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Abstract. 
This paper simulates wave propagation in an elastic medium containing elastic, fluid, rigid, and empty heterogeneities, which may be thin. It uses a coupling formulation between the boundary element method (BEM)/the traction boundary element method (TBEM) and the method of fundamental solutions (MFS). The full domain is divided into subdomains, which are handled separately by the BEM/TBEM or the MFS, to overcome the specific limitations of each of these methods. The coupling is enforced by applying the prescribed boundary conditions at all medium interfaces. The accuracy, efficiency, and stability of the proposed algorithms are verified by comparing the results with reference solutions. The paper illustrates the computational efficiency of the proposed coupling formulation by computing the CPU time and the error. The transient analysis of wave propagation in the presence of a borehole driven in a cracked medium is used to illustrate the potential of the proposed coupling formulation.

1. Introduction
Various numerical methods have been proposed to simulate the propagation of waves in elastic and acoustic media, since analytical solutions are only known for simple and regular geometries (e.g., [1–6]). These techniques include the thin-layer method (TLM) [7], the boundary element method (BEM) [8], the finite element method (FEM) [9, 10], the finite difference method (FDM) [11], the ray tracing technique [12], and the method of fundamental solutions (MFS) [13].
Of these techniques, the FEM is the most widely used numerical method used by researchers and commercial software producers. It can be used to solve complex geometries, but it requires the full discretization of the media being modelled. This makes the FEM computationally unfeasible for very large scale models, such as those involving unbounded domains, unless substantial shortcuts are implemented. These may entail the use of coarse elements, low frequency simulations, or the introduction of boundary artefacts. 
The BEM is one of the most suitable techniques for modelling wave propagation in homogeneous unbounded systems containing irregular interfaces and inclusions, because only the boundaries of the heterogeneities and interfaces need to be discretized and the far-field conditions are automatically satisfied [14–16]. Despite this, the BEM still needs prior knowledge of fundamental solutions (Green’s functions) and also requires the correct integration of the resulting singular and hypersingular integrals to guarantee its efficiency. In addition, the number of boundary elements depends on the excitation frequency, and many boundary elements are needed to model high-frequency responses, a situation which leads to an undesirably high computational cost.
Furthermore, the simulation of wave propagation in the presence of very thin heterogeneities such as cracks leads to singular boundary element matrix systems, thus leading to the mathematical degeneration of the numerical formulation [17]. The dual boundary element method (DBEM) is one of the main boundary element formulations adopted to overcome this problem. Derivatives of the original BEM displacement formulation to produce a traction formulation first became necessary when fracture mechanics problems began to be addressed [18]. But these hybrid BEM formulations do not necessarily have to be used for solving such problems. Good results have been obtained in 2D examples of both elastodynamic and coupled-field problems involving stationary cracks when conventional, displacement-based BEM formulations were used in a transformed domain, with special treatment of the cracks [19, 20].
Using the DBEM, after the discretization of the inclusion’s surface, dipole loads are applied to the opposite surface, which is governed by the traction boundary integral equation [21], while monopole loads are applied to one part of the surface, which corresponds to applying the displacement boundary integral equation. In the case of a dimensionless empty crack, only a single line of boundary elements loaded with dipole loads is used to solve the problem, that is, by using only the traction boundary integral equation method [22–24]. The appearance of hypersingular integrals is one of the difficulties posed by these formulations. In the particular case of 2D and 2.5D wave propagation in elastic and acoustic media, the resulting hypersingular kernels can be computed analytically [25].
Meshless techniques that require neither domain nor boundary discretization have recently become popular [26, 27]. The origin of the MFS has two sources and lies in the indirect BEM [28] and the general definition of a Green’s function [29]. The MFS copes with some of the mathematical complexity of the BEM and provides acceptable solutions for wave propagation problems at substantially lower computational cost [30, 31]. The MFS solution is based on a linear combination of fundamental solutions (Green’s functions), generated by a set of fictitious sources to simulate the scattered and refracted field produced by the heterogeneities. To avoid singularities, these virtual sources are placed at some distance from the inclusion’s boundary. The use of fundamental solutions allows the final solution to verify the unbounded boundary conditions automatically. Still the use of the MFS has its own limitations when thin inclusions such as cracks and inclusions with twisting (sinuous) boundaries are involved. The analysis would require the use of domain decompositions or/and the use of enriched functions, which increases computation costs [32]. The number of the virtual sources and their positions is another difficulty since the results are highly dependent on these parameters. Among the strategies that have been proposed to handle this problem is the verification of the solution’s accuracy by computing the solution at points other than the collocation ones, where the boundary and prescribed conditions are known a priori. 
Researchers are currently trying to improve the results by coupling different methods so as to exploit the advantages of each technique and reduce their disadvantages, thereby speeding up analysis and ensuring efficiency, stability, accuracy, and flexibility.
BEM/FEM coupling has often been used, with each technique being applied to distinct subdomains [33–35]. The two approaches most often used are a direct coupling and iterative coupling [36–38]. Iterative coupling allows the subdomains to be analyzed separately, leading to smaller and better-conditioned systems of equations with independent discretizations being considered for each subdomain. Some authors have reported problems related to the convergence of ill-posed models, however. The coupling of meshless methods and the BEM is another approach. The coupling of the BEM/TBEM with the MFS to analyse acoustic wave propagation in the presence of multiple inclusions and thin heterogeneities is one example proposed by the authors. The full domain is first divided into subdomains which are modelled using the BEM/TBEM and the MFS. The subdomains are then coupled by imposing the required boundary conditions [39]. 
The paper extends that work with a formulation which couples the BEM/TBEM and the MFS to simulate the propagation of waves involving the fluid-solid interaction, as in the case of multielastic fluid layer systems, aco