
sacrifice. Evans blue accumulation in the lung tissue was examined to test pulmonary vascular permeability. All values are mean ± SEM
(n = 6). #p < 0:05, significant compared with vehicle-treated control; ∗p < 0:05, significant compared with LPS alone; ∗∗p < 0:01, significant
compared with LPS alone.
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3. Results

3.1. Mibefradil Decreased Cell Counts and Inflammatory
Cytokines Level in BALF of LPS Challenged Mice. Inflamma-

tory cell influx is a key event at the early stage of ALI. As
shown in Figure 1, LPS exposure caused a remarkable cell
influx into BALF. Pretreatment of 20 and 40mg/kg mibefra-
dil markedly suppressed LPS-induced cell influx. In addition,
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Figure 3: Mibefradil attenuated histological changes in lung tissues of LPS-induced ALI mice. Mibefradil (20 and 40mg/kg) was treated 0.5 h
before LPS challenge. Mice were sacrificed 6 h after LPS exposure. The left lung was fixed, embedded in paraffin, and cut into 5 μm slices.
Histological assay was conducted by light microscopy after H&E staining (a), and lung injury was scored (b). All values are mean ± SEM
(n = 6). #p < 0:05, significant compared with vehicle-treated control; ∗p < 0:05, significant compared with LPS alone; ∗∗p < 0:01, significant
compared with LPS alone.
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Figure 4: Mibefradil inhibited p65 phosphorylation and IκB-α degradation in lung tissues of LPS-induced ALI mice. Mibefradil (40mg/kg)
was administrated 30min before LPS exposure. Mice were sacrificed 6 h after LPS exposure, and the whole protein extraction from lung
tissues was processed. The phosphorylated p65 and IκB-α expressions were measured by Western blotting, and the protein signals were
quantified. All values are mean ± SEM (n = 4). #p < 0:05, compared with vehicle-treated control; ∗p < 0:05, significant compared with LPS
alone; ∗∗p < 0:01, significant compared with LPS alone.
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mibefradil also significantly lowered LPS-induced MPO
activity in lung tissue, which is a key indicator of neutrophils
infiltration in tissue.

We also examined the inflammatory cytokine levels in
BALF. LPS exposure resulted in obviously increased levels
of TNF-α and IL-6 in BALF, whereas these rises were dose-
dependently inhibited by mibefradil.

3.2. Mibefradil Decreased Protein Concentration in BALF and
Inhibited Evans Blue Extravasation in Lung Tissue. Vascular
leakage is a crucial event of lung injury; therefore, we mea-

sured the total protein level in BALF. As shown in Figure 2,
LPS exposure caused a dramatic elevation of protein concen-
tration in BALF, from 0:133 ± 0:007 to 0:376 ± 0:024mg/mL.
Pretreatment with 20 and 40mg/kg mibefradil significantly
inhibited total protein level in BALF of LPS challenged mice.
In parallel with the total protein levels, pretreatment with
mibefradil also suppressed LPS-induced increase in Evans
blue extravasation.

3.3. Mibefradil Attenuated LPS-Induced Pathological
Alterations in Lung Tissues. The pulmonary histopathology
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Figure 5: Therapeutic effects of mibefradil on LPS-induced lung injury in mice. Mibefradil (20mg/kg) was injected 30min after LPS
exposure, and mice were sacrificed 6 h after LPS exposure. The total cell counts (a) in BALF, MPO activities (b) in lung tissue, total
protein concentration (c) in BALF, extravasation of Evans blue dye (d) in lung tissue, TNF-α (e) and IL-6 (f) levels in BALF, and
pathological changes (g) in the lung were measured. All values are mean ± SEM (n = 6). #p < 0:05, compared with vehicle-treated control;
∗p < 0:05, significant compared with LPS alone; ∗∗p < 0:01, significant compared with LPS alone.
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was evaluated by HE staining and lung injury score system.
Compared with control group, lung sections in mice treated
with LPS showed notable neutrophils infiltration, alveolar
hemorrhage, and interalveolar septal thickening. Treatment
with mibefradil improved pulmonary histological changes
in LPS challenged mice (Figure 3).

3.4. Mibefradil Inhibited LPS-Induced NF-κB Activation in
Lung Tissues. NF-κB plays a center role in the regulation of
inflammation, and phosphorylation of p65 and degradative
IκB-α are key signs of NF-κB activation. We measured phos-
phorylated p65 and IκB-α levels in lung tissue by Western
blot method. As shown in Figure 4, mibefradil inhibited

phosphorylation of p65 and degradation of IκB-α, which
demonstrated that mibefradil suppressed NF-κB pathway
activation in lung tissues of LPS challenged mice.

3.5. Therapeutic Effects of Mibefradil on LPS-Induced Lung
Injury. To additionally evaluate the therapeutic effects of
mibefradil on LPS-induced lung injury, mice were treated
with mibefradil (20mg/kg) 30min after LPS exposure. As
Figure 5 shown, mibefradil attenuated the cell influx, protein
leakage, and inflammatory cytokines release in ALI mice.

3.6. Flunarizine Protected Mice from LPS-Induced ALI. To
additionally verify the protective properties of T-type
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Figure 6: Preventive effects of flunarizine on LPS-induced ALI. Flunarizine (30mg/kg) was treated 30min before LPS exposure, and mice
were sacrificed 6 h after LPS exposure. The total cell counts (a) in BALF, MPO activities (b) in lung tissue, total protein concentration (c)
in BALF, extravasation of Evans blue dye (d) in lung tissue, TNF-α (e) and IL-6 (f) levels in BALF, and pathological changes (g) in the
lung were measured. All values are mean ± SEM (n = 6). #p < 0:05, compared with vehicle-treated control; ∗p < 0:05, significant compared
with LPS alone; ∗∗p < 0:01, significant compared with LPS alone.
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calcium channel inhibitor on lung injury, we investigated
the pharmacological activity of flunarizine, another proven
T-type calcium channel inhibitor which has been widely
prescribed for migraine prophylaxis, on LPS-induced ALI
mice model. As expected, preventive treatment with 30mg/kg
flunarizine significantly suppressed the LPS-induced cell
influx, protein leakage, and inflammatory cytokines release
(Figure 6). Posttreatment with 30mg/kg flunarizine also
inhibited the pulmonary inflammation; however, the effective-
ness was lesser than the preventive effect (Figure 7).

4. Discussion

In this study, we reported that mibefradil significantly
decreased LPS-induced total cell number, protein concentra-
tion, and Evans blue extravasation, as well as TNF-α and IL-6
levels in BALF. Mibefradil also suppressed MPO activity and
attenuated pathological alterations in lung tissue of LPS
challenged mice. In addition, mibefradil suppressed NF-
κB activation, a central transcription factor regulating gene
expression of various inflammatory mediators. Since inflam-
matory cells influx, protein leakage, and cytokine outburst
are the crucial events of ALI in humans and animals [1],
our results demonstrated that mibefradil protected mice
against LPS-induced lung injury.

The calcium channels are now receiving more attention
as novel therapeutic targets of lung injury [5, 31, 32]. In
general, Ca2+ channels can be classified based on their acti-
vation pattern and are divided into voltage-dependent cal-
cium channels (VDCC) and non-VDCC. VDCC channels
contain L-, N-, P-, Q-, R-, and T-types, while non-VDCC
channels include store-operated Ca2+ entry channels (SOCC),
receptor-operated Ca2+ entry channels (ROCC), and mechan-
osensitive Ca2+ entry channels (MSCC) [33, 34]. Transient
receptor potential (TRP) family is the main constituent part
of non-VDCC channels; recent studies have demonstrated
that blocking TRPV4 and TRPC6, two members of TRPs,
resulted in significant improvement of rodent models of lung
injury [7, 35–37]. Furthermore, inhibition of STIM1, a criti-
cal regulator of TRPs, also dramatically prevented mice from
experimental lung injury [38]. Inspired by these initial prom-
ising results, we further investigated the potential effects of
VDCC and found that pharmacological inhibition of T-
type calcium exhibited marked therapeutic benefit on LPS-
induced lung injury. Because lacking of selective inhibitor
on Cav3.1, Cav3.2, or Cav3.3, we did not illuminate which
subunit is the primary target of lung injury. Previous studies
have reported that Cav3.1 forms functional T-type calcium
channels in pulmonary microvascular endothelial cells, and
the secretions of von Willebrand factor (vWF) as well as P-
selectin were selectively regulated by Cav3.1 in pulmonary

Con LPS LPS+Flu
0

200

400

To
ta

l c
el

ls 
(1

03 /m
L) 600

800 #

⁎

(a)

0.0

0.2

0.4

0.6

M
PO

 ac
tiv

ity
 (U

/g
)

0.8 #

Con LPS LPS+Flu

(b)

To
ta

l p
ro

te
in

 (m
g/

m
L)

Con LPS LPS+Flu
0.0

0.1

0.2

0.3

0.4

#

⁎

(c)

Con LPS LPS+Flu
0

10

20

30

40

Ex
tr

av
as

at
io

n 
of

ev
an

s b
lu

e d
ye

 (𝜇
g/

g)

#

(d)

Con LPS LPS+Flu

TN
F-
𝛼

 (n
g/

m
L)

0

1

2

3

4

5

6

7
#

(e)

Con LPS LPS+Flu

IL
-6

 (n
g/

m
L)

0.2

0.0

0.4

0.6

0.8 #

⁎

(f)

Figure 7: Therapeutic effects of flunarizine on LPS-induced lung injury. Flunarizine (30mg/kg) was injected 30min after LPS exposure, and
mice were sacrificed 6 h after LPS exposure. The total cell counts (a) in BALF, MPO activities (b) in lung tissue, total protein concentration (c)
in BALF, extravasation of Evans blue dye (d) in lung tissue, and TNF-α (e) and IL-6 (f) levels in BALF were measured. All values are
mean ± SEM (n = 6). #p < 0:05, compared with vehicle-treated control; ∗p < 0:05, significant compared with LPS alone; ∗∗p < 0:01,
significant compared with LPS alone.
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capillary endothelium [19, 22, 23]. These data reminded us
that inhibition of Cav3.1 may be the contributor against lung
injury. However, more studies of experimental lung injury
models based on transgenic animal technology are needed.

Identifying new uses for existing drugs is one way to
avoid the current costly and time-consuming status of drug
discovery. Because existing drugs have known pharmacoki-
netics and safety profiles, the pharmacokinetic and toxico-
logical experiments could probably be eliminated [39].
Although mibefradil has been withdrawn in 1998 because
of severe drug interactions, there are still a few drugs with
potential inhibitory effect on T-type calcium channel in the
market, such as flunarizine, penfluridol, and ethosuximide
[40, 41]. Flunarizine is one of the most widely prescribed
medicine for migraine prevention. Additionally, flunarizine
is used as a first-line medication for migraine prophylaxis
in children and adolescents because of its satisfactory safety
and efficacy profiles [42]. Previous studies reported that flu-
narizine potently inhibited T-type calcium channel in ven-
tricular myocytes [43, 44], aorta smooth muscle cells [45],
granulosa cells [46], pulmonary microvascular endothelial
cells [21], and spermatogenic cells [47]. In this study, we
found that preventive treatment with flunarizine significantly
inhibited LPS-induced protein leakage, cell influx, and
inflammatory cytokine release in BALF and improved the
pathologic changes in lung tissues. These results verified the
protective effect of T-type calcium channel inhibitors on lung
injury. What is more, since flunarizine has acceptable safety
and tolerability for long-term usage, further clinical works
are warranted to explore the potential of this drug in the pre-
vention of ALI.

5. Conclusion

In summary, our study demonstrated that T-type calcium
channel inhibitors may be beneficial for treating lung injury.
The key role of T-type calcium channel in the acute lung
injury is encouraged to be further investigated.
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