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+e usage of a smartphone while driving is a pervasive problem and has been acknowledged as a significant source of road
accidents and crashes. Several solutions have been developed to control and minimize risky driving behavior. However, these
solutions weremainly designed from the perspective of normal users to be used in a nondriving scenario. In a driving scenario, any
deviation from these assumptions (e.g., touching or taping interfaces and looking to visual items) could impact driving per-
formance. In this research paper, we aimed to design and develop a context-aware adaptive user interface framework to minimize
driver distraction. +e proposed framework is implemented in Android platform, namely, “DriverSense,” which is capable of
adapting smartphone user interfaces based on contextual factors including driver preferences, environmental factors, and device
usage in real time using adaptation rules. +e proposed solution is evaluated both in real time using AutoLog application and
through an empirical study by collecting data from 93 drivers through a mixed-mode survey using a questionnaire. Results
obtained from AutoLog dataset show that performing activities on smartphone native interfaces while driving leads to abrupt
changes in speed and steering wheel angle. However, minimal variations have been observed while performing activities on
DriverSense interfaces.+e results obtained from the empirical study show that the data are found to be internally consistent with
0.7 Cronbach’s alpha value. Furthermore, an Iterated Principal Factor Analysis (IPFA) retained 60 of a total of 61 measurement
items with lower uniqueness values. +e findings show that the proposed solution has significantly minimized the driver
distractions and has positive perceptions in terms of usefulness, attitude, learnability and understandability, and user satisfaction.

1. Introduction

Smartphone-distracted driving is one of the main concerns
in road safety, which is evident from the fact that 1.25
million deaths and 50 million injuries are reported each year
[1]. +e usage of a smartphone while driving has made
driving more complex by requiring fine-grained cognitive,
physical, and psychological skills to perform concurrent
executions [2]. Despite known catastrophes, people are
habitual of using a smartphone while driving. For example,
0.66 million drivers are using smartphones at a particular
instant of time while driving [3]. In reality, the status of a
driver while driving is different from a person not driving. In
other words, in nondriving scenarios, a person is free to be
engaged and performes smartphone activities in almost
every situation. However, in driving scenarios, a driver can

somehow say to be a special person due to having limi-
tations to perform smartphone activities. +ese limitations
are due to excessive physical and visual interaction as well
as cognitive overload. One of the main reasons for physical
and mental engagement in performing smartphone ac-
tivities is the complex nature and rich interfaces of
smartphone platforms. +e existing interfaces (i.e., hand-
held and dock-mounted smartphone interfaces) are typi-
cally designed with the assumption that they may be used
by the normal users (e.g., a user who has perceptual and
cognitive abilities, who can interact for the maximum
duration, and who is sitting in comfortable environments)
[4]. In a driving scenario, any deviation from these as-
sumptions (e.g., touching or taping the interfaces via
hands, looking to the visual items, and cognitive overload)
could impact the driving performance.
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Furthermore, the interaction of the driver with smart-
phone applications is not suitable due to complex interfaces
as each activity is time-consuming, redundant, and repetitive
and has complex navigational structure, requires much
cognitive power, and needs a long route to follow [5]. For
example, typing and reading text messages require several
steps, which could seriously affect eyes movements, reaction
time, lane positioning, stimulus detection, speed, and
headway while driving [6]. A driver consumes about 12.4
seconds while interacting with a smartphone for dialing calls
and an average of 36.4 seconds for performing a texting
activity [7]. Moreover, using a smartphone for sending or
receiving a text message diverts eyes off the road for an
average of 23 seconds [7]. It means that a text message sent
or received can divert a driver’s eyes off the road for more
than half a kilometre while driving at the speed of 90 km/h
[7]. Similarly, safe driving requires full attention and loss of
focus due to taking eyes off the road for 2 seconds could
increase the chances of accidents to twenty-four times [8].

+erefore, there is a strong need to balance the safety and
usability of the smartphone while keeping in mind the
drivers’ status. One way to improve the usability is to change
the interaction between the drivers and smartphone, using
an adaptive user interface. +e adaptive user interfaces use a
context-awareness approach and generate new interfaces
according to the change in environment, user preferences,
and device usage [9, 10]. +is approach will help drivers in
the personalization of their smartphone user interfaces
irrespective of their visual, physical, and cognitive limita-
tions. To achieve a considerably improved driver-friendly
user interface design, it requires moderate revisions in the
existing interfaces to meet the driver’s needs and require-
ments. +is may require a framework supporting an ad-
aptation mechanism to address the drivers’ needs,
capabilities, and context-of-use to ensure a high degree of
acceptability and usability [11].

In this paper, we propose a multimodal smartphone
context-aware adaptive user interface framework for drivers.
+e proposed framework aims to accommodate the user
interface requirements of drivers based on the evaluation of
different driving and environmental contexts. +e proposed
framework is implemented on Android platform, namely,
“DriverSense,” which makes effective use of smartphone and
vehicular sensing capabilities to capture and identify dif-
ferent driving contexts (e.g., number of people in the vehicle,
road status, weather status, traffic status, speed, noise, vehicle
dynamics, and drivers’ interests and preferences) to adjust
smartphone user interface automatically. +e context-de-
pendent simplified interface can be generated using adaption
rules and will improve driver safety by minimizing visual,
manual, and mental interactions. In this research work, the
available researches and best practices from the other do-
mains (e.g., applications of ICT for naturally disabled
people) have been borrowed/reused with different levels of
details and have come up with a more flexible and adaptive
solution for the drivers to ensure their safe journey on the
road.

+e rest of the paper is organized as follows. Section 2
describes related work. Section 3 introduces the proposed

framework, and its implementation is presented in Section 4.
Section 5 illustrates the experimental evaluation. +e results
and discussion are presented in Section 6. Finally, Section 7
concludes the paper.

2. Related Work

With the rapid development in vehicular technologies, In-
telligent Transportation System, Advanced Driver Assis-
tance Systems, and vehicle handling stability have been
promoted since the past century [12]. However, a growing
problem of driver distractions, especially usage of smart-
phone, still exists. +e driver’s distraction by smartphone,
such as texting, phone calling, and using a navigation sys-
tem, can divert attention away from the primary task, which
is one of the main contributors to the road traffic accidents
[13]. +e usage of a smartphone while driving contributes to
nearly one thousand crashes or near-crashes per year, which
is a challenging hurdle for road safety [3]. +e researchers
have tried to minimize driver engagement with a smart-
phone with the help of some adaptive technologies. +ese
technologies aimed to limit the interactions or provide
simplified interactions to the drivers. +e existing adaptive
technologies focus on three basic principles: blocking of
smartphone features, changing the nature of interactions,
and simplifying smartphone functionalities (e.g., with the
help of shortcuts to the apps) [14, 15].

Several solutions have been designed to reduce drivers’
interactions with their smartphones while driving [16].
+ese solutions recommend blocking off some of smart-
phone features/functions, including texting, web browsing,
and phone calls [14, 15]. Although the blocking approach is
encouraging by considering the leading cause of accidents
and crashes [14, 17, 18], the approach of blocking smart-
phone features is not a viable solution to fully mitigate the
issues as it is against the will of smartphone users [19]. In
addition, researchers from Australia and USA have reported
in their studies that blocking of smartphone features has low
acceptability among drivers as it is against the adoption of
the technology [20–22].

+e other approach used by the researchers to minimize
drivers’ distractions is to change the nature of the interac-
tions between drivers and smartphones by using text-to-
speech and speech-to-text metaphors instead of visual-
manual interactions [23, 24]. +is is an emerging concept
and has shown comparatively distinct advantages over the
visual-manual interfaces [25, 26]. However, the researchers
have suggested that drivers could still face numerous
challenges while driving as it requires visual-manual de-
mands, interior glance time, and higher mental demand than
a baseline drive [15]. In addition, cognitive demands are high
for tasks using voice-based interfaces [27]. Similarly, voice-
commands-based interfaces are difficult to comprehend
properly in a noisy environment and could have language
barriers as most of the system supports only a few natural
languages, including English [28, 29]. Privacy is another
issue in a driving scenario due to the presence of other
commuters in the vehicle, which may restrict the use of
smartphones. +e privacy issues for auditory interactions
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can be resolved by using headphones. However, this will lead
to compromised safety due to blocking important back-
ground sounds and increase cognitive overload [27].
Moreover, the interaction between driver and smartphone
can also be minimized using Head-Up-Displays (HUDs)
(i.e., Android Auto, CarPlay, etc.) [30]. +ese devices can be
paired with a smartphone using Bluetooth or physical in-
terfacing.+e aim of these devices is to keep eyes on the road
and hands on the steering wheel when performing common
activities on a smartphone. However, there is a probability to
lose focus off the road when looking into HUDs for nec-
essary operations. In addition, using external hands-free
systems is often a barrier due to usability, cost, and lack of
practicality [14]. Although hands-free systems could reduce
visual-manual interaction, they would not reduce cognitive
overload [31–33].

A third and emerging approach is the simplification of
smartphone functionalities [14, 15]. +is approach is aimed
at reducing visual interactions by simplifying driver inter-
actions with smartphone applications. Following the idea,
several solutions have been developed, which aim to simplify
the interactions between drivers and smartphones with the
help of shortcuts for apps and voice commands for inter-
actions [34]. However, these solutions can result in excessive
cognitive overload due to voice commands, as discussed
earlier, off-road visual engagement, and navigational com-
plexity [35]. Furthermore, the latest study [14] found no
empirical evidence of these applications regarding mini-
mizing the risk of crashes. Similarly, performing common
activities on smartphone and other technologies are tedious
and risky tasks for the drivers; even people in normal daily
life routines consume about 66% of their efforts and time in
correcting and editing text in automatic speech recognizing
devices [5]. Various high-quality applications have been
introduced but were washed out from the market due to
their complex, inefficient, unattractive, static, and confusing
user interfaces [36]. +ese nonadaptive effects of user in-
terfaces can create frustration, which can impact usability
and performance among the end users [37]. +erefore,
adaptive user interfaces can provide a significant assistance
to overcome these usability barriers. +e researchers from
different domains have emphasized on the development of
adaptive user interfaces and have designed easy-to-use, user-
friendly, and accessible interfaces according to the HCI
guidelines to solve real-world problems in the different
domains [5].

Similarly, various tools and methodologies have been
used to generate user interfaces in real time by the re-
searchers automatically. A system called “Supple System” [4]
generates user interfaces for the users based on their tasks,
preferences, and cognitive abilities. +e findings have shown
that novice users can complete a complex task in less than 20
minutes using the proposed user interface. Multipath user
interface systems are developed, which use XML to generate
user interfaces on the basis of current contexts [38]. +e
Egoki system is a user interface generator system designed
for people with disability [39].+e purpose of the systemwas
to recommend appropriate user interfaces for the selection
of multimedia contents to the users based on their needs.

+e MARIA system proposed a model-based user interface
description language to automatically generate and cus-
tomize user interfaces for the different devices in runtime
[40].+eODESeW system is a semantic web portal using the
WebODE platform and an ontology application to generate
a knowledge portal of interests automatically [41]. For ex-
ample, it generates different menus based on the users’
interests and adjusts the visibility of contents according to
the users’ needs. A generic interface infrastructure has been
presented in the MyUI system, which aims to increase ac-
cessibility through an adaptive user interface [42].+eMyUI
provides a runtime adaptation to user preferences, device
usages, and work conditions. An XML-based pervasive
multimodal user interface framework is proposed, which
helps the designer to design a wide range of platforms that
support multiple languages [43]. +e aim was mainly how to
change the monomodal web-oriented environment of
simplified interface for the variety of platforms. A context-
aware framework called ViMos has been proposed to pro-
vide adapted information to the users through devices
embedded in the environment [44]. +e system is composed
of a set of available widgets to render different data patterns
on various visualization techniques to adapt and customize
visual layouts in the available area. A conceptual framework
has been designed for Intelligent Adaptive Interfaces (IAIs)
to guide interface design with the help of a user-centred
design approach and proactive use of adaptive intelligent
agents (AIAs). +ese AIAs provide interface aids to mini-
mize the workload and increase awareness. Similarly, the
framework will enable the researchers to design knowledge-
based systems such as uninhabited aerial vehicle using the
IAI models [45].

Researchers have proposed numerous tools for designing
creative adaptive UIs for the heterogeneous domains. An
adaptive UI has been designed by the researcher [46] to
prevent and block the phone calls and messages during the
distracted condition. However, blocking the smartphone
features is against the will of drivers and is strongly dis-
couraged by the driver as discussed earlier. Furthermore, the
researchers investigated the limited adaptive effects like the
speed of the car and the angle of the steering wheel. ICCS
[46, 47] is an in-car communication system intended to
minimize driver distraction when the drivers engages with
their cell phones with the help of speech input and output.
However, this system is not widely adopted because it does
not use the vehicle contextual information for generating
automatic UI.

Researchers have proposed different adaptation tech-
niques related to user interface features, such as content,
layout optimization, navigation, and modality. +ese
existing adaptation techniques still have limitations and gaps
as they merely focus on design-time feature minimization
rather than the runtime. Similarly, these adaptations cannot
be effectively applied to generate user interfaces needed for
the drivers while driving. Most of them are using pre-
identified UI feature set based on context at design time.
However, they lack recommending the different mode of
interactions, which is essential for the contextual changes in
driving scenarios. To the best of our knowledge, no attention
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has been given to proposing a system that automatically
generates user interfaces based on the driver history and
profile, with different varying contexts such as speed, road
status, noise, and weather.

3. Proposed Framework

To provide cellular connectivity to drivers and avoid dis-
tractions caused by smartphone usage has the prime focus of
researchers. A number of solutions with varying capabilities
and strengths have been presented over the years; however,
each has its own shortcomings and limitations. In addition,
the solutions are developed by the researchers, academia,
and organization using their self-developed methodologies
with no common understandings and consensuses, therefore
resulting in separate islands, which is the wastage of po-
tentials, resources, and time. +e context-aware adaptive
user interfaces paradigm can potentially solve the distrac-
tions and would result in increased usability of a smartphone
while driving. +erefore, a context-aware adaptive user
interface framework is proposed. +e proposed framework
is aimed to be adaptive, flexible, workable, and context-
aware in different driving scenarios. +e framework archi-
tecture is pluggable, where external services may be plugged
in in a seamless fashion. +e framework will make effective
use of smartphone and vehicular sensing capabilities to
capture and identify different driving contexts (e.g., number
of people in the vehicle, road status, weather status, traffic
status, speed, noise, vehicle dynamics, and drivers’ interests
and preferences) to adjust a smartphone user interface
dynamically. +e context-dependent simplified user inter-
face will improve driver safety by minimizing visual and
manual interactions and reduce physical and mental dis-
tractions. +e framework architecture is a layered archi-
tecture consisting of three layers (as shown in Figure 1): data
curation layer, processing layer, and UI layer. However, the
schematic diagram of the proposed framework and the flow
of information between the components to materialize the
context-aware adaptive user interface for a driver is depicted
in Figure 2. +e layered architecture and schematic diagram
are explained in the following subsections.

3.1. Data Curation Layer. +e data curation layer is re-
sponsible for obtaining data from multiple sources for
processing and use by the upper layers. +e data curation
layer is divided into various modules, including interaction
module, sensory module, data acquisition, and pre-
processing module. In the beginning, the driver input could
be captured through voice commands, touches, or gestures
and stored in user interactions-log for further operations.
+e speech input of the driver can be captured using a
smartphone microphone, car internal infotainment system,
or a hand-free Bluetooth device. Sensory input from
smartphone sensors as well as vehicle sensors could also be
collected. For example, information can be obtained from
various sensors, including the Global Position System (GPS),
accelerometer, light, noise, and gyroscope. +e GPS is used
to find the location, altitude, direction, and speed of the car.

Information from the online sources (i.e., web services)
could also be used to obtain weather information, tem-
perature, speed of wind, humidity, and so forth.+e status of
a road can be detected using accelerometer data. +e ve-
hicular data could be obtained from the Controller Area
Network (CAN) using the standard Onboard Diagnostic
(OBD-II) port [48]. Similarly, the data regarding steering
angle, brake pressure, and accelerator could be obtained
using a Bluetooth scanner. However, the captured data will
be processed to obtain meaningful contextual information
using contextual values to devise a new mode of interaction
for the drivers while driving.

3.2.ProcessingLayer. +eprocessing layer is the core layer of
the proposed system, which is responsible for processing and
storing the contextual information received from the data
curation layer. +e reception of contextual information,
identification of user context, user information models, and
transformation of the user interface into an appropriate
layout is the responsibility of this layer. To simplify the
operations of this layer, it has been divided into three main
modules: information model building, adaptation rule
manager, and transformation.

3.2.1. Information Models Building. +is module is focused
on the development of different models based on the cre-
ation of adaption rules in online and offline phases. +ese
models include driver model, vehicle model, device model,
and context model. +e main classes of the models are
shown in Figure 3. +ese models and associated rules could
be considered the baseline requirements for the context-
aware adaptive user interface generations. +e driver model
stores information about driver demographics, cognition,
sensing power, and experience. +e driver’s demographics
information is all about his/her driving skills, education, age,
and cognition including driver attention, learning ability,
perception, and concentration. +e driver’s sensory infor-
mation is modelled as driver’s hearing, sight, and touch
sensitivity that directly affects his/her interactions with the
system. +e experiences are modelled as the level of satis-
faction of the user interface after changing according to the
context.

+e vehicle model stores information about vehicle data
(i.e., type of vehicle, type of transmission, capacity, safety
features, types of telematics, etc.). +e type of vehicle in-
formation includes a company of the vehicle model and so
forth and transmission system involved automatic or
manual gear system, which will also affect the interaction
with the system.

+e capacity can be modelled by the number of maxi-
mum passengers in a vehicle. +e safety features include
brake assist, automatic emergency braking, and adaptive
cruise control. +e device information could be stored in the
device model (e.g., device type (i.e., smartphone, smart-
watch, or other infotainment systems), screen size, screen
resolutions, display type, interaction mode, input/output
capabilities, connectivity, etc.). +is information is essential
for the efficient adaptation of the user interface.
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Furthermore, the user-preferred mode of interaction also
contributes to the better user interface adaptation. +e
context model stores information about the environments
and context (e.g., road condition, weather, noise, light,
temperature, location, time, speed, traffic condition, etc.).
+e context model is composed of a user, platform, vehicle,
and environment (as shown in Figure 4). Once the models
are built, they will be passed to the adaptation rule manager.

3.2.2. Adaptation Manager. +e information models are
input to the adaptation rule manager, where the concepts are
selected from these models that are associated with different
contextual dimensions.+e adaptation rules can be specified
in the form of events, conditions, and actions [49]. +is
approach has been extensively used in [50, 51] to provide
adaptive UIs. +e event part of the rule should be composed
of the associated event whose manifestation activates the
evolution of the rules. +e condition part is composed of a
Boolean condition, which needs to be satisfied to execute the
action part.

+e action part may lead to one or more simple actions
containing indications of how the description of the pro-
posed UI should be changed to perform the adaption
process. +e rules can be triggered due to contextual cues,
which can be dependent on various aspects (i.e., user
preferences, environmental changes, etc.). +e UI or mode
of interaction can be changed according to adaptation rules
(e.g., change user interface from vocal to graphical in case
the environment is noisy).+e proposed adaptation rules for
the generation of the context-aware adaptive UI for drivers
have been depicted in Table 1 and their threshold values are
described in Table 2.

3.2.3. Transformation. +is module ensures the transfor-
mation of a personalized user interface to drivers while
driving. +e user information model and context model are
input to the transformation module through adaptation
rules and generate the appropriate user interface to the
driver. +e contexts and preferences of the drivers are
changing with the passage of time in such case when the
adaptation rules manager automatically fires the rules to
generate a new instance of a user interface or mode of in-
teraction to the driver at runtime. +e automatic user in-
terface transformation identifies and transforms the
common interface elements/feature into specific interface
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Table 1: +e proposed list of adaptation rules used to generate an adaptive user interface for drivers.

Term Event Condition Action(s)

Driving status Driving is detected Smartphone has a default user
interface.

+e interface will be changed to the driving mode.
Divide user interface into sections.
Assign priorities to each activity.
High-priority activity will be highlighted (high-contrast color
and large font size).

Speed

Low speed +e smartphone is in driving
mode.

Change the smartphone to moderate modality.
Change the default keyboard to the simplified layout.
Allow reading short messages.
Avoid reading lengthy messages.
Divide the SMS reply into categories and choose an option.
(i) Standard reply (I’m driving).
(ii) Personal reply (you have an option to write a message by
yourself ).
(iii) Fun reply (friends-may be skipped).
Auto-reply of SMS for unknown contact.
Display contact list in large font size.
Use navigation by voice.
Dialer digits in large font size.

Medium speed Smartphone mode of interaction
is in low-speed modality.

Change the smartphone to severe modality mode.
Divide the SMS reply into categories and choose an option.
(i) Standard reply (I’m driving).
(ii) Personal reply (you have an option to write a message by
yourself ).
(iii) Fun reply (friends-may be skipped).
Auto-cancelled lengthy messages.
SMS/e-mail and WhatsApp reading through voice if no noise
and other occupants are detected.
Making calls, searching call log, and search contact number
through voice.
Allow listening to audio (e.g., music).
Block watching the videos.

High speed Smartphone mode of interaction
is in high-speed modality.

Change the smartphone into profound modality mode.
(i) SMS: auto reply.
(ii) Navigation: voice (top priority in case the route is
unknown); however, not loading the navigation activity on a
familiar route.
(iii) An auto reply of SMS and e-mail to a nonfamily number
and those who are not specified in the list.
(iv) Allow listening to audio (e.g., music, etc.).
(v) Stop audio tuning and selection.
(vi) Block watching the videos.
(vii) Stop Internet/web browsing.

Noisy
environment Environment is noisy +e vocal modality used for

interaction.

+e applications change to the graphical modality.
Allow reading short messages with a large font size.
Digits in dialer will be in large font size.
Display contact list in large font size.

Location
Familiar place +e place has been visited for the

last five times. Hide navigation activity.

Nonfamiliar/little
familiar places First visited location. Show navigation activity.

Light Low light +e interface is in normal mode. +e interface should change to night mode.
High light +e interface is in night mode. Normal mode.

Interaction Interaction problem User is not maintaining
attention.

Only contents of one application will be displayed in the user
interface at a time.
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through a series of adaptation rules. +ese rules constitute a
knowledge base system for drivers and the transformation
module hinders drivers to be not visually, mentally, and
physically distracted while using a smartphone during
driving.

3.3. Adaptive User Interface Generator. +e adaptive user
interface generator is communicating with the transformation
module to receive the information in real time in order to
visualize the appropriate user interface according to the con-
textual information and adaption rules. +e adaptive user
interface generator module implements the action part of the
adaptation rule depending upon the content received from the
transformation module. It can either transform the new
simplified user interface or indicate some changes in the exiting
interface accordingly. +e generated user interfaces could be
multimodal (e.g., voice-based, gesture-based, and tactile-based)
and will be changed dynamically according to the contexts.

4. Implementation

+e proposed framework is implemented on an Android
platform. Figure 5 shows the snapshots of DriverSense
application. +e DriverSense app is basically developed
for smartphones; however, it can be deployed on any other
platform (e.g., infotainment system, etc.) if the required
technologies (e.g., libraries and APIs) and resources (e.g.,
sensors) are available. +e DriverSense app is developed
while keeping in view all of the design considerations (e.g.,
privacy and security, battery power consumption, and
accessibility). +e app is flexible to accommodate and
support the new upcoming technologies, especially those
related to accessibility. On startup, the main user interface
will be divided into subsections yet in a simplified in-
terface whenever the vehicle status is changed to driving
mode. +e app will take an assessment of a driver’s be-
havior based on the interactions with the user interface.
+e app will automatically adjust the icons on the main
screen, font size, and alert volume, based on the context
and the driver’s responses. +e front screen will contain
the selection of most frequently used applications auto-
matically. Furthermore, the settings would be adjusted

according to the contexts: if the noise level is detected, the
option for a graphical user interface would be initiated.

Text messaging is found to be the most distracting activity
while driving, which can divert eyes off the road and could lead
to accidents and crashes. +e DriverSense app will handle the
text messaging process according to the different driving
contexts (i.e., speed, road condition, etc.). For example, if lower
speed is detected, such as 30 km/h or less, text messages with a
length of less than or equal to 30 characters will be allowed to be
read with maximum adjustable font size, whereas lengthy text
messages with a length of more than 30 characters will be
placed on reading later queue. +e auto-reply message will be
generated for the SMSs from unknown contacts. +e Driv-
erSense app is provided to divide the SMS reply into categories,
and driver will choose an option. For example, an SMS reply
could be shown in three parts (i.e., standard reply (I’m driving),
personal reply (you have an option to write a short message or
auto-reply), and fun reply (gossip-type message from friends,
which may be skipped)).

Likewise, emails and WhatsApp messages could be
managed similar to SMSs. +e DriverSense app will also
effectively manage a driver’s phone calling activities based on
the driving scenarios. When the DriverSense app detects a
vehicle’s driving mode, the simplified user interface for
managing phone calls will be launched. +e phone calls ac-
tivities have been classified into simplified and easy-to-access
modes including simplified dialer, missed calls, dialed calls,
received calls, favorite contacts, and contact list. +e activities
can be performed using simple touches or using voice
commands in case of no external noise.+e dialer activity will
be automatically sent into the background, and the mode of
interaction with the interface will be changed into voice mode
when a vehicle’s medium speed is detected. Similarly, only the
favorite contact list will be made visible, and other activities
will be hidden when high speed is detected. Furthermore, the
DriverSense app also manages to receive calls activity in the
different driving contexts. For example, receiving call option
will be displayed for every call if low speed is detected and an
option of auto-reply SMS will be made accessible along with
receiving call option if medium speed is detected (a driver
may swipe the received call option or simply touch the auto-
reply SMS to caller) and incoming calls from the unknown

Table 2: Snippet of different contexts and threshold values.

Term Context +reshold value

Velocity
High speed Speed greater or equal to 80 km/h.
Low speed Speed is less or equal to 30 km/h.

Medium speed Speed is between 30 km/h and 80 km/h.

Location
Familiar location More than five-time visit on this road.
Little familiar More than one-time visit last time.
Nonfamiliar First visited road.

Noisy Environment is noisy If noise is 25 decibels.

Text messages Short messages If the length of the message is less than 30 characters.
Lengthy messages If the length of the message is greater than 30 characters.

Contact number Known number If saved in the contact list.
Unknown number If not saved in the contact list.

Driving status Is driving If speed is≥10 km/h or D gear is detected.
No driving If speed is�0 km/h or P gear is detected.

8 Mobile Information Systems



number will be automatically cancelled with auto-reply
SMS if high speed is detected. +e DriverSense app also
manages the navigation activity. +e activity will be on the
top in case of unknown routes. If the visited place is fa-
miliar (the place visited for five times), the navigation
activity will be automatically hidden from the main user
interface. For unknown routes, the navigational activity
will inform drivers about their current locations on request
as well as automatically after some time interval based on
their speeds. +e DriverSense app will automatically an-
nounce the points saved by the drivers and public points of
interests through voice. Furthermore, the DriverSense app
will automatically send the web-browsing activity into the
background whenever vehicle motion is detected. In

addition, the DriverSense app will automatically block
video watching in any driving scenario.

5. Experimental Evaluation

To the best of our knowledge, the DriverSense app is the first
attempt to demonstrate context-aware adaptive user interfaces
for drivers to minimized distractions. +erefore, there are no
widely agreed evaluation techniques proposed by the re-
searchers. +e DriverSense app is tested using basic research-
oriented technique and user-based evaluation to demonstrate its
effectiveness, accuracy, and usability. In addition, the evaluation
is aimed at investigating the systematic understanding of user
experiences in using smartphone applications on DriverSense

(a) (b) (c)

(d) (e) (f )

Figure 5: DriverSense user interface. (a) Main simplified user interface. (b) SMS activity. (c) Calls activity. (d) New SMS activity. (e)
Personalized reply with option activity. (f ) SMS personal reply activity.
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and measuring the reductions in visual interactions, physical
interactions, and cognitive overloads; for the evaluation, the
following hypotheses were made:

H1
H0: TheDriverSense does not improve user satisfaction.

H1: TheDriverSense will improve user satisfaction.

⎧⎨

⎩

⎫⎬

⎭

H2
H0: The participants have not a positive attitude towards the usage of DriverSense.

H1: The participants have positive attitude towards the usage of DriverSense.

⎧⎨

⎩

⎫⎬

⎭

H3
H0: TheDriverSense will notminimize cognitive overload.

H1: TheDriverSensewill minimize cognitive overload.

⎧⎨

⎩

⎫⎬

⎭

H4
H0: TheDriverSense will notminimize visual interaction.

H1: TheDriverSensewill minimize visual interaction.

⎧⎨

⎩

⎫⎬

⎭

H5
H0: TheDriverSense will notminimize physical interaction.

H1: TheDriverSensewill minimize physical interaction.

⎧⎨

⎩

⎫⎬

⎭

5.1. Evaluation Parameters. +e evaluation process of
DriverSense has been carried out through an empirical study
on drivers. +e usability methods have a common smart-
phone usage over time for evaluating the usability of ap-
plications. Among the others, the most commonly used
usability evaluation includes heuristic evaluation, end-user-
usability test, and survey and cognitive modelling [52].
Similarly, numerous alternative methods have been used for
usability, user experience, and accessibility evaluation, which
include automated checking of conformance to guidelines
and standards, evaluation using model and simulations, the
evaluation conducted by experts, evaluation through users,
and evaluation through collected data using keystroke
analysis [53]. +e DriverSense app is evaluated through the
already established set of methods, metrics, and usability
parameter suggested by Human-Computer Interaction
(HCI) (i.e., ease of use, perceived usefulness, intention to
use, operability, understanding and learnability, minimal
memory load, system usability scale, consistency, and user
satisfaction).

5.2. Participants Recruitment. To conduct the empirical
evaluation, a sample of 93 participants (79 males and 14
females) are selected voluntarily from the different profes-
sional and casual sectors including truck drivers, taxi drivers,
students, businessmen, and employees. However, the par-
ticipants were filtered with conditions of (1) having a valid
driving license and more than two years of postlicense
driving experience and (2) having experience of using
smartphone while driving for more than a year at least. +e
participants are briefly addressed regarding the purpose of
the study and research and expressed their willingness.
Table 3 depicts the details of the participants’ information in
terms of demographic profile, educational background, and

gender. +e DriverSense app is installed on the participant
smartphones, and initial training has been provided to the
participants about its usage.

5.3. EvaluationCriteria. +e three types of experiments (i.e.,
user satisfaction, user experience assessment, and perceived
usability) are performed in the evaluation process. User
satisfaction has been assessed by using a questionnaire for
user interaction satisfaction, which measures the overall
satisfaction of the system in terms of nine user interface (UI)
factors [54]. Similarly, the user experience has been assessed
using User Experience Questionnaire (UEQ) [55], which
allows a quick assessment of the user experience by getting
impressions, user feelings, and attitude after using Driv-
erSense. +e UEQ measures both the user experience aspect
and the classical usability aspect. Finally, for achieving the
perceived usability, the most widely used measure of System
Usability Scale (SUS) has been used. +e findings obtained
from the SUS are more accurate as compared to the Post-
Study System Usability Questionnaire (PSSUQ) and Com-
puter System Usability Questionnaire (CSUQ) when the
sample size is greater than 8. We are interested in finding the
user experience, perceived usefulness, and user satisfaction
of the drivers by performing common activities on the in-
terface shown by the DriverSense app. +e effectiveness of
each activity was evaluated through a set of usability pa-
rameters, including the degree of easiness, navigational
complexity, consistency, and persistency.

5.4. Evaluation Process. User evaluation of the proposed
methodology has been performed using the real-world
DriverSense and AutoLog [56] android applications. +e
DriverSense and AutoLog applications are installed on the
participants’ smartphones. We have instructed the
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participants that the AutoLog application will be running in
the background to record the drivers’ smartphone activities
(e.g., time for activity and activity completion time), vehicle
dynamics (e.g., speed, steering angle, brake status, accelerator
status, and engine RPM), and environmental data (e.g., lo-
cation, traffic status, road condition, weather information,
temperature, and light intensity) [56]. +e participants are
ensured that the data will automatically be anonymized before
being stored in the database to protect the privacies of the
participants. Furthermore, the AutoLog application will au-
tomatically stop logging the data whenever the drivers stop
driving. +e participants are instructed that the logged data
will only be used for the evaluation purpose to compare the
activities performed in native smartphone interfaces with the
activities performed on DriverSense. After completing the
exercise of three months, the participants are asked to fill the
questionnaire to investigate DriverSense user satisfaction,
perceived usability, user experience, and efficiency.

6. Results and Discussion

+e data were collected through both the questionnaire and
AutoLog application and used for performing two types of
analysis: empirical analysis and dataset-based analysis. +e
purpose of these two types of analysis is to find out the
significance of the DriverSense application.

We have carried out different tests in this study and
analyzed the statistical data using different software like
STATA, SPPS, AMOS, and Excel. In our case, we have used
descriptive tabulation reporting frequencies and percentages
of the categories of the variables. After that, a cross-tabu-
lation is performed with cell percentages and cell likelihood
ratio Chi-squared tests.+e complied results have significant
importance in a way that they give us two-way (2× 2) cell
frequencies count and cell percentages along with the
measures of association of measurement items. To check the
variable’s scales reliability, Cronbach’s alpha test has been
carried out. Furthermore, we have also performed factor
analysis in which Iterated Principal Factor Analysis (IPFA)
was found to be better as compared to others.+e purpose of

these tests is to investigate the relationship between the user
experience attributes of DriverSense user interfaces on at-
titude, perceived usefulness, ease of use, intention to use,
understandability and learnability, minimal memory load,
minimal visual interaction, minimal physical interaction,
etc. Finally, structural models have been estimated to test the
study hypothesis.

6.1. Descriptive Test Statistics. +e results in Table 4 are self-
explanatory, showing descriptive statistics of frequencies
and percentages of the categorical indicators of all the
variables. For attitude, 60.22% of the respondents chose
“very probably” to use DriverSense and 31% chose “Defi-
nitely” to use DriverSense. In terms of intention to use
DriverSense, 49% and 29% chose “very probably” and
“Definitely”. A higher 69% of the respondents agreed and
12.90 strongly agreed in terms of perceived usefulness. It
shows that almost above 80% perceived its usefulness well.

For the understandability and learnability, more than
90% found DriverSense understandable and easy to learn.
About 80% were satisfied with the operation of the Driv-
erSense, and 77% agreed that it is easy to use. In terms of
system usability, 74% were in agreement with the software
system usability, while 18% chose “probably.”

About minimal memory load, 88% moderately agreed,
less 7% strongly agreed, and only 4% slightly agreed. It shows
that more than 90% were in agreement in terms of minimal
memory load, which means that DriverSense requires sig-
nificantly minimum memory load. For minimal visual in-
teraction, the results were similar as 63% moderately agreed,
14% strongly agreed, and 22% slightly agreed. In minimizing
the physical interaction, the results show that more (48%)
agreed moderately, less 19% strongly agreed, a good 30%
slightly agreed, and negligible 2% disagreed moderately. It
shows that majority of the respondents agreed that Driv-
erSense did not require as muchmemory load and visual and
physical interactions. Finally, 66% were very satisfied, 21%
were extremely satisfied, and lowly 12% were moderately
satisfied with the DriverSense usefulness.

Table 3: Demographic information of the participants who participated in the evaluation.

Variable Group Number of participants Percentage

Gender Female 14 15.06
Male 79 84.94

Age
22 to 35 years 61 65.59
36 to 45 years 18 19.35
46 to 56 years 14 15.06

Background Educated 75 80.64
Literate 18 19.36

Valid driving license

2 to 3 years 53 56.99
4 to 5 yours 14 15.06
6 to 7 years 13 13.98
8 to 9 years 10 10.75

More than 9 years 03 03.22

Upper limb usage
Right hand 46 49.46
Left hand 18 19.36
Both hand 29 31.18
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Table 4: Descriptive statistics.

Usability parameters Variables (questions) Scales Frequency Percentages

Attitude ATTD1, ATTD2, ATTD3, ATTD4

Definitely 29 31.18
Very probably 56 60.82

Probably 07 7.53
Possibly 01 1.08

Definitely not — —

Intention to use ITU1, ITU2, ITU3, ITU4

Definitely 27 29.03
Very probably 46 49.46

Probably 19 20.43
Possibly 01 1.08

Definitely not — —

Perceived usefulness PDU1, PDU2, PDU3, PDU4, PDU5, PDU6

Strongly agree 12 12.90
Agree 65 69.89

Probably 16 17.20
Possibly — —

Strongly disagree — —

Understandability and
learnability UAL1, UAL2

Much higher 40 43.01
Higher 45 48.39

About the same 08 8.60
Lower — —

Much lower — —

Operability OPT1, OPT2, OPT3, OPT4, OPT5, OPT6, OPT7, OPT8,
OPT9, OPT10, OPT11

Very satisfied 06 6.45
Satisfied 75 80.65
Neither 12 12.90

Dissatisfied — —
Very dissatisfied — —

Ease of use EOU1, EOU2, EOU3, EOU4, EOU5, EOU6, EOU7, EOU8

Strongly agree 09 9.68
Agree 72 77.42

Probably 12 12.90
Possibly — —

Strongly disagree — —

System usability scale (SUS) SUS1, SUS2, SUS3, SUS4, SUS5, SUS6, SUS7

Strongly agree 07 18.28
Agree 69 74.19

Probably 17 18.28
Possibly — —

Strongly disagree — —

Minimal memory load MML1, MML2, MML3, MML4, MML5, MML6, MML7,
MML8

Agree strongly 07 7.53
Agree moderately 82 88.17
Agree slightly 04 4.30

Disagree
moderately — —

Disagree strongly — —

Minimal visual interaction MVI1, MVI2, MVI3, MVI4

Agree strongly 13 13.98
Agree moderately 59 63.44
Agree slightly 21 22.58

Disagree
moderately — —

Disagree strongly — —

Minimal physical interaction MPI1, MPI2

Agree strongly 18 19.35
Agree moderately 45 48.39
Agree slightly 28 30.11

Disagree
moderately 02 2.15

Disagree strongly — —

User satisfaction US1, US2, US3, US4, US5

Extremely
satisfied 20 21.51

Very satisfied 62 66.67
Moderately
satisfied 11 11.83

Slightly satisfied — —
Not at all satisfied — —
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In Table 5, cross-tabulation of cell percentage and LR
Chi-squared test statistics are presented. +ese results are of
significant importance in a way that they give us two-way
(2× 2) cell frequencies count and cell percentages along with
the measures of association of measurement items. Cell
frequencies and cell percentages give us more exact values of
how much each category of factors contributes to the cat-
egory of the second factor. Also, we have calculated cell test
statistics, which gives us the measure of association of each
category cell contribution to LR Chi-square of both factors.
+e significant coefficients of cell LR Chi-squared test sta-
tistics are marked with asterisk (∗) at different levels of
significance.

6.2. Data Reliability and Factor Analysis. Cronbach’s alpha
tests have been carried out to measure the reliability or, more
specifically, internal consistency of the scales of the mea-
surement items [57, 58]. +e alpha is measured for each
measurement item (factor), and the alpha score represents
the expected squared correlation of one scale (also called
test) of an item with all other scales (correlation among
observed and true value). Here the coefficient of scale re-
liability is 0.68 (≈0.7), which is good, and alpha score for
each item ranges from 0.67 to 0.68. +is shows that our scale
items are reliable and internally consistent. For reference,
the alpha value of 0.70 and above is considered good, and
0.60 is acceptable [57, 59]. However, a good alpha score
varies with the nature of the study and scales of the mea-
surement items. In Table 6, the observations in the alpha
column show the number of nonmissing values of the
measurement items, while the sign shows the direction of
scales correlation. +e item-test coefficient shows the
strength of correlation of each item with the scales of all
other items, while a more robust rest-item coefficient
(Corrected Item Total correlation) shows the strength of
correlation with the scales of all other 60 items only. +e
higher the item-test and item-rest correlation coefficients
are, the better fit the items are. +e average interitem (be-
tween measurement items) correlation shows the average
correlation between the items. Scales reliability of the
measurement items has a theoretical relationship with the
factor analysis, as it is assumed that the factor loadings
contribute to almost the same/equal information about the
score [60]. We have carried out all types of factor analysis of
the measurement items (Principal Factor (PFA), Principal
Component Factor (PCFA), Iterated Factor (IFA), and
Maximum Likelihood Analysis (MLE)) but reported the
Iterated Principal Factor Analysis because it retained 60
factors out of 61 factors (measurement items).

Several studies demonstrated that PCFA is the best factor
analysis and the most commonly used. +e reason why we
preferred IPFA over PCFA is the lower uniqueness values of
the former over the latter, and there is not much significant
difference of factor’s retention between the two analyses
despite the fact that the PCFA retained all 61 factors. Sec-
ondly, the PCFA assumes uniqueness of “0,” but here they
were all higher than IPFA. In factor model analysis,
uniqueness shows the variance of a particular factor that is

not explained by other factors in the model. +e results are
presented in Table 7. Higher uniqueness values show higher
measurement error or a variable with higher uniqueness
values means that the latent variable is not well explained by
the factor model. For comparison, PCFA has higher
uniqueness than IPFA.

In terms of interpretation of the FA results, the eigen-
values show the amount of variation (variance) explained by
a particular factor in total variation. In IPFA, 60 factors out
of 61 contributed to total variance as all of these factors’
eigenvalues are above 0 (positive eigenvalues). But the first
23 factors are stronger than the rest because of their values
being above 1. +e difference shows the difference between
one eigenvalue and the next. But here the proportion is
important to be discussed as it shows the proportion of the
explained variation to the total variation of a particular
factor. Finally, the LR test for the factor model is significant,
showing low factor saturation, which is good.

Based on the nature of our variables, we have estimated
Kendall’s tau-b rank correlation coefficient. In Table 8, we
can see that there is no multicollinearity issue in the data
(responses to the scales of the variables). +e Kendall’s tau-b
correlation coefficients show the independence of the re-
sponses of the factor’s scales, which is good in terms of
analysis. +e values having asterisk (∗) in Table 8 show that
the correlation is significant. +e results of IPFA in terms of
independence versus the saturated model are similar to
correlation matrix results.

6.3. Model Summary and Fitness. +e measurement model
had 61 items for 8 latent variables and estimated the absolute
and relative, parsimony, and noncentrality fit indices, i.e.,
Chi-square/d.f., Comparative Fit Index (CFI), Normed Fit
Index (NFI), Increment Fit Index (IFI), Tucker-Lewis Index
(TLI), Parsimonious Comparative Fit Index (PCFI), Parsi-
monious Normed Fit Index (PNFI), Relative Fit Index (RFI),
and RMSEA for model’s assessment. +e results show good
model fitness with Chi-square/d.f.�1.227, CFI� 0.543,
NFI� 0.84, IFI� 0.825, TLI� 0.5, PCFI� 0.5, RFI� 0.15,
PNFI� 0.542, and RMSEA� 0.05. +e model estimates the
measurement items with their standard errors and proba-
bility values.

+ese measurements indicate that the estimated co-
variance metrics of the proposed model, as well as the
observed model, are found to be significant and satisfactory.
Figure 6 shows the final structural model generated from the
relationship of latent variables, and Table 9 shows the model
estimates of measurement items with their standard errors
and probability values.

In respect of Hypotheses such as H1, H2, H3, H4, and
H5, we reject the null hypotheses as a structural model has
significant positive estimates as shown in Table 10. +e
structural model gives p values less than 0.05, which means
that the DriverSense app will minimize mental, visual, and
physical interaction and will significantly improve user
satisfaction. In terms of attitude, we have significant positive
estimates with p � 0.030, which shows that respondents
have a positive attitude towards the usage of DriverSense.
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Table 6: Data reliability test (Cronbach’s alpha).

Measurement items Observations Sign Item-test correlation Item-rest correlation Average interitem correlation Cronbach’s alpha
ATTD1 93 + 0.4502 0.3883 0.0317 0.6630
ATTD2 93 + 0.1809 0.1082 0.0338 0.6773
ATTD3 93 + 0.2464 0.1753 0.0333 0.6739
ATTD4 93 − 0.0678 0.0061 0.0347 0.6830
ITU1 93 + 0.5422 0.4868 0.0310 0.6577
ITU2 93 + 0.2894 0.2197 0.0330 0.6717
ITU3 93 + 0.2562 0.1853 0.0332 0.6734
ITU4 93 + 0.2598 0.1890 0.0332 0.6732
PDU1 93 − 0.1753 0.1025 0.0338 0.6776
PDU2 93 + 0.0650 0.0090 0.0347 0.6832
PDU3 93 + 0.3073 0.2382 0.0328 0.6707
PDU4 93 − 0.1690 0.0960 0.0339 0.6780
PDU5 93 + 0.3526 0.2855 0.0325 0.6683
PDU6 93 + 0.4834 0.4236 0.0315 0.6611
UAL1 93 + 0.3182 0.2496 0.0328 0.6702
UAL2 93 + 0.3504 0.2832 0.0325 0.6684
OPT1 93 + 0.2179 0.1460 0.0335 0.6754
OPT2 93 + 0.1529 0.0797 0.0340 0.6788
OPT3 93 + 0.1217 0.0482 0.0343 0.6803
OPT4 92 + 0.2932 0.2239 0.0329 0.6715
OPT5 92 + 0.0354 0.0381 0.0349 0.6845
OPT6 93 − 0.0368 0.0371 0.0349 0.6846
OPT7 91 + 0.1371 0.0639 0.0341 0.6794
OPT8 93 − 0.1884 0.1158 0.0337 0.6770
OPT9 93 + 0.4510 0.3892 0.0317 0.6629
OPT10 92 − 0.1312 0.0582 0.0342 0.6798
OPT11 93 − 0.1546 0.0814 0.0340 0.6787
EOU1 93 + 0.1236 0.0500 0.0342 0.6802
EOU2 93 − 0.1411 0.0678 0.0341 0.6794
EOU3 93 + 0.1426 0.0693 0.0341 0.6793
EOU4 93 + 0.2362 0.1647 0.0334 0.6745
EOU5 93 + 0.2029 0.1306 0.0336 0.6762
EOU6 93 − 0.1325 0.0590 0.0342 0.6798
EOU7 93 + 0.1484 0.0751 0.0341 0.6790
EOU8 93 + 0.2544 0.1834 0.0332 0.6735
SUS1 93 + 0.3642 0.2976 0.0324 0.6677
SUS2 93 − 0.1246 0.0510 0.0342 0.6802
SUS3 93 + 0.0575 0.0164 0.0347 0.6835
SUS4 93 + 0.2450 0.1738 0.0333 0.6740
SUS5 93 − 0.1081 0.0343 0.0344 0.6810
SUS6 93 + 0.2057 0.1335 0.0336 0.6761
SUS7 93 + 0.3498 0.2825 0.0325 0.6685
MML1 93 + 0.1521 0.0788 0.0340 0.6788
MML2 93 + 0.1069 0.0332 0.0344 0.6811
MML3 93 + 0.1309 0.0574 0.0342 0.6799
MML4 93 + 0.1866 0.1139 0.0338 0.6771
MML5 93 − 0.1242 0.0506 0.0342 0.6802
MML6 93 − 0.0467 0.0272 0.0348 0.6841
MML7 93 − 0.2135 0.1414 0.0336 0.6757
MML8 93 + 0.2316 0.1600 0.0334 0.6747
MVI1 93 + 0.3433 0.2758 0.0326 0.6688
MVI2 93 + 0.1661 0.0931 0.0339 0.6781
MVI3 93 + 0.3659 0.2993 0.0324 0.6676
MVI4 93 + 0.3062 0.2369 0.0328 0.6708
MPI1 93 + 0.1574 0.0842 0.0340 0.6785
MPI2 93 − 0.3388 0.2711 0.0326 0.6690
US1 93 + 0.3073 0.2383 0.0328 0.6707
US2 93 + 0.2948 0.2253 0.0329 0.6714
US3 93 + 0.3582 0.2913 0.0324 0.6680
US4 93 + 0.1360 0.0625 0.0341 0.6796
US5 93 + 0.3066 0.2374 0.0328 0.6708
Test scale 0.0335 0.6788
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Table 7: Iterated Principal Factor Analysis.

Measurement items Eigenvalues Difference Proportion Cumulative Uniqueness
Factor1 4.16775 0.86173 0.0733 0.0733 0.0332
Factor2 3.30602 0.41087 0.0582 0.1315 0.0332
Factor3 2.89515 0.11932 0.0509 0.1824 0.1042
Factor4 2.77584 0.34843 0.0488 0.2313 0.1598
Factor5 2.42741 0.12902 0.0427 0.2740 − 0.0303
Factor6 2.29839 0.13477 0.0404 0.3144 − 0.0068
Factor7 2.16362 0.13926 0.0381 0.3525 0.1618
Factor8 2.02436 0.14853 0.0356 0.3881 0.1298
Factor9 1.87583 0.03791 0.0330 0.4211 0.0975
Factor10 1.83793 0.07342 0.0323 0.4535 0.0898
Factor11 1.76450 0.01773 0.0310 0.4845 0.0954
Factor12 1.74677 0.08717 0.0307 0.5153 0.0334
Factor13 1.65960 0.05695 0.0292 0.5445 0.0013
Factor14 1.60264 0.04585 0.0282 0.5727 0.0075
Factor15 1.55680 0.08512 0.0274 0.6000 0.0056
Factor16 1.47167 0.12395 0.0259 0.6259 0.0437
Factor17 1.34772 0.03929 0.0237 0.6497 0.0255
Factor18 1.30844 0.10513 0.0230 0.6727 0.0973
Factor19 1.20330 0.03614 0.0212 0.6938 − 0.0078
Factor20 1.16716 0.01158 0.0205 0.7144 0.1079
Factor21 1.15558 0.02960 0.0203 0.7347 0.0711
Factor22 1.12598 0.11679 0.0198 0.7545 0.1533
Factor23 1.00920 0.04908 0.0178 0.7723 0.1003
Factor24 0.96012 0.05031 0.0169 0.7892 0.1117
Factor25 0.90981 0.05021 0.0160 0.8052 0.0324
Factor26 0.85960 0.03158 0.0151 0.8203 0.2479
Factor27 0.82801 0.04933 0.0146 0.8349 0.1175
Factor28 0.77868 0.03654 0.0137 0.8486 0.0953
Factor29 0.74214 0.04227 0.0131 0.8616 0.0880
Factor30 0.69987 0.07413 0.0123 0.8740 0.0720
Factor31 0.62574 0.01323 0.0110 0.8850 0.1018
Factor32 0.61251 0.05363 0.0108 0.8957 0.1097
Factor33 0.55888 0.05524 0.0098 0.9056 0.1659
Factor34 0.50364 0.02172 0.0089 0.9144 0.0001
Factor35 0.48192 0.02075 0.0085 0.9229 0.1346
Factor36 0.46117 0.02582 0.0081 0.9310 0.0962
Factor37 0.43535 0.07850 0.0077 0.9387 0.0038
Factor38 0.35685 0.00565 0.0063 0.9450 0.0978
Factor39 0.35120 0.01275 0.0062 0.9512 0.1304
Factor40 0.33845 0.04914 0.0060 0.9571 0.1338
Factor41 0.28931 0.01496 0.0051 0.9622 − 0.0255
Factor42 0.27435 0.02779 0.0048 0.9670 0.0676
Factor43 0.24656 0.00400 0.0043 0.9714 − 0.0185
Factor44 0.24255 0.03557 0.0043 0.9756 0.1242
Factor45 0.20699 0.01929 0.0036 0.9793 0.0242
Factor46 0.18770 0.02451 0.0033 0.9826 0.0465
Factor47 0.16319 0.01043 0.0029 0.9854 0.0497
Factor48 0.15275 0.01490 0.0027 0.9881 0.1494
Factor49 0.13786 0.02172 0.0024 0.9906 − 0.0380
Factor50 0.11614 0.01123 0.0020 0.9926 0.0230
Factor51 0.10491 0.03082 0.0018 0.9945 − 0.0580
Factor52 0.07408 0.01385 0.0013 0.9958 0.0987
Factor53 0.06023 0.01138 0.0011 0.9968 0.1319
Factor54 0.04885 0.00722 0.0009 0.9977 0.0197
Factor55 0.04163 0.00121 0.0007 0.9984 − 0.0502
Factor56 0.04042 0.00934 0.0007 0.9991 − 0.0417
Factor57 0.03108 0.01773 0.0005 0.9997 0.1320
Factor58 0.01335 0.00820 0.0002 0.9999 0.0725
Factor59 0.00515 0.00398 0.0001 1.0000 0.0407
Factor60 0.00117 0.00175 0.0000 1.0000 0.0763
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Table 7: Continued.

Measurement items Eigenvalues Difference Proportion Cumulative Uniqueness
Factor61 0.00058 − 0.0000 1.0000 0.0961
Number of observations 88
Retained factors with min. eigenvalue (0) 60
Number of parameters 1830
Likelihood ratio Chi-squared test (1830) 2188∗∗∗

Table 8: Kendall’s tau correlation matrix.

ATTD ITU PDU UAL OPT EOU SUS MML MVI MPI US
ATTD 0. 5402
ITU 0.1510∗ 0.6360
PDU 0.0659 0.1050∗ 0.4703
UAL 0.0683 0.1316∗ 0.0468 0.5797
OPT 0.0972∗ 0.0208 0.0136 − 0.0500 0.3324
EOU 0.1092∗ 0.0180 0.0806∗ 0.0771∗ 0.0853∗ 0.3787
SUS 0.0194 − 0.0023 0.0341 0.0547 0.0042 0.0252 0.4149
MML 0.0103 − 0.0026 0.0187 − 0.0402 0.0400 − 0.0171 0.0421 0.2174
MVI 0.1192∗ 0.0079 0.0561 − 0.0037 0.0570 − 0.0021 0.0210 0.0215 0.5327
MPI 0.0561 0.0250 0.1094∗ 0.0327 0.0785∗ 0.0136 0.0171 0.0526 − 0.0376 0.6442
US 0.1384∗ 0.1087∗ 0.0187 0.1185∗ 0.0767∗ 0.0222 0.0465 0.0140 0.1019∗ − 0.0795 0.5007

Figure 6: Structural model for investigating relationship between the latent variables.
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Similarly, understandability and learnability and intention
to use the app have significant positive estimates, showing
positive perceptions of the proposed solution.

6.4. Analysis through AutoLog Dataset. +e AutoLog ap-
plication is used for logging data about drivers’ interactions
with common smartphone applications [56]. +e logged
data contain information about different operations carried
out by smartphone application such as number of activities
used to perform tasks and number of input taps. +e
common smartphone applications include calls, SMS, e--
mail, WhatsApp, Navigation, and Weather. As discussed
earlier, the applications and their interfaces are designed
from the perspective of a normal user as the number of
activities is either redundant or repetitive and has a
complex structure, long route to follow, and so forth. +e
logged data obtained from smartphone native interfaces are
analyzed and compared with the data obtained from
DriverSense for using common smartphone activities. +e
DriverSense interfaces are found to be less complex and
have minimum activities and input taps. +e comparison is
shown in Table 11. To investigate the performance of
DriverSense, the AutoLog data generated from the Driv-
erSense app during the normal operations performed by
the participants have been analyzed and compared with the
AutoLog dataset generated from the smartphone native
interfaces. After analyzing the data from both datasets, the
findings, as shown in Figure 7, indicate that DriverSense
requires comparatively less visual and physical attention to
perform smartphone activities while driving as compared
to native interfaces. It is due to the fact that DriverSense
interfaces are simplified, adaptive, and consistent, having a
minimum number of activities and input taps. Since most
of the activities can be performed automatically based on a
context, it will minimize the drivers’ interactions. +e

results obtained after the analysis are discussed in the
following sections.

6.4.1. Automatic Response. Since the operations of Driv-
erSense user interfaces change according to drivers’ context,
most of the activities are automatically performed. Ana-
lyzing the dataset, the activities automatically performed by
the DriverSense are auto-reply, auto-skipping lengthy and
unknown SMSs, auto-reply for unknown calls during high
speed, and so forth. +e operations automatically performed
by DriverSense user interface are compared with smart-
phone native interfaces and other technologies (i.e., Android
Auto, CarPlay, etc.) and results are shown in Table 12.

6.4.2. Steering Wheel Control Variations. +e datasets also
captured steering wheel control variation while driving. +e
control of the steering wheel has been analyzed while the
driver performed smartphone activities in both smartphone
native interfaces and DriverSense. Comparatively high
steering wheel variations have been observed when drivers
performed common activities such as SMS and phone calls
using smartphone native interfaces. However, significantly
minimum steering wheel variations have been observed
when the drivers performed the same activities on Driv-
erSense. A comparison of the steering wheel control vari-
ations while receiving voice call is depicted in Figure 8.

6.4.3. Speed Variations. +e speed variations data are also
captured while performing activities like attending the call,
reading, and replying to text messaging using both smart-
phone native interfaces and DriverSense interfaces. +e
significant speed variations are observed when the drivers
attended calls and read and replied to text messages on
smartphone native interfaces. +e speed is found to be
degraded from approximately 80 km/h to 50 km/h. On the

Table 9: Model fit indices of the measurement and structural model.

Fit index Structural model Recommended values
CMIN/DF 1.227 ≤ 3.00
CFI 0.543 ≤ 3.00
NFI 0.85 ≥ 0.90
IFI 0.825 ≥ 0.90
TLI 0.5 ≥ 0.50
PCFI 0.5 ≥ 0.50
RFI 0.15 ≤ 1.00
PNFI 0.542 ≥ 0.50
RMSEA 0.05 ≤ 0.08

Table 10: Model testing/hypothesis testing.

Hypothesis Unstandardized coefficients Standardized coefficients Standard errors P

H1⟶User satisfaction 0.151 0.441 0.485 0.018
H2⟶Attitude 0.795 0.206 0.366 0.030
H3⟶Minimal memory load 0.588 0.455 0.235 0.027
H4⟶Minimal visual interaction 0.811 0.375 0.255 0.023
H5⟶Minimal physical interaction 0.327 0.143 0.171 0.046
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Table 12: Comparison of automatic responses generated by DriverSense and other technologies.

Responses DriverSense Smartphone native apps Other technologies
Auto-cancel lengthy SMS Yes No No
Auto-reply at higher speed Yes No No
Auto-reply to unknown number calls Yes No No
Auto-switching from text-to-speech if no noise detected Yes No No
Auto-hide navigation activity for known routes Yes No No
Auto-block videos Yes No Yes
Interface auto-switched to night mode Yes No Yes
Interface auto-switched to a driving mode Yes No Yes
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Figure 8: Comparison of steering wheel control variations during receiving voice calls.

0 5 15 25 35 4510 20 30 40 50

SMS

Calls

Navigation

SMS

Calls

Navigation

D
riv

er
 se

ns
e

in
te

rfa
ce

s
Sm

ar
tp

ho
ne

 n
at

iv
e 

in
te

rfa
ce

s

Wrong touches
Physical engagement
Visual attention

Figure 7: Comparison of DriverSense and smartphone native interfaces in terms of wrong touches, physical engagement, and visual
attention when performing common smartphone activities while driving.

Table 11: Comparison of smartphone native interfaces with DriverSense interfaces.

No. Applications
Smartphone native interfaces DriverSense interfaces

Activity No. of input taps Adaptation Activity No. of input taps Adaptation
1 Call 13 43 No 7 15 Yes
2 SMS 11 35 No 6 13 Yes
3 E-mail 25 25 No 8 11 Yes
4 Navigation 14 26 No 6 11 Yes
5 Weather 5 14 No 3 8 Yes
6 Music 6 16 No 3 10 Yes
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other hand, the data extracted fromDriverSense dataset have
shown less speed variations as compared to smartphone
native interfaces. A comparison of the speed variations is
depicted in Figure 9.

7. Conclusions

+e usage of a smartphone is a global phenomenon and has
been acknowledged as a major source of accidents and
crashes. Using a smartphone while driving requires much
visual interaction, physical interaction, and mental work-
load, which cannot be afforded by the drivers as eyes off the
road for two seconds increases the chances of accidents to
twenty-four times. +e researchers have tried to minimize
the visual, physical, and mental distractions of the drivers
with the help of supportive technologies. However, the
available solutions are not designed with the assumption that
the drivers have certain limitations such as physical limi-
tations, visual limitations, and cognitive limitations. +ese
limitations can vary due to different driving contexts.

In this research paper, we have designed and developed a
context-aware adaptive user interfaces framework named
DriverSense for the drivers to minimize distractions and
subsequent catastrophes. +e proposed framework uses
contextual and models information to minimize the drivers’
distractions by providing an adaptive, semantically consis-
tent, simplified, context-sensitive, and task-oriented user
interface design.+e efficiency of the proposed solution with
respect to the adaptive user interface is considered to be
significant and acceptable in terms of usability and user
satisfaction. +e users’ experiences after using DriverSense
are measured through questionnaire and evaluated in dif-
ferent dimensions such as driver attitude for DriverSense
usage, intention to use the app, perceived usefulness, un-
derstandability and learnability, operability, ease of use,
system usability scale, minimal memory load, minimal
physical and visual interaction, and user satisfaction. +e
results have indicated that DriverSense has significantly
reduced the drivers’ distractions caused by cognitive over-
load, visual interactions, and physical interactions. Fur-
thermore, the results have also shown that DriverSense is
more robust, adaptable, and easy to use as compared to the
other infotainment solutions.

Data Availability

+e data that support the findings of this study are available
upon request from the first author, Mr. Inayat Khan
(inayat_khan@uop.edu.pk).
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