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Mobile services infrastructure for frailty
diagnosis support based on Gower’s
similarity coefficient and treemaps
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Abstract. The early detection and diagnosis of frailty is important in improving the quality of elderly life. Physicians must take
many factors into account to achieve an objective and standardised method of frailty assessment. In this work, we present a
novel mobile service infrastructure to improve the accuracy of frailty diagnosis in a population of elders, focusing on the main
frailty risk factors and applying similarity algorithms based on Gower’s coefficient. In addition, we have developed a mobile
application to obtain the assessment results from the implemented services. The results are displayed on the mobile device
using hierarchical visualisation structures known as treemaps. The system has been evaluated as a frailty diagnosis tool in a
group of elderly patients.
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1. Introduction

Frailty in the elderly is closely related to aging and dependence. Aging leads to frailty, which may
result in a state of dependence. The natural process of aging is characterised by a loss of physical,
cognitive and other abilities. However, an objective definition of frailty remains elusive. In 1988, Wood-
house [25] defined the frail elderly as individuals over 65 years of age who depend on others for their
basic needs. Gillick [7] defined frail elderly people as “old debilitated individuals who cannot survive
without substantial help from others”, emphasising the social consequences of frailty. Frailty is a condi-
tion that increases the risk of disability and dependency in the elderly. In contrast to old age, frailty and
dependence are often reversible states; however, aging is the main cause of frailty. Fried [5] proposes
a phenotype of frailty based on the clinical observed symptoms and signs of the syndrome. Fried spec-
ifies out five general criteria to determine whether an elder is frail: weight loss, weakness and fatigue,
decreased grip strength, slow gait speed and low physical activity.

Many variables must be considered in the detection and diagnosis of frailty, including the following
factors:

– Medical: Presence of chronic diseases, gait disturbance, sensory deprivation, recurrent falls, inac-
curate perception of health, polypharmacy, hospitalisation.
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– Functional: Dependence in the basic activities of daily living (BADL) or activities of daily living
(ADL) and instrumental activities of daily living (IADL).

– Socio-economic: Living alone, recent widowhood, age over 80 years, low incomes.
– Cognitive: Depression, cognitive impairment.
– Institutional: Admission to elderly homes.

This list includes a large number of parameters and variables that must be considered, as discussed
extensively by Hamerman [12]. Frailty is currently studied based on some but not all of the above criteria.
Obtaining a global and accurate index or indicator to define the state of frailty in an elder is a complex
task based on the following information:

– Global scores from standard questionnaires completed by doctors
– An overview of the elder and his environment
– Measures obtained using medical instruments
– Analysis of lab reports from the elderly patient
In practice, doctors use only a small portion of the parameters related to these items in the frailty

assessment, and use their subjective experience as the main tool in the final diagnosis.
The use of mobile technologies and service-oriented approaches provide new methods for diagnosis

support in frailty assessment and other medical areas. We therefore adopted the following hypothesis in
this research: essential information regarding the frailty assessments of individuals in an elderly pop-
ulation can be obtained by objectively analysing a broad set of relevant parameters through different
algorithms implemented as web services and deployed in mobile devices. In this paper, we present a
novel mobile service designed to generate accurate and centralized frailty assessments. We focus on the
most common frailty parameters according to the literature and the geriatricians experience, as described
in the following sections, and implement our proposal using similarity algorithms. The final results of
the frailty assessment are displayed on the mobile device using treemaps.

The paper is organised into 7 sections. Section 2 discusses previous work on the use of new tech-
nologies in healthcare and existing rudimentary approaches to frailty diagnosis, including classification
methods based on the similarity concept. In Section 3, we provide an overview of the cluster analysis
stages and similarity algorithms. We describe the application of Gower’s similarity algorithm to frailty
assessment in Section 4. In Section 5, we describe the proposed service in detail, including its deploy-
ment on a mobile device. Section 6 evaluates the proposal based on experimental results from a group
of selected elders. Finally, we conclude in Section 7.

2. Related work

New technologies are currently used in healthcare environments for many purposes, including
telemedicine, patient monitoring, location and identification tasks, emergencies and clinical information
management among others. The incorporation of mobile devices is revolutionising this heterogeneous
field, and there is a growing body of research on the use of mobile technologies in supporting the daily
medical tasks of individuals. For example, Villarreal [24] proposes a mobile system for patient diabetes
monitoring. Pinnock [17] introduces an asthma monitoring system using mobile phones, which enables
the patient to self-manage his or her disease through feedback and reminders of appropriate actions.
Similar systems have been proposed for the mobile monitoring of many types of diseases and clinical
tasks. However, the use of new technologies and mobile devices is not widespread in frailty domain.
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In the study of frailty, it is important to identify the relevant factors in the frailty assessment. In
Section 3.1, we describe the factors used in our work, based on the literature and the variables most
commonly included in related research. Several alternative approaches to frailty analysis have also been
proposed. Jones [14] introduces a frailty index based on a detailed geriatric assessment, in which a set of
variables such as balance, communication, cognitive state, nutrition, continence, ADLs and comorbidity
are co-analysed. However, Jones concluded that the optimal approach to frailty assessment remains
undetermined. Along similar lines, Searle et al. [18] proposed a frailty quantification procedure based
on a dataset including coded non-numerical variables.

Gobbens et al. [8] introduce a conceptual framework in which the most important factors related to
frailty are determined experimentally. The experiments measure the cognitive function, strength, bal-
ance, nutrition, physical activity and mobility of the patient; social and psychological factors are empha-
sised less in this study. The importance of the physical condition of the patient in frailty assessments is
emphasised in many studies including variables measured while the patient is engaged in physical activ-
ity. Accelerometer-based applications for the collection and analysis of movement data are therefore an
important component of mobile devices designed to assess frailty (see Section 3.1).

Following the collection of the data on the frailty variables, a thorough analysis must be performed to
provide useful support to the end users, in this case physicians. Many methods are available for analysing
the entire set of selected variables. Two of the main techniques based on observations are cluster analysis
and classification mechanisms. Gower’s method for assessing the similarity between each pair of items
in a population is one of the most powerful analysis methods owing to its favourable properties [15]. For
example, Gonçalves et al. [9] use the Gower distance (in addition to several other measures) to determine
the genetic similarity between several tomato seeds.

Most studies that use similarity methods are focused on the analysis in characteristics between differ-
ent species of animals or plants. However, these methods can also be extended to other areas of research.
In a clinical context, classification and similarity mechanisms are used in the analysis of diseases. For
example, Socransky [20] presents an approach based on cluster analysis and the Gower coefficient to
estimate the extent of periodontal disease in 22 patients. Gelnarová [6] performs a comparison between
three classification methods, including one of which uses the Gower coefficient of similarity, in the
diagnosis of very early stage prostate cancer in a group of 826 patients. In these examples, similarity
mechanisms based on Gower’s coefficient are applied in a clinical context. However, frailty analysis
using classification methods is not widespread. To our knowledge, classification methods and similarity
concepts have not been used previously in mobile technologies for decision making related to frailty
diagnosis.

3. Cluster analysis and similarity algorithms

Clustering is a classification technique that divides data into groups, known as clusters, which are
meaningful, useful, or both. These groups of objects share common characteristics and play an important
role in how people analyse and describe the world. Human beings are skilled at dividing objects into
groups (clustering) and assigning particular objects to these groups (classification) [22]. In automatic
clustering, each group must be homogeneous with respect to several characteristics, i.e., the observations
within each group must be similar to one another.

Cluster analysis algorithms involve three major stages:
1. Selection of the relevant variables. This stage allows us to characterise the objects that will be

categorised based on relevant criteria.
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Fig. 1. Relevant clinical variables in frailty assessment. ADL indicates: Activities of daily living; CRP indicates: Cognitive
scale from “Cruz Roja Spain” at http://www.cruzroja.es; ENT indicates: Ear, Nose and Throat disorders.

2. Normalisation of the variables. A normalisation procedure is often necessary because the selected
variables may have different types (e.g., quantitative vs. qualitative) and units.

3. Calculation of the similarity measures. The similarity measure indicates the strength of the rela-
tionship between two objects.

We consider a single initial group, described in detailed in Section 6, to illustrate the function of the
developed service.

3.1. Selection of the relevant variables

In the frailty diagnosis literature, certain factors are more important than others. Espinoza [2], for
example, identifies a group of possible risk factors based on the frailty phenotype and a systematic
review of previous works. However, the relative importance of the various factors is not discussed in a
quantitative fashion.

On the one hand, most variables related to frailty are obtained from the patient record (e.g., from test
scores and scale ratings, results of lab reports, and general patient data). Social and psychological factors
are not tipically considered because they are not a directly connected to the patient record. Many doctors
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Table 1
Classification of frailty factors

Binary (values) Qualitative (values) Quantitative – numeric value
Requires Help (No/Yes), Gender (Male/Female), De-
mentia (0/1), Depression (0/1), Incontinence (0/1),
Immobility (0/1), Recurrent falls (0/1), Polyphar-
macy (0/1), Comorbidity (0/1), Sensory deprivation
(0/1), Pressure ulcer (0/1), Malnutrition (0/1), Ter-
minal illness (0/1), Cardiovascular problems (0/1),
Neurological problems (0/1), Respiratory problems
(0/1), Digestive problems (0/1), Endocrine (0/1), Or-
thopaedic problems (0/1), Osteomuscular problems
(0/1), Eye disease (0/1), ENT (0/1), Dermatological
problems (0/1)

Independence in ADL
(independent/mild
dependence/moderate
dependence/major
dependence/serious
dependence)

Age, Size, Weight, BM, BMI, Fat mass,
Lean mass, Total water, Drug number,
Tinetti gait score, Tinetti balance score,
Barthel index, Lawton score, Get-up
and go, Total protein, Serum albu-
min, Cholesterol, Triglycerides, Blood
iron, Ferritin, Vitamin B12, Serum folic
acid, Serum transferrin, Leukocytes,
Lymphocytes, Hemoglobin, Calcium.
MMS, CRP

and geriatricians agree that frailty assessment must incorporate variables from several clinical areas.
Figure 1 shows the most common areas and variables taken into account in clinical frailty assessment.

The value of each factor may be binary, discrete or continuous. In Table 1, we classify each variable as
binary, qualitative or quantitative according to the geriatric criteria. Thus, for example all geriatric syn-
dromes are considered binary because they may or may not appear. There are cases such as “Respiratory
problems” in which a single symptom determines the true value (or 1) and other such as “immobility”
evaluate that the patient can not move without help (e.g., if he is bedridden). The type of each variable
must be provided as input to the similarity algorithm.

Moreover, not all variables have the same degree of importance in frailty assessment. Geriatricians
typically evaluate the importance of each variable depending on the context and particular case. For
example, a higher emphasis may be placed on functional variables in a case where the patient is limited
by functional deficits. Similarity algorithms allow different weights to be assigned to different variables.

According to most practitioners, physical activity analysis is essential because it offers substantial
information regarding the functional level of an individual. In particular, gait analysis using the tests
introduced by Tinetti [23] and Barthel [1] provides a reliable measure of frailty. The development of
accelerometers and their integration into mobile devices therefore facilitates an objective analysis of
the physical conditions of a broad range of elderly individuals. Accelerometer sensors certainly provide
far more information compared to current tests. In [4], we describe a set of characteristics known as
dispersion measures that can be determined from the values provided by the accelerometer. These new
quantitative variables (each calculated for the three coordinate axes) are as follows: Arithmetic mean,
Standard deviation, Amplitude, Absolute mean difference, Acceleration mean, Variance and Pearson’s
coefficient of variation.

All of these variables will be included in the new dispersion measures group of risk indicators for
frailty assessment.

3.2. Normalisation of the variables

All of the identified variables are normalised or standardised before the similarity calculation so that
different instances of a variable (e.g., weight) are measured in the same units (e.g., kilos). Furthermore,
the formulas used to determine the similarity coefficients are different depending on the type of each
variable (binary, qualitative or quantitative), as discussed in the next section. Therefore, if the patient
records included variables measured using different metrics, then the system requires a normalisation
procedure to convert all of the measurements to the same units.
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3.3. Calculating the similarity measures

One of the main components of clustering analysis is the calculation of the degree of similarity be-
tween individuals. There are several methods of calculating the similarity matrices, dissimilarities and
distances [3] between individuals in a population.

The appropriate similarity algorithm may be different in each case, depending on the type of the vari-
ables (binary, qualitative or quantitative). For example, if the entire set of variables is binary, then the
Jaccard similarity coefficient [13] is one of the most useful measures. If all of the variables are qualita-
tive, then we must choose an alternative method. In this case, Everitt [3], for example, recommends an
explicit conversion of the previous variables to binary form. However, when mixed variables (binaries,
qualitative and quantitative) are included Gordon [10] for example, suggests converting the different
variables to the same scale (binary). In addition, there is general agreement on the use variables of
different types only as a complement to interpret the final results [21].

Gower’s general similarity coefficient is currently one of the most popular measures of proximity or
similarity for mixed data types. The Gower coefficient [11] make it possible to determine the degree
of similarity between two individuals or cases (i,j) represented by binary, qualitative and/or quantitative
data. The Gower coefficient is defined in Eq. (1).

Sij =

∑p
k=1WijkSijk∑p

k=1Wijk
(1)

where:
– Sijk denotes the contribution from the kth variable.
– Wijk is usually 1 or 0 depending on whether the comparison is valid for the kth variable. If differ-

ential variable weights are specified, then Wijk is the weight of the kth variable. If the comparison
is not valid, then Wijk is 0.

– The effect of the denominator is to divide the sum of the similarity scores by the number of variables
(or by the sum of their weights if the variable weights are specified).

Gower defines the value of Sijk for quantitative variables as in Eq. (2).

Sijk = 1− |xik − xjk|
Rk

(2)

where:
– Rk is the range of values for the kth variable. For quantitative variables Sijk ranges between 0 and

1, applying the formula |xmax − xmin|.
For binary and qualitative data, we take Sijk = 1, if xik = xjk, or Sijk = 0, if xik �= xjk.
As noted above, the weight Wijk for the comparison of the kth variable is usually 1 or 0. However,

if we assign differential weights to the variables, then Wijk is either the weight of the kth variable or 0,
depending on whether the comparison is valid. The similarity calculation can therefore account for the
relative importance of each variable (given by the weight).

If the weight of any variable is zero, then the variable is effectively ignored in the calculation of the
proximities and similarities. These variables are “masked” in the clustering and classification; however,
they may be taken into account to assist in the interpretation of the cluster analysis.

Given the similarity coefficient, we can also determine the dissimilarity coefficient between two indi-
viduals as in Eq. (3):

Dijk = 1− Sijk (3)
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Table 2
An excerpt of frailty factors for 4 patients. The factors considered in this example are the following: Weight, Body Mass
Index (BMI), level of Activities of Daily Living (ADL), Depression syndrome, and Total Protein and Blood Iron as biological
indicators

Weight (Kg) BMI ADL level Depression Total protein (g/dl) Blood iron
Patient 1 74,5 26 Independent 0 7,2 125
Patient 2 67 28 Independent 1 7,1 59
Patient 3 54,8 29 Independent 0 6,4 104
Patient 4 57,3 22 Mild dependence 0 6,4 32

Fig. 2. Gower’s coefficient formula for similarity calculation based on data from Table 2.

4. Application of Gower’s similarity coefficient

Gower’s algorithm comprises the core of the service developed in this paper. The calculation of the
similarity coefficients from the patient record data involves working with mixed variables and obtaining
diagnostics depending on the particular situation. Gower’s algorithm is therefore suitable in this study.
The properties of Gower’s Similarity Coefficient have been extended as follows by Londoño [16]:

– Most of the clinical characteristics of the species involve variables of multiple types (quantitative,
qualitative, binary), and Gower’s Coefficient is suitable for calculating similarities for mixed vari-
ables.

– Gower’s Coefficient is appropriate for databases in which there are missing values or observations.
These missing values do not “break” the calculation of the final results. This property is very useful
in taxonomic studies due to the frequent occurrence of missing observations or values.

– Through the use of this coefficient, it is possible to weigh the variables independently, depending on
the importance assigned to each variable at each moment. Physicians can thereby perform a frailty
assessment focusing on specific areas such as physical, nutritional, cognitive or anthropometric
factors.

Based on the properties of Gower’s coefficient, we propose that the similarity coefficient be calculated
accounting for the frailty variables that were defined previously in Section 3.1. An example similarity
calculation using Gower’s Algorithm with a limited number of variables (see Table 2), is shown in Fig. 2
for 2 patients.

In this case, there are four quantitative variables (weight, body mass index (BMI), total protein, blood
iron), one qualitative variable (ADL level) and one binary variable (depression). the weight and BMI
variables have an importance of 100% (their weights are 1), while the weights of the remainder of the
variables are as follows: 0,8 (importance of 80%) for total protein, 0,75 for blood iron, and 0,1 for the
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Fig. 3. Frailty mobile application screenshots. (a) Movement analysis and calculation of the dispersion measures related to gait
exercise using the accelerometer built into the mobile phone. (b) Visualisation of the frailty variable values. High values are
coloured in red, low values are coloured in blue, variables without values are coloured in grey and, variables in green represent
normal values. (c) Global weights of each group of variables. (d) Editing of specific weights for the anthropometric variables
group.

ADL level and depression variables. Based on Gower’s formula, the similarity result between patient 1
and patient 2 is 0,63. Using this algorithm for the entire group of patients, we can obtain a similarity
matrix based on Gower’s coefficient as in Eq. (4). Geriatricians are thereby provided with a general
method for determining the frailty state of an elderly patient in comparison to other patients in an elderly
population.

S =

⎡
⎢⎢⎣

1 0, 63 0, 36 0, 18
0, 63 1 0, 49 0, 34
0, 36 0, 49 1 0, 52
0, 18 0, 34 0, 52 1

⎤
⎥⎥⎦ (4)

Clearly, each patient can be studied several times, supplying new values for the frailty variables. We
therefore use an instance database rather than a patient database, where an instance consists of a complete
set of frailty variables associated with a given patient at a given moment [4].

5. Service implementation and deployment

The main goal of our service is to obtain a group of similarity results embedded in representable
structures on a mobile device. We therefore propose the initial development of a mobile application
to centralize the tasks involved in frailty assessment. The application must collect the relevant variables
from the patient record, facilitate the visualisation of the variables, configure the inputs and weight values
for a specific frailty analysis, and calculate the new group of relevant variables related to dispersion
measures (see Section 3.1) using an accelerometer-enabled mobile phone. All of these features have been
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implemented in an Android1 mobile application. Figure 3 shows several screenshots of this application
for a particular patient instance.

Using a service-oriented approach, the information collected by the mobile phone is sent to the web-
service back-end to be analysed, calculating the corresponding frailty results and sending these ones to
the mobile application at run time through the network. We have developed the web services required
for this fact as software components of a more complete system. In this section, we will focus on the
Gower’s similarity service and the visualisation of the final results on the mobile device. The Gower
similarity service is divided into five stages, as described below.

5.1. Ranges calculation

First, we must determine the range of each quantitative variable. Given a group of variables, when
every variable in the group is quantitative, we can apply Eq. (2), in Section 3.3. However, there are
both groups whose variables are quantitative and qualitative (such as the functional group) and groups in
which all of the variables are qualitative or binary (the geriatric syndromes and ADL level groups). In the
case of groups with mixed variables, we discriminate qualitative and binary variables. Algorithm 1 shows
the pseudocode for a typical range calculation on groups with mixed (or only quantitative) variables. The
output of the algorithm consists of an array of the calculated ranges for each variable in each group.

Algorithm 1 Range Calculation Algorithm (for a specific group of variables)
Define double Array of ranges
Connect to the System Database
Get frailty variables of the group (for all stored instances)
for each variable do

if variable is quantitative then
Get Range |MAX(xi)−MIN(xi)|
Cast to double type (if necessary)
Save into double Array of ranges

end if
end for
Return double Array of ranges.

In the case of the dispersion measures group, we must also consider the specific activity (e.g., gait) to
be an input argument in the previous algorithm because the values of each dispersion variable may refer
to more than one stored activity.

5.2. Weight calculations

First, the weights of all variables are initialised to one by default, i.e., the maximum of importance
(100%) is assigned to all of the variables. However, changes in the weights may be required by the
physician following a more thorough analysis in a particular domain (e.g., the anthropometrical domain).
In this case, each individual variable may have a specific weight. When we perform a study of a patient,
we account for each specific instance from that patient through the weights assigned to each group of
variables (the total weight of a group is given by the sum of the weights of all variables in that group).

1http://www.android.com/.
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Clearly, the assigned weights depend on the doctor. We therefore propose the development of pro-
graming mechanisms that are accessible from the mobile application user interface (UI) to facilitate this
task, as in Figs 3b and 3d.

Algorithm 2 shows the pseudocode for the calculation of the weights of the frailty variables for a
specific instance and a given group.

Algorithm 2 Weight Calculation Algorithm (for a specific group of variables and a given instance)
Define Weight Array (where a weight object consists of a variable name and percentage value).
Connect to the System Database
Get the weights of the frailty variables of the group (for the specified instance)
for each variable do

if no weights assigned, then
Create and store a new weight with importance = 1 by default

end if
Get the name and weight of the variable to create a weight object
Save in Weight Array

end for
Return Weight Array

Note that the sum of all variable weights is a required input in Gower’s formula. Following the weight
calculation, it is therefore necessary to obtain the sum of the weights for each group of variables.

5.3. Calculation of Gower’s coefficient

The next step in the proposed service is the calculation of Gower’s Coefficient. Based on the as-
sumptions described in Section 4, the calculation of the global value of Gower’s Coefficient requires the
computation of the partial coefficient numerators for each group of frailty variables. Algorithm 5.3 shows
the pseudocode for the global Gower’s Coefficient calculation. This calculation is always performed on
the patient instance under study in relation to a second instance.

Algorithm 3 Global calculation of Gower’s Coefficient
Define double Gower
Define double Sum
Define double WeightsSum = Sum of variable weights
for each group of frailty variables do

Sum = Sum + Gower’s Coefficient Numerator
end for
Gower = Sum / WeightsSum
Return Gower

An example of the partial coefficient calculation (corresponding to a partial sum of the numerator val-
ues, underlined in Algorithm 3) is shown in Algorithm 4, for a mixed group (including both quantitative
and qualitative variables). In this case, each variable is related to a measure object (in the object-oriented
programming – OOP paradigm) with the following attributes: name, value, minimum reference value,
maximum reference value and units. This partial calculation is performed for two instances using the
Weight Array from the first instance (or target instance).

The part of the service based on the above algorithms provides a single value for Gower’s Coefficient
between two instances, accounting for every frailty variable included in the system (that has a value).
However, we must determine all of the similarity coefficients between the current instance and the re-
maining instances. In the following sections, the previous calculations are generalised, and the nodes
calculation task is performed based on the similarity results.
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Algorithm 4 Partial calculation of the numerator of Gower’s coefficient
Define double PGowerNumerator
Get Measures Array1 from the first instance
Get Measures Array2 from the second instance
for each weight of Weight Array do

if measure associated with that weight is qualitative/binary then
if measure.value from Measures Array1 = measure.value from Measures Array2 then
PGowerNumerator = PGowerNumerator + (weight ∗ 1)

else
PGowerNumerator = PGowerNumerator + (weight ∗ 0)

end if
else

value1 = measure.value from Measures Array1
value2 = measure.value from Measures Array2
range = Get range for measure
if none of the ranges are zero, then
PGowerNumerator = PGowerNumerator + (weight ∗ (1− |value1− value2|/range))

end if
end if

end if
Return PGowerNumerator

5.4. Node calculations

The node calculation task uses a new type of element known as node, which can be encapsulated in a
programming object. We propose to create a tree structure consisting of nodes to store the results in an
organised fashion, where the root node refers to the patient instance to be evaluated.

A node object contains the following attributes:
– Parent Instance Id., corresponding to the instance identifier of the parent node.
– Instance Id., an identifier of the current instance associated with the node.
– Age, referring to the age of the patient represented by the node.
– Similarity Coefficient, the value of Gower’s coefficient between the parent node and the current

node.
Algorithm 5 shows the pseudocode for the calculation of the nodes for a specific initial instance

in relation to the remaining instances. This algorithm returns a list of nodes that are ordered by their
similarity coefficients (in decreasing order).

Algorithm 5 Calculation of the nodes
Define Node List
Define initial Instance
Get stored instances
for each instance that is not equal to the initial instance do

Calculate Gower’s Coefficient
Get Node Age
Create the new Node
Add the new Node to Node List

end for
Sort Node List (desc.)
Return Node List

Following the calculation of the nodes, it is possible to create a tree of nodes (ordered by the similarity
coefficient) by iterating with each successive node in the list being taken as a new parent node. Clearly,
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Fig. 4. Example of the final tree structure with SG � 0,52 and 3 depth levels. Each group of child nodes is ordered by the value
of the similarity coefficient.

when the number of instances is large, the system will require more processing capacity, more storage
resources, better memory management and more time to generate the similarity results. In addition to
the optimisation of these system features, we propose to constrain the depth of the tree to a maximum of
three levels and restrict the number of child nodes (for each parent node) to three. With a higher number
of tree levels and child nodes, the proposed service may require an unfeasible amount of processing
time (depending on the stored instances), and the final results may be less useful to the physician be-
cause the similarity coefficient values are progressively lower (in relation to the instance under study,
corresponding to the root node) at each tree level.
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Fig. 5. Example of the treemap view corresponding to a result tree from the node list.

The tree depth (with values ranging from one to three) can be set up from the user interface of the
mobile frailty application by the doctor, as for the weights of the frailty variables. The instances whose
similarity values are lower than a given value can also be ignored in the construction of the tree using the
mobile application. Figure 4 shows a graphical example of a tree provided by the implemented service,
using all similarity coefficients exceeding 0,51. This value has been selected as the minimum similarity
value to illustrate the behaviour of the service when there are nodes with similarity values higher and
lower than the threshold.

5.5. Treemap visualisation

The mobile device receives the previous node list, represented by a tree structure resulting from the
frailty assessment based on the analysis of a specific instance. In the Treemap approach [19], we can
optimise and compress the visualisation of the results for mobile screens using treemaps. A hierarchi-
cal structure is thereby constructed from the node tree, and the results are displayed to the end user
(physician) in a more friendly and intuitive fashion.

Each treemap element, corresponding to a tree node, is a dynamic object that enables the user to
access the full information of the instance represented by the node, including of all the values of the
frailty variables.

Figure 5 shows the treemap view of the tree structure presented in Fig. 4. The intensity of the colour
used to represent each node in the treemap depends on the degree of similarity in relation to the parent
node. Stronger intensity levels indicate a higher degree of similarity between the parent and child nodes.

We have implemented a procedure to represent the treemap view of the similarity results in the An-
droid mobile application. This procedure is known as the affinity result task and is accessed from the
main application dashboard. Figure 6 shows a screenshot of the results on a tablet device. The physician
can access the detailed view of a specific patient instance by touching the screen item associated with
the instance node (in this case, the selected node refers to a specific patient instance).
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Fig. 6. Affinity result option in the mobile application. Screenshots of the treemap view for a specific patient and a detailed
view of frailty variable values for a selected treemap item are shown.

5.5.1. Integration in a frailty mobile application
We have developed the proposed service as a web service hosted on a server. The service can there-

fore be included as a component of other systems, improving its scalability. Using a service-oriented
approach, complex tasks are delegated to a server, and the results are obtained through service. In our
case, examples of the processes that may be implemented include the frailty risk variables from the
patient record, adjustment of the variable weights and calculation of the similarity results.

The final frailty assessment, represented in the treemap view, is integrated into the mobile application
to provide the physician with a visual mechanism to aid in the final diagnosis for the selected patient.
Other additional features are also provided by the mobile application, as mentioned broadly in previous
sections. A summary of these features is as follows:

– Gathering and calculating dispersion measures using accelerometer-embedded mechanisms.
– Collecting frailty variables from the patient record.
– Displaying the state of the elder based on the measures provided by these variables.
– Editing the weights of the frailty variables and modifying the tree depth.
– Selecting the minimum similarity coefficient and main colours of the treemap structure.
– Displaying the final treemap of results for diagnosis support.
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Fig. 7. Infrastructure overview. Elements, algorithms and web services.

The independence of the various processes described in this article, such as the calculation of the
Gower coefficients, is important for their integration into other applications as software components.

5.6. General infrastructure. Elements and features

The web services infrastructure has been deployed in a real scenario considering the schema presented
in Fig. 7. Three hardware elements have been identified:

– Accelerometer. We have used the mobile phone’s accelerometer to collect data from gait activity.
However, the mobile device could communicate with an accelerometer device via Radiofrequency
or Bluetooth, sending the movement data to the mobile device.

– Mobile Device. The developed frailty mobile application is deployed in Tablet devices and/or mo-
bile phones. These devices communicate with the server through web services, and they carry out
the functions mentioned in Section 5.5.1.

– Server. The database and the web services are hosted in a server. In this case, MySQL has been
used as relational database management system and Internet Information Services (IIS) has been
used as web server. Thus, the web services have been implemented by using the Microsoft .NET
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Table 3
Descriptive excerpt of selected patient instances

Anthropometric
Sex Size (cm) Weight (Kg) BMI (Kg/m2) Body mass (Kcal) Fat mass (%) Lean mass (Kg) Total water (Kg)
Female 159,6 ± 6,02 65,45 ± 11,36 28,14 ± 4,06 1158,7 ± 122,9 36,37 ± 8,57 40,93 ± 6,62 31,11 ± 5,22
Male 150,9 ± 5,03 67,78 ± 8,46 26,19 ± 2,7 1246,7 ± 128,05 27,61 ± 4,34 48,29 ± 4,13 31,11 ± 5,22

Nutritional (relevant biochemical values)
Sex Hemoglobin Ferritin Total Serum Cholesterol Serum Vitamin Lymphocytes

(g/dl) (ng/ml) protein albumin (mg/dl) folic acid B12 (thousands/
(g/dl) (g/dl) (ng/ml) (pg/ml) mcL)

Female 12,92 ± 1,13 81,91 ± 70,69 6,95 ± 0,6 4,18 ± 0,29 173,55 ± 31,46 7,42 ± 4,54 354,73 ± 70,08 1,71 ± 0,67
Male 14,57 ± 0,88 165,22 ± 143,92 6,88 ± 0,44 3,95 ± 0,2 177,89 ± 29,59 6,32 ± 3,22 397,56 ± 109,19 1,9 ± 0,56

Geriatric Pathologies Functional
Syndromes (11)

Sex Average Sex Average Sex Barthel Tinetti Tinetti Lawton and
Index gait score balance score Brody score

Female 4,57 Female 3,9 Female 95 ± 4,90 11,45 ± 0,78 13,82 ± 1,53 6 ± 1
Male 2,29 Male 3 Male 99,9 ± 0,3 12 ± 0 14,7 ± 1,1 4 ± 0

Table 4
Node List calculated for instance 1 (second level)

Parent Inst. Id. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Instance Id. 12 16 2 15 4 9 7 5 20 18 19 17 13 10 11 6
Name P12 P16 P2 P15 P4 P9 P7 P5 P20 P18 P19 P17 P13 P10 P11 P6
Age 85 87 88 81 79 89 85 82 85 87 80 73 82 82 92 89
Similarity Coeff. 0,734 0,72 0,716 0,715 0,709 0,705 0,702 0,702 0,702 0,683 0,679 0,671 0,658 0,64 0,63 0,623

framework. SOAP2 was the communication protocol used to establish the exchange of information
between consumer and producer of web services.

All the web services are identified by the prefix “Get”. The mobile device requests the value of frailty
measures by means of the corresponding “get” call (e.g., GetFunctional or GetCognitive). When the
mobile device asks for the frailty results the “GetAffinityResult” web method is called, and the follow-
ing algorithms are run: “RangesCalculation”,“WeigthsCalculation”, “PartialGowerCoefficient”, “Glob-
alGowerCoefficient” and “NodesCalculation”. These algoritms use the results from the “Get” methods
internally. The response of the “GetAffinityResult” web method contains the final nodelist to be used by
the mobile device to generate the treemap.

6. Experimental results

In this section, we present the results provided by the developed service for an initial cluster of sixty
instances from 20 elderly patients with equal numbers of women and men. The average age of the men
is 81,8 ± 4,74 while the women have an average age of 85,45 ± 3,22. All of the patients have adequate
social abilities and are independent in their everyday activities, and none of them exhibit cognitive
impairment.

2http://www.w3.org/standards/techs/soap#w3c_all.
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Table 5
Node List calculated for instances 12, 16, 2 (third level)

Parent Inst. Id. 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
Instance Id. 15 16 1 13 7 4 18 9 8 5 11 2 17 19 20
Name P15 P16 P1 P13 P7 P4 P18 P9 P8 P5 P11 P2 P17 P19 P20
Age 81 87 81 82 85 79 87 89 85 82 92 88 73 80 85
Similarity Coeff. 0,751 0,75 0,734 0,713 0,707 0,689 0,682 0,679 0,67 0,656 0,655 0,649 0,649 0,648 0,634
Parent Inst. Id. 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
Instance Id. 18 12 1 2 15 19 13 9 8 17 11 4 5 7 6 10
Name P18 P12 P1 P2 P15 P19 P13 P9 P8 P17 P11 P4 P5 P7 P6 P10
Age 87 85 81 88 81 80 82 89 85 73 92 79 82 85 89 82
Similarity Coeff. 0,773 0,75 0,72 0,719 0,718 0,706 0,705 0,7 0,699 0,692 0,683 0,679 0,671 0,665 0,662 0,655
Parent Inst. Id. 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Instance Id. 16 1 20 17 18 4 5 9 15 6 12 19 10 8
Name P16 P1 P20 P17 P18 P4 P5 P9 P15 P6 P12 P19 P10 P8
Age 87 81 85 73 87 79 82 89 81 89 85 80 82 85
Similarity Coeff. 0,719 0,716 0,699 0,697 0,681 0,671 0,653 0,652 0,651 0,65 0,649 0,64 0,629 0,62

Table 6
Node List calculated for instance 1, from anthropometric and nutritional viewpoint (S � 0.62)

Parent Inst. Id. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Instance Id. 18 5 10 20 15 2 19 7 16 4 12 17 9 6 8 13
Name P18 P5 P10 P20 P15 P2 P19 P7 P16 P4 P12 P17 P9 P6 P8 P13
Age 87 82 82 85 81 88 80 85 87 79 85 73 89 89 85 82
Similarity Coeff. 0,782 0,756 0,736 0,735 0,729 0,725 0,715 0,714 0,713 0,71 0,709 0,684 0,663 0,632 0,628 0,62

First, the values of the frailty risk variables (or at least most of them) must be obtained for each patient
in the group. For each elder, we collected measures of the variables at three different times and created
the corresponding instances. However, we will consider the values of the first instance for each patient
to understand the results provided by the service more easily. Table 3 shows a descriptive overview of
the first dataset of instances, with some of the values of the frailty variables.

The Android mobile application was used during gait activity for collecting accelerometer data and
calculating the related dispersion measures. Note that when a new patient is studied, a new instance is
created and stored in the system, improving the accuracy of the subsequent set of similarity results.

For a given geriatrician, a frailty assessment can be performed based on four different criteria, anthro-
pometric, functional, nutritional and gait-related, where the importance assigned to each variable in each
domain can vary. In this case, we have assigned the maximum importance to the entire group of variables
(100%). Therfore, if we focus on the frailty assessment procedure for instance 1, a node list sorted by the
similarity coefficient is created, but only the first three nodes form the second level of the treemap (the
first corresponding to the root instance, i.e., instance 1). Table 4 shows the results of Gower’s calculation
between instance 1 and the remaining instances. The columns in bold represent the nodes that contribute
to the tree. In this case, instances with similarity values lower than S = 0,62 have been ignored because
the expert determined that lower similarity values would not be as useful in making decisions.

Instance 1 has a similarity degree of 73.4% with instance 12 corresponding to Patient 12, 72% with
instance 16 and 71.6% with instance 2. For the three level treemap, the Gower coefficients between these
instances and the remainder of the instances are calculated (Table 5 shows the results). The children of
the last node (corresponding to instance 2) exhibit lower similarity coefficients of 71.9%, 71.6% and
69.9%.

These results aid the physician in determining the frailty condition of the specified patient at a given
moment, in relation to other patients in the same elderly population.
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Fig. 8. Comparison of similarity degrees for instance 1 (Patient 1).

However, the behaviour of the algorithm and the final results will be different if the weights values of
the frailty variables are modified using the mobile application user interface. In this case, we consider
only the anthropometric and nutritional variables (with 100% importance) and ignore the remainder of
the domains (setting their weights to 0%). Table 6 shows the node list for instance 1 with these new
requirements.

Figure 8 shows a comparison chart between the nodes of the second level of the treemap from a global
viewpoint (considering all domains) and a more narrow nutritional and anthropometric viewpoint for
instance 1 for Patient 1. The similarity results and instances are different because of the significance
of the analysis. The similarity degrees are higher when the study is focused on specific domains rather
than a global analysis. However, the elderly patients are studied from a particular perspective which is
more appropriate under some circumstances (e.g., for adults without nutritional disorders and cognitive
impairments, analysing only the functional domain and gait). Based on these results, the doctor can
group the individuals according to their similarity degrees for optimal care and treatment. From the
viewpoint of performance, the maximum time to generate both treemaps on the mobile screen were 2.55
and 2.19 seconds respectively (working on sixty instances from the twenty patients); we observed less
processing time when a shorter group of variables was studied.

7. Conclusions and future work

In this work, we have presented a novel service infrastructure for supporting clinical decisions regard-
ing frailty in the elderly. The aim of this service is to calculate an index or similarity coefficient that
accounts for all relevant frailty variables in the record of the elderly patient. Owing to the mixed nature
of variables under study (quantitative, qualitative and binary), Gower’s algorithm is the most appropri-
ate method for obtaining the similarity values for a group of patient instances. The obtained results are
transformed into programming objects known as nodes which are represented using a treemap structure
based on the similarity values calculated for each node.

This initial approach has been deployed in a ubiquitous environment. We have developed an internal
web services infrastructure that communicates with a mobile frailty application in which the results are
shown in a treemap view. Additionally, this approach can be deployed on other devices (not only mobile
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ones), especially for better results visualization (e.g., widescreens); however, the mobile device is also
used due to the heterogeneity and mobility of the clinical environments, getting evaluations at any time
(when the physician needs them). The mobile application makes it possible to determine the values of the
frailty risk factors for a specific elderly patient and to configure different parameters such as the variable
weights or tree depth to adapt the analysis to a specific domain (nutritional, anthropometric, functional,
cognitive, etc.) with particular settings. This approach allows the doctor to focus on clinical areas in
which the patient requires more care. We also used existing mobile accelerometer devices to analyse
the functional characteristics of the patients, using the gait activity of the patient as a primary frailty
indicator as proposed in other related studies. We propose a new group of variables known as dispersion
measures, that are calculated by the mobile application from the gait activity. These dispersion measures
are incorporated into the similarity calculation.

A broad group of patient instances must be stored in the system prior to the deployment of the proposed
service. As the number of patient instances and stored variables increases, the system yields increasingly
accurate results, aiding physicians in determining the frailty conditions of elders. We have demostrated
that the accuracy of the results depends on the number of variables with an associated value. Therefore,
if the patient instance under study includes empty variables, then these variables are not taken into
account in the similarity calculation, and the results are therefore incomplete. This limitation owes to
the unavailability of clinical information in certain cases, which affects some of the information sought.
The creation of protocols and clinical mechanisms for collecting the values of the related frailty factors
may help to resolve this issue. We could not make a comparison with current methods because these
are not standardised, depend on the physician experience and they would not provide reliable results at
this moment. Additionally, the number of geriatricians involved in the experiment was limited to afford
feasible conclusions in this aspect.

In future work, we consider to perform an study of the usability of the mobile applications as well as
the acceptance level of the whole system. Additionally, we hope to integrate the service developed in this
paper into a more complex and distributed system, accounting for various clusters and populations of
elderly people. This goal requires a large set of patient instances, including a broad range of patient ages
to determine the appropriate degree of membership to a specific cluster from an initial cluster analysis
prior to the application of the Gower similarity service.
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