Research Article

Totally Umbilical Proper Slant and Hemislant Submanifolds of an LP-Cosymplectic Manifold

Siraj Uddin,¹ Meraj Ali Khan,² and Khushwant Singh³

¹ Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
² Department of Mathematics, University of Tabouk, Tabouk, Saudi Arabia
³ School of Mathematics and Computer Applications, Thapar University, Patiala 147 004, India

Correspondence should be addressed to Siraj Uddin, siraj.ch@gmail.com

Received 13 December 2010; Accepted 15 April 2011

Academic Editor: Alex Elias-Zuniga

Copyright © 2011 Siraj Uddin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the present note, we study slant and hemi-slant submanifolds of an LP-cosymplectic manifold which are totally umbilical. We prove that every totally umbilical proper slant submanifold of an LP-cosymplectic manifold is either totally geodesic or if the manifold is not totally geodesic then we derive a formula for slant angle of the submanifold. Also, we obtain the integrability conditions of the distributions of a hemi-slant submanifold, and then we give a result on its classification.

1. Introduction

A manifold \(\overline{M} \) with Lorentzian paracontact metric structure \((\phi, \xi, \eta, g)\) satisfying \((\nabla_X \phi)Y = 0\) is called an LP-cosymplectic manifold, where \(\nabla\) is the Levi-Civita connection corresponding to the Lorentzian metric \(g\) on \(\overline{M}\). The study of slant submanifolds was initiated by Chen [1]. Since then, many research papers have appeared in this field. Slant submanifolds are the natural generalization of both holomorphic and totally real submanifolds. Lotta [2] defined and studied these submanifolds in contact geometry. Later on, Cabrerizo et al. studied slant, semi-slant, and bislant submanifolds in contact geometry [3, 4]. In particular, totally umbilical proper slant submanifold of a Kaehler manifold has also been studied in [5]. Recently, Khan et al. [6] studied these submanifolds in the setting of Lorentzian paracontact manifolds.

The idea of hemi-slant submanifolds was introduced by Carriazo as a particular class of bislant submanifolds, and he called them antislant submanifolds [7]. Recently, these submanifolds are studied by Sahin for their warped products [8]. In this paper, we study slant and hemi-slant submanifolds of an LP-cosymplectic manifold. We prove that a
2. Preliminaries

Let \mathcal{M} be a n-dimensional paracontact manifold with the Lorentzian paracontact metric structure (ϕ, ξ, η, g), that is, ϕ is a $(1,1)$ tensor field, ξ is a contravariant vector field, η is a 1-form, and g is a Lorentzian metric with signature $(-,+,\ldots,+)$ on \mathcal{M}, satisfying [9],

$$\phi^2 = X + \eta(X)\xi, \quad \eta(\xi) = -1, \quad \phi\xi = 0, \quad \eta \circ \phi = 0, \quad \text{rank}(\phi) = n - 1, \quad (2.1)$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi), \quad (2.2)$$

for all $X, Y \in T\mathcal{M}$.

A Lorentzian paracontact metric structure on \mathcal{M} is called a Lorentzian para-cosymplectic structure if $\nabla\phi = 0$, where ∇ denotes the Levi-Civita connection with respect to g. The manifold \mathcal{M} in this case is called a Lorentzian para-cosymplectic (in brief, an LP-cosymplectic) manifold [10]. From formula $\nabla\phi = 0$, it follows that $\nabla_X\xi = 0$.

Let M be a submanifold of a Lorentzian almost paracontact manifold \mathcal{M} with Lorentzian almost paracontact structure (ϕ, ξ, η, g). Let the induced metric on M also be denoted by g, then Gauss and Weingarten formulae are given by

$$\nabla_X Y = \nabla_X Y + h(X, Y), \quad (2.3)$$

$$\nabla_X N = -A_N X + \nabla_X^\perp N, \quad (2.4)$$

for any $X, Y \in TM$ and $N \in T^\perp M$, where TM is the Lie algebra of vector field in M and $T^\perp M$ is the set of all vector fields normal to M. ∇^\perp is the connection in the normal bundle, h is the second fundamental form, and A_N is the Weingarten endomorphism associated with N. It is easy to see that

$$g(A_N X, Y) = g(h(X, Y), N). \quad (2.5)$$

For any $X \in TM$, we write

$$\phi X = PX + FX, \quad (2.6)$$

where PX is the tangential component and FX is the normal component of ϕX. Similarly for $N \in T^\perp M$, we write

$$\phi N = BN + CN, \quad (2.7)$$

where BN is the tangential component and CN is the normal component of ϕN.

Totally umbilical proper slant submanifold M is either totally geodesic in \mathcal{M} or if it is not totally geodesic, then the slant angle $\theta = \tan^{-1}(\sqrt{g(X, Y)/\eta(X)\eta(Y)})$. Also, we define hemi-slan submanifolds of an LP-contact manifold. After we find integrability conditions of the distributions, we investigate a classification of totally umbilical hemi-slan submanifolds of an LP-cosymplectic manifold.
The covariant derivatives of the tensor fields ϕ, P, and F are defined as

\begin{align}
\nabla_X\phi Y &= \nabla_X\phi Y - \phi \nabla_X Y, \quad \forall X, Y \in TM, \\
\nabla_X P Y &= \nabla_X P Y - P \nabla_X Y, \quad \forall X, Y \in TM, \\
\nabla_X F Y &= \nabla_X F Y - F \nabla_X Y, \quad \forall X, Y \in TM.
\end{align}

(2.8)

(2.9)

(2.10)

Moreover, for an LP-cosymplectic manifold, one has

\begin{align}
\nabla_X P Y &= A_F Y X + Bh(X, Y), \\
\nabla_X F Y &= Ch(X, Y) - h(X, PY).
\end{align}

(2.11)

(2.12)

A submanifold M is said to be totally umbilical if

$$h(X, Y) = g(X, Y)H,$$

(2.13)

where H is the mean curvature vector. Furthermore, if $h(X, Y) = 0$ for all $X, Y \in TM$, then M is said to be totally geodesic, and if $H = 0$, then M is minimal in \overline{M}.

A submanifold M of a paracontact manifold \overline{M} is said to be a slant submanifold if for any $x \in M$ and $X \in T_x M - \langle \xi \rangle$, the angle between ϕX and $T_x M$ is constant. The constant angle $\theta \in [0, \pi/2]$ is then called slant angle of M. The tangent bundle TM of M is decomposed as

$$TM = D \oplus \langle \xi \rangle,$$

(2.14)

where the orthogonal complementary distribution D of $\langle \xi \rangle$ is known as the slant distribution on M. If μ is ϕ-invariant subspace of the normal bundle $T^\perp M$, then

$$T^\perp M = FTM \oplus \mu.$$

(2.15)

Khan et al. [6] proved the following theorem for a slant submanifold M of a Lorentzian paracontact manifold \overline{M} with slant angle θ.

Theorem 2.1. Let M be a submanifold of an LP-contact manifold \overline{M} such that $\xi \in TM$, then M is slant submanifold if and only if there exists a constant $\lambda \in [0, 1]$ such that

$$P^2 = \lambda (I + \eta \otimes \xi).$$

(2.16)

Furthermore, if θ is slant angle of M, then $\lambda = \cos^2 \theta$.
Thus, one has the following consequences of formula (2.16):

\[
g(\mathbb{P}X, \mathbb{P}X) = \cos^2 \theta [g(X, Y) + \eta(X)\eta(Y)], \tag{2.17}
g(FX, FY) = \sin^2 \theta [g(X, Y) + \eta(X)\eta(Y)], \tag{2.18}
\]

for any \(X, Y \in TM\).

3. Totally Umbilical Proper Slant Submanifold

In this section, we consider \(M\) as a totally umbilical proper slant submanifold of an LP-cosymplectic manifold \(\overline{M}\). Such submanifolds we always consider tangent to the structure vector field \(\xi\).

Theorem 3.1. A nontrivial totally umbilical proper slant submanifold \(M\) of an LP-cosymplectic manifold \(\overline{M}\) is either totally geodesic or if it is not totally geodesic in \(\overline{M}\), then the slant angle \(\theta = \tan^{-1} \left(\sqrt{\frac{g(X, Y)\eta(X)\eta(Y)}}\right)\), for any \(X, Y \in TM\).

Proof. For any \(X, Y \in TM\), (2.11) gives

\[
\left(\nabla_X P\right)Y = A_{FY} X + Bh(X, Y). \tag{3.1}
\]

Taking the product with \(\xi\) and using (2.9), we obtain

\[
g(\nabla_X PY, \xi) = g(A_{FY} X, \xi) + g(Bh(X, Y), \xi). \tag{3.2}
\]

Using (2.5) and the fact that \(M\) is totally umbilical, the above equation takes the form

\[
-g(\xi, \nabla_X \xi) = g(H, FY)\eta(X) + g(X, Y)g(BH, \xi). \tag{3.3}
\]

Then, from the characteristic equation of LP-cosymplectic manifold, we obtain

\[
0 = g(H, FY)\eta(X). \tag{3.4}
\]

Thus, from (3.4), it follows that either \(H \in \mu\) or \(M\) is trivial.

Now, for an LP-cosymplectic manifold, one has, from (2.8),

\[
\nabla_X \phi Y = \phi \nabla_X Y, \tag{3.5}
\]

for any \(X, Y \in TM\). From (2.3) and (2.6), we obtain

\[
\nabla_X P Y + \nabla_X F Y = \phi (\nabla_X Y + h(X, Y)). \tag{3.6}
\]
Again using (2.3), (2.4), and (2.6), we get

$$\nabla_XPY + h(X, PY) - A_{FY}X + \nabla_X^\perp FY = P\nabla_XY + F\nabla_XY + \phi h(X, Y). \quad (3.7)$$

As M is totally umbilical, then

$$\nabla_XPY + h(X, PY) - A_{FY}X + \nabla_X^\perp FY = P\nabla_XY + F\nabla_XY + g(X, Y)\phi H. \quad (3.8)$$

Taking the inner product with ϕH and using the fact that $H \in \mu$, we obtain

$$g(h(X, PY), \phi H) + g\left(\nabla_X^\perp FY, \phi H\right) = g(F\nabla_XY, \phi H) + g(X, Y)g(\phi H, \phi H). \quad (3.9)$$

Then from (2.2) and (2.13), we get

$$g(X, PY)g(H, \phi H) + g\left(\nabla_X^\perp FY, \phi H\right) = g(F\nabla_XY, \phi H) + g(X, Y)\|H\|^2. \quad (3.10)$$

Again, using (2.2) and the fact that $H \in \mu$, then ϕH is also lies in μ; thus, we obtain

$$g\left(\nabla_X^\perp FY, \phi H\right) = g(X, Y)\|H\|^2. \quad (3.11)$$

Then, from (2.4), we derive

$$g\left(\nabla_X FY, \phi H\right) = g(X, Y)\|H\|^2. \quad (3.12)$$

Now, for any $X \in TM$, one has

$$\left(\nabla_X \phi\right)H = \overline{\nabla}_X \phi H - \phi \overline{\nabla}_X H. \quad (3.13)$$

Using the fact that as \overline{M} is an LP-cosymplectic manifold, we obtain

$$\nabla_X \phi H = \phi \overline{\nabla}_X H. \quad (3.14)$$

Using (2.4), (2.6), and (2.7), we obtain

$$-A_{\phi H}X + \nabla_X^\perp \phi H = -PA_{\phi}X - FA_{\phi}X + B\nabla_X^\perp H + C\nabla_X H. \quad (3.15)$$

Taking the product in (3.15) with FY for any $Y \in TM$ and using the fact $C\nabla_X H \in \mu$, the above equation gives

$$g\left(\nabla_X^\perp \phi H, FY\right) = -g(FA_{\phi}X, FY). \quad (3.16)$$
Using (2.18), we obtain

\[g\left(\nabla_X FY, \phi H\right) = \sin^2 \theta \left[g(A_H X, Y) + \eta(A_H X) \eta(Y) \right], \quad (3.17) \]

then, from (2.5) and (2.13), we get

\[g\left(\nabla_X FY, \phi H\right) = \sin^2 \theta \left[g(X, Y) + \eta(X) \eta(Y) \right] \|H\|^2. \quad (3.18) \]

Thus, from (3.12) and (3.18), we derive

\[\left[\cos^2 \theta g(X, Y) - \sin^2 \theta \eta(X) \eta(Y) \right] \|H\|^2 = 0. \quad (3.19) \]

Hence, (3.19) gives either \(H = 0 \) or if \(H \neq 0 \), then the slant angle of \(M \) is \(\theta = \tan^{-1}(\sqrt{g(X, Y)/\eta(X)\eta(Y)}) \). This proves the theorem completely. \(\square \)

4. Hemislant Submanifolds

In the following section, we assume that \(M \) is a hemi-slant submanifold of an LP-cosymplectic manifold \(\overline{M} \) such that the structure vector field \(\xi \) tangent to \(M \). First, we define a hemi-slant submanifold, and then we obtain the integrability conditions of the involved distributions \(D_1 \) and \(D_2 \) in the definition of a hemi-slant submanifold \(M \) of an LP-cosymplectic manifold \(\overline{M} \).

Definition 4.1. A submanifold \(M \) of an LP-contact manifold \(\overline{M} \) is said to be a hemi-slant submanifold if there exist two orthogonal complementary distributions \(D_1 \) and \(D_2 \) satisfying

(i) \(TM = D_1 \oplus D_2 \oplus \langle \xi \rangle \),
(ii) \(D_1 \) is a slant distribution with slant angle \(\theta \neq \pi/2 \),
(iii) \(D_2 \) is totally real that is, \(\phi D_2 \subseteq T^\perp M \).

If \(\mu \) is \(\phi \)-invariant subspace of the normal bundle \(T^\perp M \), then in case of hemi-slant submanifold, the normal bundle \(T^\perp M \) can be decomposed as

\[T^\perp M = F D_1 \oplus F D_2 \oplus \mu. \quad (4.1) \]

In the following, we obtain the integrability conditions of involved distributions in the definition of hemi-slant submanifold.

Proposition 4.2. Let \(M \) be a hemi-slant submanifold of an LP-cosymplectic manifold \(\overline{M} \), then the anti-invariant distribution \(D_2 \) is integrable if and only if

\[A_{FZ}W = A_{FW}Z, \quad (4.2) \]

for any \(Z, W \in D_2 \).
Proof. For any \(Z, W \in D_2 \), one has
\[
\phi[Z, W] = \phi\nabla_Z W - \phi\nabla_W Z. \tag{4.3}
\]
Using (2.8), we obtain
\[
\phi[Z, W] = \nabla_Z \phi W - \nabla_W \phi Z. \tag{4.4}
\]
Then, from (2.4), we derive
\[
\phi[Z, W] = -A_{FW} Z + \nabla^\perp_Z FW + A_{FZ} W - \nabla^\perp_W FZ. \tag{4.5}
\]
As \(D_2 \) is an anti-invariant distribution, then the tangential part of (4.5) should be identically zero; hence, we obtain the required result. \(\square \)

Proposition 4.3. Let \(M \) be a hemi-slant submanifold of an LP-cosymplectic manifold \(\overline{M} \), then the invariant distribution \(D_1 \oplus \langle \xi \rangle \) is integrable if and only if
\[
g\left(h(X, PY) - h(Y, PX) + \nabla^\perp_X FY - \nabla^\perp_Y FX, FZ \right) = 0, \tag{4.6}
\]
for any \(X, Y \in D_1 \oplus \langle \xi \rangle \) and \(Z \in D_2 \).

Proof. For any \(X, Y \in D_1 \oplus \langle \xi \rangle \), one has
\[
\phi[X, Y] = \phi\nabla_X Y - \phi\nabla_Y X. \tag{4.7}
\]
Then, from (2.8) and the fact that \(\overline{M} \) is LP-cosymplectic, we obtain
\[
\phi[X, Y] = \nabla_X \phi Y - \nabla_Y \phi X. \tag{4.8}
\]
Using (2.6), we get
\[
\phi[X, Y] = \nabla_X PY + \nabla_X FY - \nabla_Y PX - \nabla_Y FX. \tag{4.9}
\]
Thus, from (2.3) and (2.4), we derive
\[
\phi[X, Y] = \nabla_X PY + h(X, PY) - A_{FY} X + \nabla^\perp_X FY - \nabla_Y PX - h(Y, PX) + A_{FX} Y - \nabla^\perp_Y FX. \tag{4.10}
\]
Taking the product in (4.10) with \(FZ \), for any \(Z \in D_2 \), we obtain
\[
g(\phi[X, Y], FZ) = g\left(h(X, PY) + \nabla^\perp_X FY - h(Y, PX) - \nabla^\perp_Y FX, FZ \right). \tag{4.11}
\]
Thus, the assertion follows from (4.11) after using (2.2) and the fact that ξ is tangential to D_1.

Now, we consider M as a totally umbilical hemi-slant submanifold of an LP-cosymplectic manifold \overline{M}. For any $X, Y \in TM$, one has

$$\overline{\nabla}_X \phi Y = \phi \overline{\nabla}_X Y.$$ \hfill (4.12)

Using this fact, if we take for any $Z, W \in D_2$, then from (2.3) and (2.4), the above equation takes the form

$$-A_{FW}Z + \nabla^2_Z FW = \phi(\nabla_Z W + h(Z, W)).$$ \hfill (4.13)

Thus, on using (2.6) and (2.7), we obtain

$$-A_{FW}Z + \nabla^2_Z FW = P\nabla_Z W + F\nabla_Z W + Bh(Z, W) + Ch(Z, W).$$ \hfill (4.14)

Equating the tangential components, we get

$$P\nabla_Z W = -A_{FW}Z - Bh(Z, W).$$ \hfill (4.15)

Taking the product with $V \in D_2$, we obtain

$$g(P\nabla_Z W, V) = -g(A_{FW}Z, V) - g(Bh(Z, W), V).$$ \hfill (4.16)

Using (2.2), (2.5), and the fact that $PW = 0$, for any $W \in D_2$, thus, the above equation takes the form

$$0 = g(h(Z, V), FW) + g(Bh(Z, W), V).$$ \hfill (4.17)

As M is totally umbilical, we derive

$$0 = g(Z, V)g(H, FW) + g(Z, W)g(BH, V).$$ \hfill (4.18)

Thus, (4.18) has a solution if either $Z = W = V = \xi$, that is, $\dim D_2 = 1$ or $H \in \mu$ or $D_2 = \{0\}$. Hence, we state the following theorem.

Theorem 4.4. Let M be a totally umbilical hemi-slant submanifold of an LP-cosymplectic manifold \overline{M}, then at least one of the following statements is true:

(i) the dimension of anti-invariant distribution is one, that is, $\dim D_2 = 1$,

(ii) the mean curvature vector $H \in \mu$,

(iii) M is proper slant submanifold of \overline{M}.

Acknowledgments

The authors are thankful to the referee for his valuable suggestion and comments. The first author is supported by the research Grant no. RG117/10AFR (University Malaya).

References
