Research Article

Computation of Energy Release Rates for a Nearly Circular Crack

Nik Mohd Asri Nik Long,1,2 Lee Feng Koo,1 and Zainidin K. Eshkuvatov1,2

1 Department of Mathematics, Universiti Putra Malaysia, 43400 Serdang, Malaysia
2 Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Malaysia

Correspondence should be addressed to Lee Feng Koo, kooleefeng@yahoo.com

Received 4 August 2010; Revised 6 December 2010; Accepted 14 January 2011

1. Introduction

The determination of energy release rate, a measurement of energy necessary for crack initiation in fracture mechanics, has stirred a huge interest among researchers, and different approaches have been applied. Williams and Isherwood [1] proposed an approximate method in terms of a mean stress to approximate the strain-energy release rates of finite plates. Sih [2] proposed the energy density theory as an alternative approach for fracture prediction. Hayashi and Nemat-Nasser [3] modelled the kink as a continuous distribution of infinitesimal edge dislocations to obtain the energy release rate at the onset of kinking of a straight crack in an infinite elastic medium subjected to a predominantly Mode I loading. Further, a similar method to [3] has also been adopted by Hayashi and Nemat-Nasser [4] to obtain the energy release rate for a kinked from a straight crack under combined loading based on the maximum energy release rate criterion. Gao and Rice [5] extended
Rice’s work [6] in finding the energy release rate for a plane crack with a slightly curved front subject to shear loading. While, Gao and Rice [7] and Gao [8] considered a penny-shaped crack as a reference crack in solving the energy release rate for a nearly circular crack subject to normal and shear loads. Jih and Sun [9] employed the finite element method based on crack-closure integral in calculating the strain energy release rate elastostatic and elastodynamic crack problems in finite bodies whereas Dattaguru et al. [10] adopted the finite element analysis and modified crack closure integral technique in evaluating the strain energy release rate. Poon and Ruiz [11] applied the hybrid experimental-numerical method for determining the strain energy release rate. Wahab and de Roeck [12] evaluated the strain energy release rate from three-dimensional finite element analysis with square-root stress singularity using different displacement and stress fields based on the Irwin’s crack closure integral method [13]. Guo et al. [14] used the extrapolation approach in order to avoid the disadvantages of self-inconsistency in the point-by-point closed method to determine the energy release rate of complex cracks. Xie et al. [15] applied the virtual crack closure technique in conjunction with finite element analysis for the computation of energy release rate subject to kinked crack, while interface element based on similar approach also adopted by Xie and Biggers [16] in calculating the strain energy release rate for stationary cracks subjected to the dynamic loading.

In this paper, we focus our work on obtaining the numerical results for energy release rate for a nearly circular crack via the solution of hypersingular integral equation and compare our computational results with Gao’s [8].

2. Formulation of the Problem

Consider the infinite isotropic elastic body containing a flat circular crack, \(\Omega \), as in Figure 1, located on the Cartesian coordinate \((x, y, x_3)\) with origin \(O\), and \(\Omega \) lies in the plane \(x_3 = 0 \). Let the radius of the crack, \(\Omega \) be \(a \) and \(\Omega = \{(r, \theta) : 0 \leq r < a, \ -\pi \leq \theta \leq \pi \} \).

If the equal and opposite shear stresses in the \(x \) and \(y \) directions, \(q_1(x, y) \) and \(q_2(x, y) \), respectively, are applied to the crack plane, and it is assumed that the \(x_3 \) direction is traction free, then in the view of shear load, the entire plane, must free from the normal stress, that is

\[
\tau_{33}(x, y, x_3) = 0 \quad \text{for} \ x_3 = 0,
\] (2.1)
and the stress field can be found by considering the above problem subjected to the following mixed boundary condition on its surface, \(x_3 = 0 \):

\[
\tau_{13}(x, y, x_3) = \frac{\mu}{1-\nu} q_1(x, y), \quad (x, y) \in \Omega, \\
\tau_{23}(x, y, x_3) = \frac{\mu}{1-\nu} q_2(x, y), \quad (x, y) \in \Omega, \\
u_1(x, y, x_3) = u_2(x, y, x_3) = 0, \quad (x, y) \in \Gamma \setminus \Omega,
\]

where \(\tau_{ij} \) is stress tensor, \(\mu \) is shear modulus, \(\nu \) is denoted as Poisson’s ratio, and \(\Gamma \) is the entire \(x_3 = 0 \). Also, the problem satisfies the regularity conditions at infinity

\[
u_i(x, y, x_3) = O\left(\frac{1}{R}\right), \quad \tau_{ij}(x, y, x_3) = O\left(\frac{1}{R}\right), \quad i, j = 1, 2, 3, \ R \rightarrow \infty,
\]

where \(R \) is the distance

\[
R = \sqrt{(x - x_0)^2 + (y - y_0)^2}, \quad (x_0, y_0) \in \Omega.
\]

Martin [17] showed that the problem of finding the resultant force with condition (2.2) can be formulated as a hypersingular integral equation

\[
\frac{1}{8\pi} \int_{\Omega} \frac{(2 - \nu)w(x, y) + 3\nu e^{2i\Theta}w(x, y)}{R^3} d\Omega = q(x_0, y_0), \quad (x_0, y_0) \in \Omega.
\]

where \(w(x, y) = [u_1(x, y)] + j[u_2(x, y)] \) is the unknown crack opening displacement, \(q(x_0, y_0) = q_1(x_0, y_0) + jq_2(x_0, y_0) \), \(j^2 = -1 \), the \(\bar{w}(x, y) = [u_1(x, y)] - j[u_2(x, y)] \), and the angle \(\Theta \) is defined by

\[
x - x_0 = R \cos \Theta, \quad y - y_0 = R \sin \Theta.
\]

The cross on the integral means the hypersingular, and it must be interpreted as a Hadamard finite part integral [18, 19]. Equation (2.5) is to be solved subject to \(w = 0 \) on \(\partial \Omega \) where \(\partial \Omega \) is boundary of \(\Omega \). For the constant shear stress in \(x \) direction, we have \(\tau_{23} = 0 \) and \([u_2(x, y)] = 0 \), hence, (2.5) becomes

\[
\frac{1}{8\pi} \int_{\Omega} \frac{2 - \nu + 3\nu e^{2i\Theta}}{R^3} w(x, y) d\Omega = q(x_0, y_0), \quad (x_0, y_0) \in \Omega.
\]

Polar coordinates \((r, \theta)\) and \((r_0, \theta_0)\) are chosen so that the loadings \(q(x, y) \) and \(q(x_0, y_0) \) can be written as a Fourier series

\[
q(x, y) = \sum_{n=-\infty}^{\infty} q_n \left(\frac{r}{a}\right) e^{int}, \quad q(x_0, y_0) = \sum_{n=-\infty}^{\infty} q_n \left(\frac{r_0}{a_0}\right) e^{int},
\]

\[
\frac{2 - \nu + 3\nu e^{2i\Theta}}{R^3} w(x, y) = \sum_{n=-\infty}^{\infty} q_n \left(\frac{r}{a}\right) e^{int}.
\]
where the Fourier components \(q_n \) are \(j \)-complex. The \(j \)-complex crack opening displacement, \(w(x, y) \) and \(w(x_0, y_0) \), have similar expressions

\[
\begin{align*}
 w(x, y) &= \sum_{n=-\infty}^{\infty} w_n \left(\frac{r}{a} \right) e^{in\theta} ,
 \quad w(x_0, y_0) = \sum_{n=-\infty}^{\infty} w_n \left(\frac{r_0}{a_0} \right) e^{in\theta} .
\end{align*}
\]

(2.9)

Without loss of generality, we consider \(a = 1 \). Using Guidera and Lardner [20], the dimensionless function \(q_n \) and \(w_n \) can be expressed as

\[
\begin{align*}
 q_n(r) &= r^{in} \sum_{k=0}^{\infty} Q^n_k \frac{\Gamma(|n| + \frac{1}{2}) \Gamma\left(k + \frac{3}{2} \right)}{(|n| + k)! \sqrt{1 - r^2}} C_{2k+1} \left(\frac{1}{2} \left(\sqrt{1 - r^2} \right) \right),
 \\
 w_n(r) &= r^{in} \sum_{k=0}^{\infty} W^n_k \frac{\Gamma(|n| + 1/2) k!}{(|n| + k + 3/2) C_{2k+1} \left(\frac{1}{2} \left(\sqrt{1 - r^2} \right) \right)},
\end{align*}
\]

(2.10)

where the \(j \)-complex coefficients \(Q^n_k \) are known, \(W^n_k \) are unknown, and \(C^1_m(x) \) is an orthogonal Gegenbauer polynomial of degree \(m \) and index \(\lambda \), which is defined recursively by [21]

\[
(m + 2)C_{m+2}^1(x) = 2(m + \lambda + 1)x C_m^1(x) - (2\lambda + m)C_m^1(x),
\]

(2.11)

with the initial values \(C_0^1(x) = 1 \) and \(C_1^1(x) = 2x \). For a constant shear loading, \(q(x, y) = -\tau \), the solution for a circular crack is obtainable.

3. Nearly Circular Crack

Let \(\Omega \) be an arbitrary shaped crack of smooth boundary with respect to origin \(O \), such that \(\Omega \) is defined as

\[
\Omega = \{ (r, \theta) : 0 = r < \rho(\theta), \quad -\pi \leq \theta < \pi \},
\]

(3.1)

where the boundary of \(\Omega \), \(\partial \Omega \) is given by \(r = \rho(\theta) \). Let \(\xi = \xi + in = se^{i\varphi} \) with \(|\xi| < 1 \) such that the unit disc is

\[
D \equiv \{ (s, \varphi) : 0 = s < 1, \quad -\pi \leq \varphi < \pi \} .
\]

(3.2)

By the properties of Reimann mapping theorem [22], a circular disc \(D \) is mapped conformally onto \(\Omega \) using \(z = af(\xi) \). This approach works for a general smooth star-shaped domain, \(\Omega \). For a particular application, let \(f \) be an analytic function, simply connected in the domain \(\Omega \), \(|f'(\xi)| \) is nonzero and bounded for all \(|\xi| < 1 \),

\[
f(\xi) = \xi + c g(\xi) \quad \text{with} \quad g(\xi) = \xi^{m+1} ,
\]

(3.3)
which maps a unit circle, D in the ζ-plane into a nearly circular domain Ω in the z-plane where c is a real parameter and $r = \rho(\theta)$ is the boundary of Ω. This domain has a smooth, regular boundary for $0 \leq (m + 1)|c| < 1$. As $(m + 1)|c| \to 1$ one or more cusps develop; see Figure 2 with various choices of c.

Let

$$z - z_0 = a(f(\zeta) - f(\zeta_0)) = \text{Re}e^{i\Theta},$$

and define S and Φ as

$$\zeta - \zeta_0 = Se^{i\Phi},$$

$$d\Omega = dx dy = a^2 |f'(\zeta)|^2 d\xi d\eta = a^2 |f'(\zeta)|^2 sdsd\phi,$$

where $x = au(\xi, \eta)$ and $y = av(\xi, \eta)$ so that $f = u + iv$. Next, we define δ and δ_0 as

$$f'(\zeta) = |f'(\zeta)| e^{i\delta}, \quad f'(\zeta_0) = |f'(\zeta_0)| e^{i\delta_0}.$$

Set

$$w(x(\zeta), y(\zeta)) = a|f'(\zeta)|^{-1/2}e^{i\delta}W(\zeta, \eta),$$

$$q(x(\zeta_0), y(\zeta_0)) = a|f'(\zeta_0)|^{-3/2}e^{i\delta_0}Q(\zeta_0, \eta_0).$$
Substituting (3.5), (3.6), (3.7), and (3.8) into (2.7) gives

\[
\frac{2 - \nu + 3\nu e^{\xi \theta}}{8\pi} \int_D \frac{W(\xi, \eta)}{S^3} d\xi d\eta + \frac{2 - \nu}{8\pi} \int_D W(\xi, \eta) K^{(1)}(\xi, \xi_0) d\xi d\eta \\
+ \frac{3\nu}{8\pi} \int_D W(\xi, \eta) K^{(2)}(\xi, \xi_0) d\xi d\eta = Q(\xi_0, \eta_0), \quad (\xi_0, \eta_0) \in D,
\]

where the kernel \(K^{(1)}(\xi, \xi_0) \) and \(K^{(2)}(\xi, \xi_0) \) are [17]

\[
K^{(1)}(\xi, \xi_0) = \frac{|f'(\xi)|^{3/2} |f'(\xi_0)|^{3/2}}{|f(\xi) - f(\xi_0)|^3} e^{j(\delta - \delta_0)} - \frac{1}{|\xi - \xi_0|^3}, \\
K^{(2)}(\xi, \xi_0) = \frac{|f'(\xi)|^{3/2} |f'(\xi_0)|^{3/2}}{|f(\xi) - f(\xi_0)|^3} e^{j(2\Theta - \delta - \delta_0)} - \frac{1}{|\xi - \xi_0|^3} e^{2j\Phi}.
\]

This hypersingular integral equation over a circular disc \(D \) is to be solved subject to \(W = 0 \) on \(s = 1 \), and the \(K^{(1)}(\xi, \xi_0) \) is a Cauchy-type singular kernel with order \(S^{-2} \), and the kernel \(K^{(2)}(\xi, \xi_0) \) is weakly singular with \(O(S^{-1}) \), as \(\xi \to \xi_0 \) (see the appendix).

We are going to solve (3.9) numerically. Write \(W(\xi, \eta) \) as a finite sum

\[
W(\xi, \eta) = \sum_{n,k} W^n_k A^n_k(s, \varphi),
\]

where \(A^n_k(s, \varphi) \) is defined by

\[
A^n_k(s, \varphi) = s^{[n]} C_{2k+1}^{[n]+1/2} \left(\sqrt{1 - s^2} \right) e^{jnp}, \\
\sum_{n,k} = \sum_{n = -N_1}^{N_1} \sum_{k = 0}^{N_2}, \quad N_1, N_2 \in \mathbb{Z}.
\]

Introduce

\[
L^m_h(s, \varphi) = s^{[m]} C_{2h+1}^{[m]+1/2} \left(\sqrt{1 - s^2} \right) \cos m\varphi,
\]

where \(m, h \in \mathbb{Z} \). The relationship between these two functions, \(A^n_k(s, \varphi) \), and \(L^m_h(s, \varphi) \) can be expressed as

\[
\int_\Omega A^n_k(s, \varphi) L^m_h(s, \varphi) \frac{sd\varphi}{\sqrt{1 - s^2}} = B^n_k \delta_{kh} \delta_{mn},
\]

where \(\delta_{kh} \) and \(\delta_{mn} \) are Kronecker delta functions.
where δ_{ij} is Kronecker delta and

$$
B_k^n = \begin{cases}
\frac{2\pi}{4k + 3}, & n = 0, \\
\frac{\pi^2 \Gamma(2k + 2n + 2)}{2^{2n+1}(2k + n + 3/2)(2k + 1)!\Gamma(n + 1/2)^2}, & n \neq 0.
\end{cases} \tag{3.16}
$$

Both functions $A_k^n(s, \varphi)$ and $L_h^m(s, \varphi)$ have square-root zeros at $s = 1$. Krenk [23] showed that

$$
\frac{1}{4\pi} \int_\Omega \frac{A_k^n(s, \varphi)}{\Omega^3} d\Omega = -E_k^n A_k^n(s_0, \varphi_0), \tag{3.17}
$$

where

$$
E_k^n = \frac{\Gamma(|n| + k + 3/2) \Gamma(k + 3/2)}{(|n| + k)!k!}. \tag{3.18}
$$

Substituting (3.17) and (3.12) into (3.9) yields

$$
\sum_{n,k} \mathcal{Q}_k^n(s_0, \varphi_0) W_k^n = Q(\xi_0(s_0, \varphi_0), \eta_0(s_0, \varphi_0)), \tag{3.19}
$$

where

$$
\mathcal{Q}_k^n(s_0, \varphi_0) = -E_k^n \frac{(2 - \nu + 3\nu e^{-2i\Theta}) A_k^n(s_0, \varphi_0)}{2\sqrt{1 - s_0^2}} + \frac{2 - \nu}{8\pi} \int_D A_k^n(s, \varphi) K^{(1)}(\xi, \xi_0) d\xi d\eta
$$

$$
+ \frac{3\nu}{8\pi} \int_D A_k^n(s, \varphi) K^{(2)}(\xi, \xi_0) d\xi d\eta, \quad 0 \leq s \leq 1, \quad 0 \leq \varphi < 2\pi. \tag{3.20}
$$

Next, define

$$
W_k^n = -\overline{W}_k^n C^{[n+1/2]}_{2k+1} \sqrt{\frac{E_k^n}{B_k^n}} \tag{3.21}
$$

where $C^{[n+1/2]}_{2k+1} = (2n + 2k + 1)!/(2k + 1)!/(2n)!$. Multiply (3.19) by $L_h^m(s_0, \varphi_0)$, integrate over D and using (3.15), (3.19) becomes

$$
\sum_{n,k} \overline{W}_k^n \left(-\frac{2 - \nu + 3\nu e^{-2i\Theta}}{2}\delta_{hk} \delta_{|n|\pm1} + S_{hk}^{mn} \right) = Q_h^m, \quad -N_1 \leq m \leq N_1, \quad 0 \leq h \leq N_2, \tag{3.22}
$$
where

\[
S_{hk}^{mn} = \frac{1}{8\pi \sqrt{E_k B_k} \sqrt{E_h B_h}} T_{hk}^{mn},
\]

\[
T_{hk}^{mn} = \int_D L_h^m (\zeta_0) \int_D A_k^n (\xi) H(\zeta, \zeta_0) d\xi d\zeta_0,
\]

\[
Q_{hi}^m = \frac{1}{\sqrt{E_h B_h}} \int_D L_h^m (\zeta_0) Q(\zeta_0) d\zeta_0.
\]

\[
H(\zeta, \zeta_0) = (2 - \nu) K^{(1)}(\zeta, \zeta_0) + 3\nu K^{(2)}(\zeta, \zeta_0).
\]

In (3.22), we have used the following notation: \(\zeta_0 = \zeta_0(s_0, \varphi_0) \), \(d\zeta_0 = s_0 ds_0 d\varphi_0 \), and \(Q(\zeta_0) = Q(\zeta_0, \eta_0) = Q(s_0 \cos \varphi_0, s_0 \sin \varphi_0) \).

In evaluating the multiple integrals in (3.22), we have used the Gaussian quadrature and trapezoidal formulas for the radial and angular directions, with the choice of collocation points \((s, \varphi)\) and \((s_0, \varphi_0)\) defined as follows:

\[
\begin{align*}
 s_i &= \frac{\pi}{4} + \frac{\pi}{4} \sum_{i=1}^{M_1} W(i), & s_0i &= \frac{\pi}{4} + \frac{\pi}{4} \sum_{i=1}^{M_1} W_0(i), \\
 \varphi_j &= \sum_{j=1}^{M_2} \frac{j \pi}{M_2}, & \varphi_{0j} &= \sum_{j=1}^{M_2} \frac{(j + 0.5) \pi}{M_2},
\end{align*}
\]

where \(W(i) \) and \(W_0(i) \) are abscissas for \(s_i \) and \(s_0i \), respectively, \(M_1 \) and \(M_2 \) is the number of collocation points in radial and angular directions, respectively. This effort leads to the \((2N_1 + 1)(N_2 + 1) \times (2N_1 + 1)(N_2 + 1)\) system of linear equations

\[
A \vec{W} = \vec{b},
\]

where \(A \) is a square matrix, and \(\vec{W} \) and \(\vec{b} \) are vectors, \(\vec{W} \) to be determined.

4. Energy Release Rate

The energy release rate (measured in \(J m^{-2}\)), \(G(\varphi) \) by Irwin’s relation subject to shear load is defined as \([7, 8]\)

\[
G(\varphi) = \frac{(1 - \nu^2)}{E} [K_{II}(\varphi)]^2 + \frac{(1 + \nu)}{E} [K_{III}(\varphi)]^2,
\]

where \(E\), Young’s modulus, a measure of the stiffness of an isotropic elastic material and the relationship of \(E, \nu\) and \(\mu\), is

\[
\nu = \frac{E}{2\mu} - 1,
\]
and $K_{II}(\phi)$ and $K_{III}(\phi)$, the sliding and tearing mode stress intensity factor, respectively, are defined as [5, 7, 8]

$$K_{I}(\phi) = \lim_{r \to a} V_j \sqrt{\frac{2\pi}{a-r}} w(x, y), \quad j = II, III,$$

(4.3)

where V_j are constants.

Let $a(\phi) = |f(e^{i\phi})|$, $r = |f(se^{i\phi})|$, and as s close to 1, (4.3) leads to

$$K_{I}(\phi) = \lim_{s \to 1} V_j \sqrt{\frac{2\pi}{1-s}} \frac{f'(e^{i\phi})}{|f(e^{i\phi})|} w(x, y), \quad j = II, III.$$

(4.4)

Therefore, substituting (3.7) into (4.4) and simplifying gives

$$K_{I}(\phi) = V_j \left\{ f'(e^{i\phi}) \right\}^{-1} \sum_{n,k} \frac{\tilde{W}_n}{E_k B_k} \Psi^n_k(\phi) \right\}, \quad j = II, III,$$

(4.5)

where $\Psi^n_k(\phi) = D_{2k+1}^{[n+1/2]}(0) \cos(n\phi)$, and $c_{2k+1}^{[n+1/2]}(\sqrt{1-s^2}) = \sqrt{1-s^2} D_{2k+1}^{[n+1/2]}(\sqrt{1-s^2})$, where $D_{2k+1}^\lambda(x)$ is defined recursively by

$$mD_{2k+1}^{\lambda}(x) = 2(m + \lambda - 1) x D_{2k+1}^{\lambda}(x) - (m + 2\lambda - 2) D_{2k-1}^{\lambda}(x), \quad m = 2, 3, \ldots,$$

(4.6)

with $D_{2k+1}^{\lambda}(x) = 2\lambda$ and $D_{2k+1}^{\lambda}(x) = 2\lambda x$.

Table 1 shows that our numerical scheme converges rapidly at a different point of the crack with only a small value of $N_k = N_1 = N_2$ are used.
Figures 3, 4, 5, and 6 show the variations of G against φ for $c = 0.001$, $c = 0.01$, $c = 0.10$, and $c = 0.30$, respectively. It can be seen that the energy release rate has local extremal values when the crack front is at $\cos(\varphi) = \pm1$ or $\sin(\varphi) = \pm1$. Similar behavior can be observed for the solution of $G(\varphi)$ for a different c and ν at $c = 0.1$, displayed in Figures 7 and 8. Our results agree with those obtained asymptotically by Gao [8], with the maximum differences for $m = 2$ are 3.6066×10^{-6}, 4.7064×10^{-5}, 5.3503×10^{-5}, and 9.0000×10^{-5} for $c = 0.001$, $c = 0.01$, $c = 0.10$, and $c = 0.30$, respectively.

Figure 3: The energy release rate, $G(\varphi)$ for $f(\zeta) = \zeta + 0.001\zeta^3$.

Figure 4: The energy release rate, $G(\varphi)$ for $f(\zeta) = \zeta + 0.01\zeta^3$.
5. Conclusion

In this paper, the hypersingular integral equation over a nearly circular crack is formulated. Then, using the conformal mapping, the equation is transformed into hypersingular integral...
equation over a circular crack, which enable us to use the formula obtained by Krenk [23]. By choosing the appropriate collocation points, this equation is reduced into a system of linear equations and solved for the unknown coefficients. The energy release rate for the mentioned crack subject to shear load is presented graphically. Our computational results seem to agree with the asymptotic solution obtained by Gao [8].
Appendix

The Singularity of the Kernel $K^{(1)}(\zeta, \zeta_0)$ and $K^{(2)}(\zeta, \zeta_0)$

At $\zeta = \zeta_0$, we have

$$ f(\zeta) - f(\zeta_0) = (\zeta - \zeta_0)f'(\zeta_0) + \frac{(\zeta - \zeta_0)^2 f''(\zeta_0)}{2} + \cdots. \quad (A.1) $$

Differentiate $f(\zeta)$ with respect to ζ, we have

$$ f'(\zeta) = f'(\zeta_0) + (\zeta - \zeta_0)f''(\zeta_0) + \frac{(\zeta - \zeta_0)^2 f'''(\zeta_0)}{2} + \cdots. \quad (A.2) $$

Let

$$ F_1 = (\zeta - \zeta_0)\frac{f''(\zeta_0)}{f'(\zeta_0)} = u_1 + iv_1 = O(S), \quad (A.3) $$

$$ F_2 = (\zeta - \zeta_0)^2\frac{f'''(\zeta_0)}{2f'(\zeta_0)} = u_2 + iv_2 = O(S^2) \quad \text{as } S \to 0, \quad (A.4) $$

where u_1, u_2, v_1, and v_2 are real. As $F_1 = O(S)$ and $F_2 = O(S^2)$ as $S \to 0$, we see that u_i and v_i are $O(S^i)$ as $S \to 0$ ($i = 1, 2$).

Hence, (A.1) becomes

$$ f(\zeta) - f(\zeta_0) = f'(\zeta_0)(\zeta - \zeta_0) \left[1 + \frac{F_1}{2} + \cdots\right]. \quad (A.5) $$

Substituting (A.3) into (A.2) gives

$$ f'(\zeta) = f'(\zeta_0)[1 + F_1 + \cdots], \quad f'(\zeta_0) = f'(\zeta)[1 - F_1 - \cdots]. \quad (A.6) $$

As $S \to 0$ and truncate (A.1) at second order, then (A.6) can be written as

$$ f'(\zeta) \simeq f'(\zeta_0)[1 + F_1], \quad f'(\zeta_0) \simeq f'(\zeta)[1 - F_1], \quad (A.7) $$

respectively. Now, consider $K^{(1)}(\zeta, \zeta_0)$. Let $\delta - \delta_0 = v_1 = O(S)$ where δ and δ_0 defined in (3.6), then, from (3.6), we have

$$ e^{i(\delta - \delta_0)} = \frac{f'(\zeta_0)[f'(\zeta)]}{f'(\zeta_0)[f'(\zeta)]}. \quad (A.8) $$
Apply $z^2 = |z|^2$ leads to

$$\frac{1 + F_1}{|1 + F_1|} = \frac{1 + F_1}{1 + u_1} \times \frac{1 - u_1}{1 - u_1} = (1 + F_1)(1 - u_1) \approx 1 + iv_1. \quad (A.9)$$

Hence,

$$e^{(\beta - \delta_0)} \approx 1 + jv_1. \quad (A.10)$$

Martin [24] showed that

$$|1 + aF_1 + \beta F_2|^{1/2} = |1 + au_1 + \beta u_2 + i(\alpha v_1 + \beta v_2)|^{1/2} \approx 1 + a\lambda u_1 + \frac{1}{2} \lambda \{(\lambda - 1)a^2 u_1^2 + a^2 v_1^2 + 2\beta u_2\}, \quad (A.11)$$

where a, γ, and β are constants and

$$\frac{|f'(\zeta)|^{3/2}}{|f'(\zeta) - f'(\zeta_0)|} \approx \frac{1}{|\zeta - \zeta_0|^3} = \frac{1}{S^3} \left(\frac{|1 + F_1 + F_2|^{3/2}}{|1 + (1/2)F_1 + (1/3)F_2|^3} - 1\right) = O(S^{-1}), \quad (A.12)$$

as $S \to 0$.

Next, using (A.12), (A.11), and (A.10), we obtain

$$K^{(1)}(\zeta, \zeta_0) = \frac{|f'(\zeta)|^{3/2}}{|f'(\zeta) - f'(\zeta_0)|} - \frac{1}{|\zeta - \zeta_0|^3} = \frac{1}{S^3} \left(\frac{|1 + F_1|^{3/2}}{|1 + F_1/2|^3} - 1\right) + \frac{1}{S^3} \left(\frac{|1 + F_1|^{3/2}}{|1 + F_1/2|^3} f v_1\right), \quad (A.13)$$

where

$$\frac{|1 + F_1|^{3/2}}{|1 + F_1/2|^3} - 1 \approx \frac{3}{8} \left(v_1^2 - u_1^2\right), \quad \left|\frac{F_1}{2}\right|^3 \to 1. \quad (A.14)$$

Thus, $K^{(1)}(\zeta, \zeta_0)$ reduces to

$$K^{(1)}(\zeta, \zeta_0) = \frac{3}{8S^3} \left(v_1^2 - u_1^2\right) + \frac{j}{S^3} v_1. \quad (A.15)$$

Since $F_1 = u_1 + iv_1$, then

$$(u_1 + iv_1)^2 = u_1^2 - v_1^2 + 2iv_1u_1, \quad \text{Re}(F_1) = -\left(v_1^2 - u_1^2\right), \quad (A.16)$$
Re\left(F_1^2\right) = \Re\left\{e^{2j\Phi\left(f''(\zeta_0)\right)^2} \right\} = \frac{D(\zeta_0, \Phi)}{S}, \quad S \to 0, \quad (A.17)

where \(D(\zeta_0, \Phi) = \Re\left\{e^{2j\Phi\left(f''(\zeta_0)\right)^2/(f'(\zeta_0))^2} \right\}\) and \(\zeta - \zeta_0 = Se^{j\Phi}\) defined in (2.7). Thus,

\[K^{(1)}(\zeta, \zeta_0) = O\left(S^{-1}\right) + \frac{1}{S^3}jv_1 \]
\[\approx jv_1 S^{-3}\]
\[= O\left(S^{-2}\right).\]

Therefore, \(K^{(1)}(\zeta, \zeta_0) = jv_1 S^{-3}\), that is, \(K^{(1)}(\zeta, \zeta_0) \approx O(S^{-2})\) as \(S \to 0\).

For \(K^{(2)}(\zeta, \zeta_0)\), expand \(f(\zeta)\) at \(\zeta = \zeta_0\), and truncating at second order, (3.4) gives

\[\Re e^{i\Theta} = a(\zeta - \zeta_0)f'(\zeta_0)\left\{1 + \frac{F_1}{2}\right\}, \quad (A.19)\]

where

\[e^{i(\Theta - \Phi - \delta)} \approx \left(1 + \frac{F_1}{2}\right)\left|1 + \frac{F_1}{2}\right|^{-1} = 1 + \frac{v_1}{2}. \quad (A.20)\]

Next, substituting (A.5) and (A.7) into (3.4) gives

\[\Re e^{i\Theta} = a(\zeta - \zeta_0)f'(\zeta_0)(1 - F_1)\left\{1 + \frac{F_1}{2}\right\}, \quad (A.21)\]

where

\[e^{i(\Theta - \Phi - \delta)} \approx \left(1 - \frac{F_1}{2}\right)\left|1 - \frac{F_1}{2}\right|^{-1} = 1 + \frac{v_2}{2}. \quad (A.22)\]

Using (A.22) and (A.20) yields

\[e^{i(2\Theta - 2\Phi - \delta - \delta_0)} \approx 1 + \frac{v_1}{4}v_2^2 + iv_2 = 1 + O\left(S^2\right). \quad (A.23)\]

Hence, as \(S \to 0\), then \(e^{i(2\Theta - 2\Phi - \delta - \delta_0)} \approx 1 + O(S^2)\). It is not difficult to see that \(R \approx a|f'(\zeta_0)|S, \quad \Theta \approx \Phi + \delta_0, \quad R \approx a|f'(\zeta)|S, \quad \text{and} \quad \Theta \approx \Phi + \delta\), respectively; then (3.11) becomes

\[K^{(2)}(\zeta, \zeta_0) = \frac{\left|f'(\zeta)\right|^{3/2}\left|f'(\zeta_0)\right|^{3/2}}{|f(\zeta) - f'(\zeta_0)|^3}e^{2j\Phi} - \frac{1}{|\zeta - \zeta_0|^3}e^{2j\Theta}. \quad (A.24)\]
Applying similar procedures as in $K^1(\zeta, \zeta_0)$ gives

$$
\frac{1}{|\zeta - \zeta_0|^3} \left(\frac{|f'(\zeta)|^{3/2}/f'(\zeta_0)|^{3/2}}{|f(\zeta) - f(\zeta_0)|^3} |\zeta - \zeta_0|^3 - 1 \right)
= \frac{1}{S^2} \left(\frac{|1 + F_1|^{3/2}}{|1 + F_1/2|^{3/2}} - 1 \right)
\approx \frac{3}{8} \left(\frac{v_1^2 - u_1^2}{1} \right)
\approx \frac{3}{8} \frac{F(\zeta_0, \Phi)}{S}
\quad \text{as } S \to 0.
$$

(A.25)

Thus,

$$
K^{(2)}(\zeta, \zeta_0) = e^{2\gamma \Phi} \frac{3}{8} \frac{F(\zeta_0, \Phi)}{S}
\quad \text{as } S \to 0.
$$

(A.26)

Acknowledgments

The authors would like to thank the reviewers for their very constructive comments to improve the quality of the paper. This project is supported by Ministry of Higher Education Malaysia for the Fundamental Research Grant scheme, project no. 01-04-10-897FR and the second author received a NSF scholarship.

References

