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Concerned with the problems that the extracted features are the absence of objectivity for radar emitter signal intrapulse data
because of relying on priori knowledge, a novel method is proposed. First, this method gets the sparse autoencoder by adding
certain restrain to the autoencoder. Second, by optimizing the sparse autoencoder and confirming the training scheme, intrapulse
deep features are autoextracted with encoder layer parameters. +e method extracts the eigenvectors of six typical radar emitter
signals and uses them as inputs to a support vector machine classifier. +e experimental results show that the method has higher
accuracy in the case of large signal-to-noise ratio. +e simulation verifies that the extracted features are feasible.

1. Introduction

+e key to sorting and identification of radar signals ef-
fectively is to extract the features that can reflect the nature
of the signal. In recent years, scholars have constructed
features or proposed feature extraction methods for sorting
and identification signal, such as features extracted via
fractional Fourier transform (FRT) [1], scale-invariant
feature transform (SIFT) features [2], low probability of
sorting (LPS) features [3], fusion image feature [4], com-
pressed sensing mask (CS-mask) feature [5], feature ex-
traction algorithm using probability moment and ApEn [6],
Manhattan distance-based features [7], and other features.
Design features are a good way to sort or identify radar
signals with exploit human wisdom and prior knowledge.

+e autoencoder (AE) under the deep learning theory
aims to reconstruct the original input signal at the output
layer. When extracting the distributed features of the data,
the AE does not require additional supervisory information,
and also, it can avoid the subjectivity when designing fea-
tures. +e research of AE has been a hot topic of concern in

recent years, and many variation and application of the
autoencoder has been developed [8–12]. Hinton improved
the structure of the AE prototype and obtained the deep
autoencoder (DAE) [13].

Also, the different deep structure and the optimization of
the cost function are constructed. In [14], Bengio develops
the AE depth and proposes the sparse autoencoder (SAE),
which divides the hidden structure by adding sparseness
constraints to the hidden layer nodes.

With different sparse punitive functions [15], different
numbers of nodes in hidden layers [16], and preprocessing
methods [17], SAE has different performance. +e use of
sparse encoders can not only carry out deep feature ex-
traction [18] but also can complete the defect detection,
classification, and blind source separation work [17].

With development of modern radar toward multi-
functional, multipurpose, and multisystem, the design of
signal waveform is increasingly complex, and the signal
regularity has also been damaged severely. So, relying on
experience to design features is not enough to be competent
for the task of radar signal in pulse feature extraction in the
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current electromagnetic environment. +erefore, if we use
SAE to complete this task, it is expected to break through the
shackles of the conventional method by extracting the in-
herent features of pulse signals.

By studying the SAE framework, this study proposed a
method of extracting the deep pulse features of the radar
signal using SAE. First, the SAE frame is analyzed and
obtained by applying the specific sparse constraint. Second,
by optimizing the SAE and determining the training pro-
gram, the radar signal deep pulse features are extracted
automatically from coding layer parameters. Finally, the
validity of the extracted features is proved by experiments.

2. Sparse Autoencoder Mechanism

+e AE is a deep learning architecture that includes coding
and decoding (the architecture as shown in Figure 1).

+e coding refers to get the representation of the middle
layer with the original data as the network input and to get the
code of the hidden layer. +e decoding means that the in-
termediate layer features are decoded by the hidden layer, and
the original input is rebuilt via the output layer. +rough the
encoding and decoding mechanism, the encoder makes the
reconstructed error of the reconstructed signal small. Since it
reconstructs the original input at the output layer as the target
and no additional supervisory information is needed, the data
feature can be learned from the original data automatically.

2.1.Autoencoder (AE)3eory. +ebasic theory of the AE can
be summarized as follows: supposing an unlabelled training
is set to x� {x(1), x(2), x(3),. . .}, wherex(i) ∈ Rn. As a neural
network, the AE uses back propagation for unsupervised
learning. +e learning task is to make the output value equal
to the original input, that means y(i) � x(i). Prototype of AE is
shown in Figure 2:

According to the meaning of an autoencoder, by
learning knowledge, the function hW,b(x) ≈ x would be
captured. If the training set containsm samples, training the
special neural network AE shown in Figure 2 using the
gradient descent method, we get the loss function for a single
training sample (x, y):

J(W, b; x, y) �
1
2
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In formula (2), the first item is the sum squared error term
and the second item is the regularization term (also known as
the weight decay term), which tends to reduce the weight and
help prevent overfitting. +e weight decay parameter λ
dominates the relative importance of these two items. Also, the
slightly overloaded symbols should be noted: formula (1) is the
error cost squared for a single example, and formula (2) is the
total cost function, including the weight decay item. Also, in
formula (2), the symbol W

(l)
ji represents the relevance of pa-

rameters between unit j in layer l and unit i in layer l+1. +e
symbol b denotes the bias, hW,b(x) is the encoder output and is
the function of the activation value, connection parameter W,
and bias term. Via the encoder formula (2), we could achieve
the minimum value using W and b as the parameters. If the
activation value could reconstruct its original input properly, it
is assumed that it retains most of the information contained in
the original data.
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Figure 1: Autoencoder frame.
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Figure 2: Prototype autoencoder.
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If we simply keep the radar pulse modulation infor-
mation, it is not enough to get useful features from the
encoder. +at is, an autoencoder (AE) with the same input
and output dimensions only needs to learn a simple constant
function for achieving the perfect reconstruction of the data.
But, in fact, it is expected that an AE can learn a more
complex nonlinear function. So, it is necessary to give the AE
a certain constraint to learn a better feature representation.

2.2.Analysis of SparseAutoencoder. Consider two cases. One
is that if the nodes of the input layer are more than the
hidden ones, then the network must learn the compressed
representation of input, which means to give the hidden
layer node activation value as a vector element. It needs to
reconstruct the larger dimension input with the vector. +e
other one is that if the nodes of the hidden layer are more,
even more than the input ones, then it is necessary to impose
some constraints on the network so as to find the structure of
the original input. Here, the hidden nodes work with
sparseness constraints.

Sparseness constraint is an important type of constraint
that makes the learned expressionmore meaningful. Such an
AE is called deep sparse autoencoders (DSAE), SAE in short.

+e implementation of SAE mainly includes three im-
portant aspects, namely, the application of specific sparse-
ness constraints, optimization of SAE structure, and
determination of the DAE training schemes. +erefore,
when optimizing the deep SAE for extracting the features of
the pulse data, it is necessary to add the sparse constraint,
and then, the hidden layers and neurons are increased, the
distribution of hidden layer nodes is adjusted, and the
sharing method of weight values is changed. +rough these
operations, the basic framework of DAE is optimized. Fi-
nally, according to the different requirements, the appro-
priate cost function, optimization strategy [19], hidden layer
quality factor, and parameter optimization performance
index are selected to determine the training scheme of DAE.

Assuming that the activation value of the hidden layer
node j is denoted as a(2)

j (x) when the input is x, formula
􏽢ρj � (1/m)􏽐

m
i�1[a

(2)
j (x(i))] indicates the average activation

of the hidden layer node j [20].+e specific sparse constraint
􏽢ρj � ρ is added, where ρ denotes the sparse parameter and
usually is close to 0 (e.g., ρ� 0.05). +at means, if this
constraint is satisfied, the activation of the hidden layer node
must be approximate to zero [21]. To reach this purpose,
when optimizing the objective function, 􏽢ρj with a large
deviation from the sparse parameters ρ is needed to be
punished. Usually, we use KL distances as a penalty item:

KL ρ 􏽢ρj

�����􏼒 􏼓 � ρ log
ρ
􏽢ρj

+(1 − ρ)log
1 − ρ
1 − 􏽢ρj

. (3)

According to the loss function of the autoencoder and
the sparseness requirement, the SAE loss function expres-
sion is

Jsparse(W, b) � J(W, b) + β􏽘

s2

j�1
KL ρ 􏽢ρj

�����􏼒 􏼓. (4)

In formula (4), s2 denotes the hidden neurons numbers,
and β is used as the parameter to control the proportion of
the sparse penalty term [21].

Next, the function J(W, b) would be solved, and the
minimum value would be seeked out under different W
and b.

For the purpose of solving the neural network, the pa-
rameters of W

(l)
ji and b

(l)
i should be initialized to an initial

random number close to zero. +en, the optimization al-
gorithm similar to the bulk gradient descent method is used
for the objective function, and finally, the parameter matrix
of the whole network is obtained.

In order to restrict all connection parametersW and bias
items to a specific data space, the SAE should be pretrained.

+rough this step, the reduction of the quality factor
randomly initialized for the hidden layer is prevented and
for the purpose of facilitating to optimize these parameters
of the whole neural network systematically. When pre-
training the SAE, it is very important to initialize the SAE
input and hidden layers in an unsupervised way and then to
train each hidden layer as an autocorrelator with the greedy
layer-wise pretraining algorithm to reconstruct the input
data [22].

3. Deep Feature Extraction of Radar
Signal with SAE

Different radar emitter signals have different intrapulse
features. +e sparse autoencoder (SAE) is used for feature
extraction, and there is no need to define features in advance.
When the intrapulse data are input into the network, the
network will automatically learn to obtain the various levels
of the input radar emitter signal, that means the feature
expression.

As a deep learning framework, SAE builds a multilayer
network layer by layer, so that the machine can learn the
relationship reflected in the data automatically. SAE learns
features with better generalization and expressiveness ability
in this way. In other words, the SAE combines low-level
features to achieve implicit data feature expression, thus
forming more abstract high-level features or expressions.

3.1. Deep Intrapulse Feature Extraction Framework. For the
radar emitter signal pulse sequence entering the recon-
naissance and receiving system, because of their approxi-
mate short-term stability, it is considered that the adjacent
continuous multiframe short-time samples are concatenated
to obtain long-term samples, which constitute the original
input of the network. Considering that it is necessary to
describe the complex data of the radar signal and the
training requirement of the subsequent sortingmodel for the
extracted deep intrapulse feature, the intermediate coding
layer uses the Gaussian-type node. +e remaining hidden
layer adopts the Bernoulli-type node. Based on optimization
of SAE, the radar signal deep intrapulse feature extraction
framework is shown in Figure 3.

For Gaussian-type nodes, the output is a linear com-
bination of inputs that satisfies
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where xl
i and yl

i represent the node i of the first layer for source
input and output, respectively, bl

i represents the offset of the
node, wij represents the connection weight between i and the
next node, andyl−1

i represents the output value of the next node.
SAE uses the minimum error between the reconstructed

input and the original input as the objective function and
then adjusts the network parameters using the back-pro-
pogation (BP) algorithm.+e objective function is written as

J(θ) �
1
m

x − fdec fenc(x)( 􏼁
����

����, (7)

where θ denotes the network parameter, m denotes the
training sample amount, x denotes the original input of the
network, fenc(x) is the middle layer coding output of the
network, and fdec(fenc(x)) is the middle layer input coding
result reconstructed by the decoding network.

3.2. Deep Intrapulse Features Automatic Extraction. After
training the deep SAE, fine-tuning is needed for the network,
and it is a necessary step to optimize the deep SAE, where the

BP algorithm is used to complete this task. When fine-
tuning, the input layer, output layer, and all hidden layers are
taken as a whole, and then, the supervised learningmethod is
used to adjust the pretrained neural network [23]. +en, the
ownership and bias are optimized after several iterations at
last.+rough this process, we can complete the radar emitter
signal hierarchical feature extraction. +e steps of feature
automatic extraction are as follows:

Step 1: initialize the network by assigning weight values
and thresholds
Step 2: select the class data samples randomly with the
algorithm for training the SAE and then calculate the
output of each layer
Step 3: find the reconstruction error of each layer
which is used for adjusting weight values and
deviations
Step 4: determine whether the reconstruction error
satisfies designing demands and repeat steps 2 and 3 if
the requirements are not met until the entire SAE
output meets designing demands
Step 5: use the encoding layer parameters to map the
original input to get new features, that meansy �

f(x; θencode)

In Step 5, x denotes the original radar signal data input,
θencode denotes the network parameter of the encoding part,
and y denotes the intermediate layer feature vector based on
deep intrapulse features extraction.

By using SAE to extract the pulse features automatically,
we can extract the deep interpretation factor of the dense

Hidden Layer

(Output)

Input Layer Output Layer

Intra-pulse Data
(Input)

Middle 
Layer

Figure 3: Deep intrapulse feature extraction frame.
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radar signal sample. Also, we can keep the original input
nonzero feature, increase the algorithm robustness, and
enhance the linear separability of the pulse signal, so that the
classification boundary becomes clearer, the scale of the
variable can be control to a certain extent, the structure of
the given input data can be changed, and the original in-
formation can be enriched. Finally, the comprehensiveness
and accuracy of the information expression can be
improved.

4. Experimentation and Analysis

In this study, 6 typical radar emitter signals are selected for
simulation experiments. +e 6 signals are conventional
waveform (CW), linear frequency modulation (LFM),
nonlinear frequency modulation (NLFM), binary phase-
shift keying (BPSK), quaternary phase-shift keying (QPSK),
and frequency-shift keying (FSK) signal. For these signals,
the pulse width adopts 10.8 µs, the carrier frequency adopts
0.85GHz, the sampling frequency adopts 2400MHz, the
modulation bandwidth of LFM adopts 0.045GHz, the
NLFM adopts sinusoidal frequency modulation, BPSK
adopts 31 bit pseudorandom code, QPSK adopts Huffman
code, and FSK adopts the Barker code. For each radar signal,
there are 120 samples for every 5 dB in the range of 0–20 dB
SNR, total samples number is 600, of which 200 samples are
used as the training data of the classifier, and the other 400
data are used as test data for signal identification. Before
training the classifier and testing signal classification rec-
ognition effect, all samples are extracted with deep intrapulse
feature extraction. In order to reflect the feature distribution
of each radiation source signal, this study selects 60 datasets
of feature samples with typical SNR (15 dB) of each signal
from these extracted eigenvectors. A total of 300 feature
samples distribution are shown Figure 4.

+e conclusion can be drawn via Figure 4 that these
three-dimensional deep features of the two signal of CW and
LFM are better. +e deep features of NLFM, BPSK, and
QPSK are clustering well, but between different signals, the
features overlap partially. As to the FSK signal, it has poor
intraclass feature clustering and overlap with NLFM. Fig-
ure 4 shows that with optimized SAE, we can extract dif-
ferent radar signal deep features of interclass separation and
intraclass aggregation. For the purpose of verifying the
validity of the extracted deep feature further, the SVM is
used to classify and identify the radar emitter signals
denoted by the deep feature vector.

+e correct classification recognition rate obtained by
SVM with different SNRs is given Table 1. +e result adopts
the mean value of 20 test results, and the average result is the
mean value of each signal classification result between 0 and
20 dB SNR, where ARR represents the average recognition
rate.

It can be seen from Table 1 that in a special range of SNR,
we can classify and identify the radar emitter signal well
using the SVM classifier with the extracted deep feature as
the eigenvector. Each radar emitter signal can obtain the
high correct recognition rate. +e signal recognition rate
relates to signal complexity. For relatively simple signal

forms such as CW and LFM-modulated signals, the average
correct recognition rate can be up to 98.98% and 97.78%; for
more complex signal forms such as FSK modulated signal,
the average correct recognition rate is 88.94%, which is
related to poor clustering of the deep feature and the partial
overlap of features, but this result is acceptable in engi-
neering applications. In addition, the average correct rec-
ognition result of these 6 types of emitter signals reach to
93.69%, and the recognition performance is good.

5. Conclusions

+e key to sort and identify the radar signal efficiently is to
extract the features which can reflect the signal intrinsic
features. Aiming at the problem of lack of objectivity due to
dependence on a priori knowledge in the extraction of radar
signal features, an automatic extraction method of the deep
pulse feature is proposed. +is method optimizes the sparse
autoencoder at the beginning and then extracts the deep
pulse feature of the radar signal using the coding layer
parameters automatically. +e support vector machine is
used to classify and identify the typical radiation source
signals characterized by deep pulse features. +e results
show that the satisfactory results can be obtained in a large
scale of signal-to-noise ratio, and the method of features
extracted automatically is verified to be valid in this study.
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Table 1: Comparison of recognition accuracy under different
SNRs.

Signal type
Classification recognition rate (%)

0 dB 5 dB 10 dB 15 dB 20 dB ARR (%)
CW 96.04 98.87 100 100 100 98.98
LFM 88.92 100 100 100 100 97.78
BPSK 82.31 84.52 89.92 96.63 100 90.68
QPSK 86.02 91.61 95.09 98.59 100 94.26
FSK 77.43 85.37 89.18 94.16 98.55 88.94
NLFM 81.15 84.62 93.62 98.13 100 91.50
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