The objective of this special issue is to address the virtual reality based education system in the enhancement of learners’ motivation, engagement, immersion, satisfaction, and transfer of learning. Many papers were submitted, and after a thorough peer-review process, five papers were selected to be included in this special issue. These research studies provide invaluable insights into understanding and applying virtual reality from a multidisciplinary point of view. This special issue includes high-quality and original research papers addressing research achievements, practices, theoretical framework, and challenges for virtual reality based education platform with mobile devices. We believe that the published papers in this special issue introduce readers to the latest advances in the field.

The paper by M. Hernández-Ordoñez et al. presents an education platform consisting of a homemade robotic arm, a control system, and the RAR@pp for teaching robotic arm manipulation concepts. In the paper, they apply augmented reality technology for the visualization of the articulation arm angles.

The paper by H. Kim et al. proposes a novel, virtual reality based cyber-physical education system for efficient education in virtual reality on a mobile platform which can integrate the real world into virtual reality using cyber-physical systems technology.

The paper by S. Jeon designed a user-adaptive tactile keyboard on mobile device and then investigated how tactile feedback intensity of the virtual keyboard in mobile devices affects typing speed and user preference.

The paper by K. Choi et al. developed a multilayer 360° VR representation with image-based interactions such as mesh deformation and water simulation, which enables users to realistically interact with 360° panoramic contents without consuming excessive computational resources. On the basis of this representation, they designed and implemented play-based learning scenarios to increase the interactivity and immersion of users.

The paper by M. K. Jin presents an evaluation tool for VR-training contents based on mobile environments. After categorizing VR-training contents in the field of tech education into structure comprehension type, procedure learning type, and equipment experiment type contents, they constructed items for each evaluation area.

Conflicts of Interest

The editors declare that they have no conflicts of interest regarding the publication of this special issue.

Acknowledgments

We would like to thank all the authors who contributed to this special issue. This publication would not be possible without the participation of our expert reviewers, who provided vital constructive feedback and criticism throughout the review process.