
Research Article
Learning Deformable Network for 3D Object Detection on
Point Clouds

Wanyi Zhang,1,2 Xiuhua Fu ,2 and Wei Li3

1School of Information Technology, Jilin Normal University, Siping, China
2School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, China
3College of Physics, Jilin University, Changchun, China

Correspondence should be addressed to Xiuhua Fu; 13604435770@126.com

Received 12 June 2021; Revised 13 July 2021; Accepted 12 August 2021; Published 21 August 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021Wanyi Zhang et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3D object detection based on point cloud data in the unmanned driving scene has always been a research hotspot in unmanned
driving sensing technology. With the development and maturity of deep neural networks technology, the method of using neural
network to detect three-dimensional object target begins to show great advantages. .e experimental results show that the
mismatch between anchor and training samples would affect the detection accuracy, but it has not been well solved. .e
contributions of this paper are as follows. For the first time, deformable convolution is introduced into the point cloud object
detection network, which enhances the adaptability of the network to vehicles with different directions and shapes. Secondly, a
new generation method of anchor in RPN is proposed, which can effectively prevent the mismatching between the anchor and
ground truth and remove the angle classification loss in the loss function. Compared with the state-of-the-art method, the AP and
AOS of the detection results are improved.

1. Introduction

.e 3D object detection methods mainly solve the problem
of locating and identifying targets from both 2D and 3D
data, including image, LiDAR data, and point cloud data.
3D object detection acts as a more and more important
role in real-world applications, such as autonomous
driving cars [1, 2], housekeeping equipment [3], and
augmented reality [4]. A large number of methods have
been proposed to solve the problem of 3D object detection.
Image-based methods: when images contain detailed in-
formation, many methods generated the 3D bounding
boxes [5, 6] by firstly estimating the depth of images from
monocular or stereo cameras. .e accuracy of these
methods was limited by the result of the low accuracy of
depth estimation. Fast RCNN [7] pipeline is used to
generate 3D box proposals in [8] and then apply region-
based recognition. Monocular image and shape priors of
cars are used to propose 3D boxes in [9], while the length
and width of cars and other objects are not invariable.

Another method designs a 3D scene representation which
reasons jointly about the 3D shape of multiple objects.

Methods use the RGB-D image. With the equipment
and application of 3D sensors such as RGB-D cameras and
LiDAR in varying reality, the problem of the inaccuracy of
depth estimation is avoided [10]. Use 3D pixel-wise fea-
tures to detect cars in the RGB-D images, and take ad-
vantages of the 3D car model which can obtain additional
information: height, occlusion, and 3D pose. A detailed
geometry representation of objects is introduced by [11].
Sliding shapes [12] proposed sliding shape on the RGB-D
image to generate 3D bounding boxes by SVM classifiers on
grids encoded with handcrafted features. After sliding
shapes, deep sliding shapes extract geometry features
through 3D convolution networks, but the cost of better
geometry features is expensive computations..e 3D depth
data is transported into 2D maps and CNNs are applied to
localize the objects in [13]. Reduce the 3D detection work
by using an efficient 2D detector and making full use of 2D
information.

Hindawi
Mobile Information Systems
Volume 2021, Article ID 3163470, 9 pages
https://doi.org/10.1155/2021/3163470

mailto:13604435770@126.com
https://orcid.org/0000-0002-6749-2383
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3163470


Similarly, F-PointNets detect objects on 2D images and
then apply PointNet to the corresponding frustum point
cloud to generate 3D bounding boxes. Great amount of
computation was saved so this method receives a compet-
itive high-process speed. While F-PointNets relay too much
on 2D detect result; if 2D detector misses the far object or
small object such as pedestrian and cyclists, F-PointNets
cannot detect it either.

Multiview: Maturana and Scherer [14] show a way to
represent the point cloud by volumetric and multiview.
MVCNN [15] is the first method to apply multiview com-
puter vision to 3D object perception. 2D renders of objects
from 3D data of different “perspectives” is used as the
original training data. .e model trained by the classic
convolution network of the 2D image shows a faster speed
and has a better effect on the recognition and classification of
3D objects than those directly trained by 3D data. In order to
make great use of image-based feature extract methods [16]
project point clouds into front view, compared to LiDAR
only 3D detection, Enzweiler and Gavrila [17] make greater
progress on 3D detection, especially for pedestrians or cy-
clists. Amoung them, MV3D first projects the point clouds
into the bird’s eye view and then applies a CNN to generate
rough 3D bounding boxes which will be projected to three
views. For each view, there will be a deep fusion network
which extracts region-wise features via ROI pooling to
jointly object prediction and 3D box regression. However,
additional needs for camera cause time synchronization and
calibration problem, which limit the use and require sensors
which are always in a good state.

LiDAR based: here, we try to estimate accurate 3D
bounding boxes and class label of objects from point clouds.
Different from RGB image data, 3D point cloud’s unique
properties are very robust to the changes of view angle and
illumination. .ey contain relative overall structural in-
formation and precise depth of each point, but it is precisely
because of different data forms. unordered, sparse, and
locality sensitive, that the traditional network structure is
often unable to directly process point cloud data. Bariya and
Nishino [18] simply extend 2D region proposal network to
3D point cloud when computation cost increases dramati-
cally. Searching for other representations for point cloud is
done [19], which yield satisfactory results when a plenty of
detailed 3D structure information is provided.

.is also leads to the fact that most of the current three-
dimensional target detection methods need to do some
preprocessing operations on the point cloud data, which
becomes two-dimensional data and then sent to the network
for processing. For example, Song and Xiao [20] upgrade
Faster/Mask RCNN [21] to 3D, while priors only process 2D
detection results. .ose methods convert the irregular point
clouds to regular 3D grids and apply 3D CNN detectors to
realize detection task; because of the use of three-dimen-
sional convolution, the calculation of those methods is very
large. .ere are also some methods [22] which project point
cloud data to the perspective of aerial view and carry out 2D
target detection on the image after projection. However, this
kind of method loses a lot of spatial detail data, so the
detection results are very limited. And, some previous

approaches [23] inferred point cloud features by neural
networks on the point cloud which has been divided into
many grids.

In this work, we introduce a 3D detection framework
that directly processes raw point could data and does not
depend on any 2D detectors. Our detection network is
inspired by recent advances in 3D neural networkmodels for
point clouds and is extended by the Hough voting network,
VoteNet, for object detection.

We leverage VoteNet, a hierarchical deep network for
point cloud learning. To reduce the redundant computing
of converting point cloud into other forms of data or
features such as voxel dose, this helps a lot with avoiding
the lack of dimension and structure information in the
process of project point clouds to front view or birds’ eye
view because we directly process the original point cloud
and then only calculate the perceived points to take ad-
vantage of the sparsity of the point cloud. Although
PointNet++ has been used in object classification and
semantic segmentation and achieved fascinating results,
but how to use this architecture to detect 3D objects in
point clouds is still a field rarely touched by researchers.
.ere is an easy and simple idea such as what 2D object
detection does, that is, whether it proposes a lot of 3D
bounding boxes in point clouds which contains their
features learned from network. However, it is very difficult
for us to directly apply this method on the sparse original
point cloud. As the surface of an object is the only thing
irradiated by the depth sensor, the center of a 3D object is
likely to be in an open space which is far away from any
captured surface point. So, in a point cloud, there may be
no perceived points in the center of the object, which is very
different from that in an image. .erefore, it is difficult to
gather scene context near the target center by using the
point-based network. If we just expand the receiving do-
main of the network to capture more context information,
we will also absorb many other nearby objects, which will
bring more clutters and problems. A point cloud depth
network with a voting mechanism similar to classical
Hough voting solves this problem. .e new points near the
target center can not only be generated by voting but also be
grouped and aggregated to generate box proposals. In [24],
a powerful 3D object detector is introduced, which is pure
geometry and can be directly applied to point cloud.
Traditional Hoff voting has multi-independent modules, so
joint optimization is difficult to carry on. However,
VoteNet could be optimized end-to-end. Specifically, the
point cloud is sent to the backbone network to extract
features, and then points with features are sampled from
the point cloud to vote and generate the object center. .e
new object centers come from voting which appear near the
real center, and it is easy to generate 3D box proposal by
any learned network. We make experiment on the 3D
object detection datasets: SUN RGB-D and ScanNet [25].
Our method only uses geometry of these two datasets and
gain state-of-the-art 3D object detection performance than
other methods that use both RGB and geometry or even
multiview RGB images. Our research shows that, in our
algorithm framework, context information is more

2 Mobile Information Systems



effectively aggregated, and our method has greatly im-
proved for the case of object center far away from the object
surface.

In summary, the contributions of our work are as
follows:

(1) .e Euclidean clustering method is used to realize
the target detection based on the point cloud data,
and the better detection effect is achieved on the Kitti
dataset. According to the characteristics of Kitti
dataset, the data interface is designed to preprocess
the labeled target, and a suitable data enhancement
method is proposed for the target detection algo-
rithm based on neural network.

(2) Based on the principle of LiDAR, a method of di-
viding space in the cylindrical coordinate system and
transforming point cloud in voxel is proposed. For
the first time, deformable convolution is introduced
into the point cloud target detection network, which
enhances the adaptability of the network to vehicles
with different directions and shapes. A new gener-
ation method of anchor in RPN is proposed, which
can effectively prevent the mismatch between the
anchor and ground truth, and at the same time, the
angle classification loss in loss function is removed.
Compared with the second, the AP and AOS of
detection results are improved. .e improved
method proposed in this paper is also suitable for
other voxel-based 3D object detection algorithms.

.e paper is organized as follows. Related works with
more details are presented in Section 2. .en, we give a
detailed introduction in Section 3, respectively. Datasets and
experiments are presented in Section 4. Conclusions and
outlook are presented in Section 5.

2. Related Work

Various ways have been proposed for dealing with 3D object
detection problem by extracting features in image and point
cloud. Several existing methods were proposed to help to
detect 3D bounding boxes of objects. Xiang et al. [26]
generate 3D bounding boxes just to use front view images
with shape priors or project the depth data into the front
view as 2D maps which is fed to CNNs to localize objects.
MV3D extract features from both front view’s RGB image
and LiDAR point cloud which is projected to the bird eye
view. 3D bounding boxes are proposed by a trained RPN on
the bird eye view. However, this method is a little weak to
detect the object which is far away or small such as pe-
destrians and cyclists, and it is difficult to deal with overlap
between objects too. PointRCNN [27] directly uses row
point cloud as input of deep networks to generate proposal
boxes and upgrade the way to extract features from point
clouds but is dragged down by the empty voxel caused by the
sparsity of the point cloud. VoxelNet divides space into
many voxels and puts many VFE layers to get point cloud
features from each voxels. Later, these features are trans-
ported into CNNs for detection and segmentation. Similarly,
SECOND [28] applies sparse convolution to get efficient

features from voxels. F-PointNet [29] uses a 2D object
detector on the image to make 2D object proposal first and
then get corresponding frustum point cloud as the base of
regression and prediction, while the accuracy of F-PointNet
relies too much on the 2D detector.

Representation learning from point clouds: there exist
many deep network architectures which are proposed to deal
with point clouds and gain great performance on the task of
3D object detection and object segmentation. Some of these
point cloud-based 3D detection techniques introduce a way
to extract features by representing the point cloud in form of
voxel (divide the point clouds into many cuboids). Ash-
burner and Friston [30] inspire the work by applying 3D
convolutional neural networks on voxels, although it is
restricted by the sparsity of point clouds and high cost of 3D
convolution. Every nonempty voxel is encoded in [31] by 6
statistical quantities which can be derived from the points in
the voxel. Li [32] represent each voxel by fusing multiple
local statistics. Song and Xiao [33] just encode the 3D voxel
into the binary form. VoxelNet first sampled the point
within voxel and then applied many VFE layers to extract
features from each voxel to represent the whole point clouds.
.en, PointNet represent point cloud data as a vector, and
shape features are extracted for a FCN to finish classification
before PointNet and PointNet++, and there is little work on
directly obtaining the feature from the row unordered sparse
point cloud. After that, PointNet is used to generate 3D
objects in a frustum point cloud corresponding to a 2D
object proposal in [34].

3. Architecture for 3D Object Detection

3.1. Voxelization. Our method includes the spatial-feature
extractor, deformable layer, RPN layer, and final regression
layer. In VoxelNet, the Cartesian coordinate system is used
for voxel segmentation and point cloud clustering, as shown
in Figure 1(a). For comparison, Figure 1(b) shows the voxel
segmentation in the cylindrical system. Due to the limitation
of LiDAR working principle, it is impossible for LiDAR to
obtain the information behind the object. To overcome the
shortcoming, we divide voxels based on cylindrical coor-
dinates, compared with the division based on the Cartesian
coordinate system, and the method in this paper can sig-
nificantly improve the point cloud in voxels, the sparse
degree of voxels, and the processing efficiency of sparse
convolution algorithm.

Suppose the cylindrical coordinate system consists of
three axes, ρ, θ, and z. For the given point cloud data, (x, y, z)
in the Cartesian coordinate system could be converted into
the cylindrical coordinate system with the coordinate
(ρ �

������
x2 + y2


θ � arctan(y/x), zc � z); then, we divide the

voxel space evenly. After space division, the point cloud
points need to be clustered because the division in the cy-
lindrical coordinate system is more consistent with the
working principle of LiDAR than that in the Cartesian
coordinate system, and more sparse point cloud could be
obtained. Considering that a large number of points will lead
to the consumption of computing power and the density of
the grid midpoint is not uniform, the maximum number of

Mobile Information Systems 3



points in each nonempty voxel is set as T, and the redundant
points are automatically discarded, and zero is added, if less
than T. .e voxelization algorithm is shown in Algorithm 1.
We set the maximum number of voxels K and the maximum
number of points T in each voxel, and a tensor with shape
K×T× 4 is generated by the voxel clustering algorithm.

3.2.NetworkArchitecture. Point cloud feature aelection: V �

pi � (ρi, θi, zi, ri)
T ∈ R4 

i�1,...,t
is defined as a nonempty

voxel, where ρi, θi, zi are the 3D coordinates of point and ri is
the reflection intensity. First, the average value
Vm � (vρ, vθ, vz) of all points in each voxel and the center of
each voxel Vc � (cρ, cθ, cz) are estimated. .en, the average
distance and the distance from each point to the center of the
voxel are added into the feature; finally, a tensor with shape
K×T×10 is generated as pi � (ρi, θi, zi, ri, ρi − vρ,

θi − vθ, zi− vz, ρi − cρ, θi − cθ, zi − cz) i � 1, . . . , t.
Voxel feature extraction layer: voxel feature extraction

used VFE proposed by VoxelNet as the main structure; the
VFE layer takes clustered voxels as input and uses the fully
connected layer, batch norm, and ReLU layer to extract the
feature.

Assuming that the number of the output nodes of VFE is
C � 2 × n, n � Z∗+, the VFE layer takes T×10 points corre-
sponding to the same voxel and is fully connected to C/2
outputs, obtains feature with dimension K×C/2, then uses
the maximum pooling to obtain the local aggregation feature
of each voxel with dimension K× 1, and finally copies it to
the point-by-point feature and obtains the final voxel feature
with shape K×C. .e single VFE layer is shown in Figure 2.

Spatial-feature extraction layer: we use submanifold
sparse convolution and common sparse convolution to
extract spatial feature. By gradually increasing the features
between the voxels of receptive field, more context infor-
mation is added for shape description. At the same time, the
spatial-feature extraction layer can extract the information

about z-axis and transform the sparse 3D data into dense 2D
pseudoimages. .e spatial-feature extraction layer takes the
features obtained from the voxel feature extraction layer as
input and converts nonempty voxels into sparse 4D tensors
according to the coordinates of each voxel in the voxel grid;
then, the spatial features are extracted.

.e spatial-feature extraction layer consists of two
modules; the first module contains a submanifold convo-
lution layer and a normal 3D sparse convolution layer; the
second module consists of two submanifold convolutions
and a normal 3D sparse convolution layer. .e two modules
only carry out downsampling on the z-axis without changing
the length and width of the feature map. After two modules’
processing, the dimension of z-axis is downsampled to two
levels, and the sparse data is transformed into dense feature
mapping. .en, the 4D tensors of the two layers are read-
justed to 3D tensors similar to images. .e structure of
spatial-feature extraction layer is shown in Figure 3.

Deformable convolution layer: because the shape of
convolution kernel used in convolution layer is fixed, the
receptive field is still square after many convolutions, which
results in the limited ability of network for deformation
modeling. Deformable convolution and deformable ROI
pooling are proposed by deformable convolution networks
(DCN). DCN is based on the adaptive deformation of re-
ceptive field by adjusting the position of input sampling of
convolution check. .e standard sampling in ordinary
convolution makes it difficult for the network to adapt to
geometric deformation. In order to weaken this limitation,
an offset variable is added to the position of each sampling
point in the convolution kernel. .e sampling position of
convolution kernel changes adaptively according to the
shape of the sample, instead of being limited to the standard
lattice point. In this paper, DCN is introduced into point
cloud object detection for the first time. As the direction of
vehicles in point cloud object detection algorithm is dis-
tributed in 360 degrees, while ordinary convolution can only

(a) (b)

Figure 1: Voxel division diagram. (a) In Cartesian coordinates, according to the working principle of LiDAR, the scanning shape of laser
beam on the ground is a concentric circle.When the laser irradiates the object, it will be reflected back, so it is impossible for LiDAR to obtain
the information of points behind the object. (b) In cylindrical coordinates, the distribution could improve the uneven density of point cloud
in voxels and the sparsity of voxels.

4 Mobile Information Systems



(1) input points P� {xi, yi, zi}, i� 1, 2, . . ., n
(2) //convert to cylindrical coordinate system.
(3) for each i ∈ [1, n] do
(4) ρi �

������
x2 + y2


, θi � arctan (y/x), zic � zi

(5) end for
(6) //clustering
(7) for each i ∈ [1, n] do
(8) calculate the voxel vi of pi
(9) if vi in hash table then
(10) if number of voxel v count>T then
(11) continue to next point.
(12) else
(13) v count + +

(14) if number of nonzero voxel nz_count>K then
(15) return nonzero voxel, points in each voxel, and grid coordinates.
(16) else
(17) if the last point then
(18) return nonzero voxel points in each voxel, and grid coordinates
(19) else
(20) continue to next point.
(21) end if
(22) end if
(23) end if
(24) else
(25) if nz_count>K then
(26) return nonzero voxel, points in each voxel, and grid coordinates.
(27) else
(28) add new voxel in hash table.
(29) end if
(30) end if
(31) end for

ALGORITHM 1: Voxelization algorithm.

fu
lly

-c
on

ne
ct

ed
 la

ye
r

max
pooling

batch-
normlization

fe
at

ur
e f

us
io

n

Figure 2: Single VFE layer. .e VFE layer receives the K×T×10 tensor as input and extracts the voxel feature with shape K× 128.

sparse
conv

embedded
sparse conv

common
sparse conv

embedded
sparse conv

embedded
sparse conv

common
sparse conv

sparse
to dense

Figure 3: Spatial-feature extractor layer.

Mobile Information Systems 5



form a square receptive field, the introduction of deformable
convolution can better adapt to the changes of different
directions of vehicles. After the deformable convolution is
applied to the spatial-feature extraction layer, the deform-
able convolution is expressed as DCN (co, ci, k, s, p), ci and co
are the channels of input and output tensor, k is the size of
the convolution kernel, and s and p represent step and
padding, respectively. .e specific structure is shown in
Figure 4.

Our proposed network is shown in Figure 5. .e pro-
posed network uses a backbone extractor to extract the
spatial-feature extractor, and then, a deformable layer and
RPN layer are listed to add more discriminative ability; fi-
nally, 3D object regression is predicted.

RPN is often used to determine whether there is a target
to be detected in the local part of the feature map. .e
structure of RPN is shown in Figure 6. .e network consists
of three modules; firstly, the convolution layer is used to
downsample the input tensor three times to get feature map
x1, y2, y3; then, we deconvolute and upsample x1, y2, y3 to
get up1, up2, up3; finally, we splice up1, up2, up3 together to
obtain the final featuremap. A 1× 1 convolution is applied to
predict the category the object regression.

4. Experiments

Data augmentation: the training process of neural network is
the adjustment process of mappingmodel parameters. In the
process of deep learning network model training, the
amount of data has a great impact on the convergence speed
and generalization performance of the network. Random
sampling: we use the training dataset to generate a point
cloud dataset which contains all target categories and target

3D frames. In the training process, we randomly extract n
ground targets from the dataset and insert them into the
current training data. .is strategy greatly increases the
number of real targets in each frame point cloud. Random
disturbance: considering the influence of noise on network
performance, the similar method used in VoxelNet is used.
For each frame, the ground truth and its point cloud are
transformed independently and randomly, instead of con-
verting all point clouds with the same parameters. Global
rotation and scaling: we apply the global scaling and rotation
to the whole point clouds.

Implementation: we implement our networkwith PyTorch
framework and use Adam as the optimizer..e initial learning
rate is set as 0.0002 and learning rate decay strategy is used
during training. .e whole experiment trained 160 epochs in
total and took about 22 hours to train the network on
GTX2080TI. We use AP (Average Precision) and AOS
(Average Orientation Similarity) as the evaluation method.

Evaluate results in KITTI dataset: we evaluate the vehicle
detection performance on KITTI dataset of the proposed
framework. We divide the Kitti dataset according to the dif-
ficulty of detection. Our method exceeds the SECOND by
1.24%, 1.10%, and 3.19% in the AP in the simple, medium, and
hard datasets, respectively, and 0.84%, 1.21%, and 1.47% in
AOS. .e detailed results are shown in Tables 1 and 2. .e
“SECOND” is the previous state-of-the-art result, “Deformable”
means we only add deformable layer for 3d final regression,
“Cartesian”meanswe perform the voxelization on theCartesian
Coordinate system, and “ours” means our overall performance.

Comparison of different voxel partition methods: the
voxel partition method in the cylindrical coordinate system
is more suitable for the working principle of LiDAR. Firstly,
we calculate the variance of the number of nonempty voxels

D
CN

(1
28

,1
28

,(3
,1

),1
,(1

,0
))

D
CN

(1
28

,1
28

,3
,1

,1
)

D
CN

(1
28

,1
28

,(1
,3

), 
1,

(0
,1

))

Figure 4: Deformable layer.

D
CN

(1
28

,1
28

,(3
,1

),1
,(1

,0
))

D
CN

(1
28

,1
28

,3
,1

,1
)

D
CN

(1
28

,1
28

,(1
,3

), 
1,

(0
,1

))

Input

RP
N

classification

3D bbox regression

(b)(a) (c) (d)

Figure 5: Processing of the proposed pipeline. (a) Input, (b) spatial-feature extractor, (c) deformable layer, and (d) results.

6 Mobile Information Systems



and the number of voxel points obtained by different par-
tition methods. It is obvious that the number of nonempty
voxels can be reduced effectively by using the cylindrical
coordinate system to divide the group point cloud, and the
uniformity of the voxel points can be improved..e detailed
statistical results are shown in Table 3.

Evaluation of deformable convolution module: de-
formable convolution can adaptively adjust the sampling

position according to the shape of the target. In this paper,
deformable convolution is introduced into the target algo-
rithm of 3D target detection to adapt to the target with any

input

Conv2D(s=2)
Conv2D

Conv2D

Co
nv

2D

Co
nv

2D

Co
nv

2D

Co
nv

2D

Co
nv

2D
(s

=2
)

Feature

DeConv2D
Feature

DeConv2D

DeConv2D

Feature FeatureFeature

Conv2D(s=2)

Conv2D

Conv2D

Conv2D

Conv2D

Feature Map

confidenceregression
map

Figure 6: RPN layer.

Table 1: Evaluation of AP methods.

Simple Medium Hard

AP (%)

SECOND 87.43 76.48 69.10
Ours 88.67 77.58 72.29

Cartesian 88.06 77.13 71.45
Deformable 88.36 77.67 71.64

Table 2: Evaluation of AOS methods.

Simple Medium Hard

AOS (%)

SECOND 90.45 88.31 86.98
Ours 91.29 89.52 88.45

Cartesian 90.97 89.14 88.24
Deformable 90.40 89.06 88.11

Table 3: Evaluation of voxel partition methods.

Division method Voxel num Variance
Cartesian 6500 13.831
Cylindrical 5000 10.154

Mobile Information Systems 7



angle between 0 and 360 degrees. We compared the influ-
ence of deformable convolution on 3D object detection
through experiments in Table 1.

Visualization results: the detection result is shown in
Figure 7. .e above figure shows the visualization results of
the 3D bounding box of the detection results projected on
the aerial view. .e following figure shows the road con-
ditions in front of the vehicle photographed by the camera.
In the aerial view, the red box is a car, the blue box is a
pedestrian, and the green box is a rider. .e algorithm can
accurately detect the cars, pedestrians, and riders around
the vehicle.

5. Conclusions

3D object detection algorithm based on point cloud data
in driverless scene has always been a research hotspot in
driverless perception technology. With the development
and maturity of deep neural network technology, the
method of 3D target detection using neural network began
to show great advantages. Based on the point cloud data
collected by vehicle 64 line LiDAR and using the Kitti
dataset as the evaluation sample, this paper studies how to
detect the position, size, and direction of obstacles in the
environment quickly and accurately based on the point
cloud data, so as to provide reliable information for vehicle
tracking and path planning.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon reasonable
request.

Conflicts of Interest

.e authors declare that they have no conflicts of
interest.

References

[1] M. Cho, D. Shin, and J.-J. Lee, “Position detection of a
scattering 3D object by use of the axially distributed image
sensing technique,” Journal of the Optical Society of Korea,
vol. 18, no. 4, pp. 414–418, 2014.

[2] T. Southey, “Improving object detection using 3D spatial
relationships,” -e EMBO Journal, vol. 19, no. 11, pp. 2558–
2568, 2013.

[3] M. Ma, F. Guo, Z. Cao, and K. Wang, “Development of an
artificial compound eye system for three-dimensional object
detection,” Applied Optics, vol. 53, no. 6, pp. 1166–1172,
2014.

[4] L. Yan, K. Liu, E. Belyaev, and M. Duan, “RTL3D: real-time
LIDAR-based 3D object detection with sparse CNN,” IET
Computer Vision, vol. 14, no. 5, pp. 224–232, 2020.

[5] J. Chen, Y. Fang, and Y. K. Cho, “Real-time 3D crane
workspace update using a hybrid visualization approach,”
Journal of Computing in Civil Engineering, vol. 31, no. 5,
pp. 04017049.1–04017049.15, 2017.

[6] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart, “Challenging
data sets for point cloud registration algorithms,” -e In-
ternational Journal of Robotics Research, vol. 31, no. 14,
pp. 1705–1711, 2012.

[7] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, pp. 1440–1448,
Santiago, Chile, December 2015.

[8] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum
pointnets for 3D object detection from RGB-D data,” 2018,
https://arxiv.org/abs/1711.08488.

[9] Y. Mae, J. Choi, H. Takahashi, K. Ohara, T. Takubo, and
T. Arai, “Interoperable vision component for object detection
and 3D pose estimation for modularized robot control,”
Mechatronics, vol. 21, no. 6, pp. 983–992, 2011.

[10] Z. Zhao and X. Chen, “Building 3D semantic maps for mobile
robots using RGB-D camera,” Intelligent Service Robotics,
vol. 9, no. 4, pp. 1–13, 2016.

[11] F. Endres, J. Hess, J. Sturm, D. Cremers, andW. Burgard, “3-D
mapping with an RGB-D camera,” IEEE Transactions on
Robotics, vol. 30, no. 1, pp. 177–187, 2014.

Figure 7: Detecting result.

8 Mobile Information Systems

https://arxiv.org/abs/1711.08488


[12] Y. Furukawa and J. Ponce, “Accurate, dense, and robust
multiview stereopsis,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 8, pp. 1362–1376, 2010.

[13] R.-F. Wang,W.-Z. Chen, S.-Y. Zhang, Y. Zhang, and X.-Z. Ye,
“Similarity-based denoising of point-sampled surfaces,”
Journal of Zhejiang University—Science, vol. 9, no. 6,
pp. 807–815, 2008.

[14] D. Maturana and S. A. Scherer, “VoxNet: A 3D convolutional
neural network for real-time object recognition,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 922–928, Hamburg, Germany,
September 2015.

[15] H. Su, S. Maji, and E. Kalogerakis, “Multi-view convolutional
neural networks for 3D shape recognition,” in Proceedings of
the IEEE International Conference on Computer Vision,
pp. 945–953, Santiago, Chile, December 2015.

[16] C. Premebida, J. Carreira, J. Batista, and U. Nunes, “Pedes-
trian detection combining RGB and dense LIDAR data,” in
Proceedings of the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4112–4117, Chicago, IL,
USA, September 2014.

[17] M. Enzweiler and D. M. Gavrila, “A multilevel mixture-of-
experts framework for pedestrian classification,” IEEE
Transactions on Image Processing, vol. 20, no. 10, pp. 2967–
2979, 2011.

[18] A. S. Mian, M. Bennamoun, and R. A. Owens, “On the re-
peatability and quality of keypoints for local feature-based 3D
object retrieval from cluttered scenes,” International Journal
of Computer Vision, vol. 89, no. 2, pp. 348–361, 2011.

[19] P. Bariya and K. Nishino, “Scale-hierarchical 3D object rec-
ognition in cluttered scenes,” in Proceedings of the Twenty-
-ird IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1657–1664, San Francisco, CA, USA, June
2010.

[20] S. Song and J. Xiao, “Deep sliding shapes for amodal 3D object
detection in RGB-D images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 808–816, Las Vegas, NV, USA, June 2016.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137–1149, 2017.

[22] S. Du, B. Liu, Y. Liu, and J. Liu, “Global-local articulation
pattern-based pedestrian detection using 3D lidar data,”
Remote Sensing Letters, vol. 7, no. 7, pp. 681–690, 2016.

[23] H. Kuang, B. Wang, J. An, M. Zhang, and Z. Zhang, “Voxel-
FPN: multi-scale voxel feature aggregation for 3D object
detection from LIDAR point clouds,” Sensors, vol. 20, no. 3,
p. 704, 2020.

[24] S. Qie and J. Cheng, S. Wang, C. Xu, and G. Xiangyang,
“Point-selection and multi-level-point-feature fusion-based
3d point cloud classification,” Electronics Letters, vol. 56, no. 6,
pp. 290–293, 2020.

[25] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser,
and M. Nießner, “ScanNet richly-annotated 3D reconstruc-
tions of in-door scenes,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2432–2443,
Honolulu, HI, USA, July 2017.

[26] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Asymmetric
fingerprinting based on 1-out-of-n oblivious transfer,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1903–1911, Boston, MA, USA, June
2015.

[27] S. Shi, X.Wang, andH. Li, “3D object proposal generation and
detection from point cloud,” 2019, https://arxiv.org/abs/1812.
04244.

[28] Y. Yan, Y. Mao, and B. Li, “SECOND: sparsely embedded
convolutional detection,” Sensors, vol. 18, no. 10, p. 3337,
2018.

[29] Q. Zhu and Z. Mu, “PointNet++ and three layers of features
fusion for occlusion three-dimensional ear recognition based
on one sample per person,” Symmetry, vol. 12, no. 1, p. 78,
2020.

[30] J. Ashburner and K. J. Friston, “Voxel-based morphometry-
the methods,” NeuroImage, vol. 11, no. 6, pp. 805–821, 2000.

[31] D. Z. Wang and I. Posner, “Voting for voting in online point
cloud object detection,” in Proceedings of the Robotics: Science
and Systems XI, Rome, Italy, March 2015.

[32] B. Li, “3D fully convolutional network for vehicle detection in
point cloud,” in Proceedings of the 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS,
pp. 1513–1518, Vancouver, BC, Canada, September 2017.

[33] S. Song and J. Xiao, “Sliding shapes for 3D object detection in
depth images,” in Computer Vision—ECCV 2014—13th Eu-
ropean Conference, pp. 634–651, Springer, Berlin, Germany,
2014.

[34] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: deep
hierarchical feature learning on point sets in a metric space,”
in Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems, pp. 5099–5108, Long Beach, CA,
USA, June 2017.

Mobile Information Systems 9

https://arxiv.org/abs/1812.04244
https://arxiv.org/abs/1812.04244

