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Abstract. 
Transient natural convection in a square cavity filled with a porous medium is studied numerically. The cavity is assumed heated from one vertical wall and cooled at the top, while the other walls are kept adiabatic. The governing equations are solved numerically by a finite difference method. The effects of Rayleigh number on the initial transient state up to the steady state are investigated for Rayleigh number ranging from 10 to 
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. The evolutions of flow patterns and temperature distributions were presented for Rayleigh numbers, 
	
		
			
				R
				a
				=
				1
				0
			

			

				2
			

		
	
 and 
	
		
			
				1
				0
			

			

				3
			

		
	
. It is observed that the time taken to reach the steady state is longer for low Rayleigh number and shorter for high Rayleigh number.


1. Introduction
Convective heat transfer has attracted significant attention due to wide applications in engineering such as operation of solar collectors, cooling systems in electronics equipments, and insulations of buildings. Many studies with application to the previous research areas may be found in the books by Nield and Bejan [1], Ingham and Pop [2], and Vafai [3].
In recent years, most researchers devoted their studies on natural convection related to either a vertically or horizontally imposed heat flux or temperature difference; see, for example, Bejan [4], Rasoul and Prinos [5], Goyeau  et al. [6], Saeid and Pop [7], Baytas and Pop [8], and Zeng et al. [9]. Works on natural convection with differentially heated neighbouring walls include those of Ganzarolli and Milanez [10], Ameziani et al. [11], Ishihara et al. [12], Rahman and Sharif [13], Aydin and Yang [14], Ece and Büyük [15], Frederick and Berbakow [16], and Dalal and Das [17].
The heat transfer characteristics of natural convection in a square and rectangular cavity heated from one side and cooled from the ceiling have been studied by Aydin [18] and Aydin et al. [19, 20]. Aydin and Ünal [21] conducted a numerical study on transient buoyant flow inside an air-filled 45°-inclined enclosure. Varol et al. [22] studied the natural convection in a porous enclosure divided by a triangular massive partition and heated and cooled on adjacent walls. In addition, Revnic et al. [23] investigated the natural convection in an inclined square cavity heated and cooled on adjacent walls and filled with a porous medium. Finally, we mention that Yesiloz and Aydin [24] studied experimentally and numerically the natural convection in an inclined quadrantal cavity heated from below and cooled on one side. 
In this work, transient natural convection in a square cavity filled with a porous medium is studied numerically. The square enclosure is heated from one vertical side and cooled from the ceiling. The vertical wall is assumed heated to a uniform temperature or heat flux while the ceiling is cooled at a uniform temperature. The other vertical wall and the floor are adiabatic.
2. Mathematical Formulation
The schematic diagram of two-dimensional square cavity is shown in Figure 1. It is assumed that the left vertical wall is suddenly heated to the constant temperature or heat flux 
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 and the top wall is suddenly cooled to the constant temperature 
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 where 
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 by equal amount relative to an initially uniform temperature distribution. The right vertical and bottom walls are adiabatic. 





	
		
	
	
	
		
	
	
		


	
		
		
			
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
	


	
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	


	
		
			
		
		
			
		
		
			
		
	


	
		
			
			
			
			
			
			
			
			
			
		
	


Figure 1: Schematic diagram of the physical model and coordinate system.


Applying Darcy’s flow model and the Boussinesq approximation, the governing equations are as follows [7]: 
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					where 
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 are the velocity components along the 
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 is the fluid temperature, and the definitions of the other symbols are mentioned in the Nomenclature. Equations (2) are subject to the following boundary conditions:
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, the governing equations (2) can be written in dimensionless forms:
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The local Nusselt numbers along the hot and cold wall are given, respectively, by [23]
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3. Numerical Scheme
The coupled system of (2.4) and (2.5) subject to boundary conditions (2.7)–(2.11) was solved numerically using a finite difference method. The alternating direction implicit method was applied for discretizing the equations. The unknowns 
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Table 1: Comparison of the average Nusselt number, 
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								Revnic et al. [23]	
	
		
			
				2
				6
				×
				2
				6
			

		
	
	
										8.2636
										
										8.2240
									
	
	
		
			
				5
				1
				×
				5
				1
			

		
	
	
										9.2162
										
										9.2008
									
	
	
		
			
				1
				0
				1
				×
				1
				0
				1
			

		
	
	
										10.1319
										
										10.1247
									
		 Richardson extrapolation	
										10.4371
										
										10.4326
									
	Present results	
	
		
			
				2
				6
				×
				2
				6
			

		
	
	
										8.5553
										
										8.2786
									
	
	
		
			
				5
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				×
				5
				1
			

		
	
	
										9.3885
										
										9.2271
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				0
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				×
				1
				0
				1
			

		
	
	
										10.2297
										
										10.1383
									
	



4. Results and Discussion
The main objective of the present work is to investigate the effects of Rayleigh number, 
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				a
			

		
	
, on natural convection in an enclosure heated and cooled on adjacent walls and filled with a porous medium. The computations were carried out for 
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. At first, the left and top walls were cooled and the fluid was at a uniform temperature and motionless in the enclosure. After sudden heating on the left wall, the fluid near the hot wall began to rise and flow along the cooled top wall. Then, the flow reached the other side of the wall and moved downward to the bottom wall. Finally, after passing the adiabatic walls, the flow reached the hot wall and completed the flow cycle. Due to buoyancy force, the fluid moved from the left region to the right region of the cavity, yielding a clockwise circulation cell inside the enclosure.
Figure 2 shows the transient result of the flow and temperature field for 
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), no significant difference was observed in the flow and temperature fields, which indicated that the flow had reached the steady-state regime.
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(f) 
	
		
			
				𝑡
				=
				0
				.
				8
			

		
	

Figure 2: Time history for streamlines (left) and isotherms (right) for 
	
		
			
				R
				a
				=
				1
				0
				0
			

		
	
.


The transient development of flow structure for 
	
		
			
				R
				a
				=
				1
				0
			

			

				3
			

		
	
 is illustrated in Figure 3. At the beginning, the flow structure was almost similar to that of the case 
	
		
			
				R
				a
				=
				1
				0
			

			

				2
			

		
	
. However, after a short time (
	
		
			
				𝑡
				=
				0
				.
				0
				5
			

		
	
), the streamline had been extended throughout the cavity and convection became more important. In addition, for 
	
		
			
				𝑡
				>
				0
				.
				1
			

		
	
, the flow was then going to attain the steady-state condition. The thermal boundary layer was more pronounced and grew faster than the lower 
	
		
			
				R
				a
			

		
	
 case. 
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(c) 
	
		
			
				𝑡
				=
				0
				.
				0
				1
			

		
	






	
		
	
	
	
	
	
	
	
		
		
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
			
			
		
		
			
		
		
			
		
	
	
		
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
	
	
		
			
		
	
	
		
	
	
		
			
		
	
	
		
		
		
	
	
		
	
	
		
		
		
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
			
		
	
	
		
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
		
		
	
	
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
			
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
		
		
	
	
		
			
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
		
		
	
	
		
			
		
	
	
		
	
	
		
			
		
	
	
		
	








(d) 
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(f) 
	
		
			
				𝑡
				=
				0
				.
				2
			

		
	

Figure 3: Time history for streamlines (left) and isotherms (right) for 
	
		
			
				R
				a
				=
				1
				0
				0
				0
			

		
	
.


The steady-state condition for the cavity with different values of 
	
		
			
				R
				a
			

		
	
 is shown in Figure 4. For 
	
		
			
				R
				a
				=
				1
				0
			

		
	
, it was observed that flow exhibited a unicellular recirculation pattern and the corresponding isotherm formed a diagonally symmetric structure indicating that the heat transfer mechanism was still under influence of conduction. As the convective motion increased with the increasing in 
	
		
			
				R
				a
			

		
	
, the colder flow tended to occupy the lower part of the enclosure and the temperature gradient was more severe near the heated vertical wall and cooled ceiling. Therefore, a thermal boundary layers were observed near the heated and cooled walls.
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(c) 
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(d) 
	
		
			
				R
				a
				=
				2
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Figure 4: Streamlines (top) and isotherms (bottom) at steady-state for difference 
	
		
			
				R
				a
			

		
	
.


Figure 5 depicts the transient responses of the average Nusselt number, 
	
		
			
				
			
			
				N
				u
			

			

				ℎ
			

		
	
, on the hot wall for different values of the Rayleigh number. Initially, the value of 
	
		
			
				
			
			
				N
				u
			

			

				ℎ
			

		
	
 was large because of the high-temperature gradient close to the hot wall. For 
	
		
			
				R
				a
				=
				1
				0
			

		
	
, the 
	
		
			
				
			
			
				N
				u
			

			

				ℎ
			

		
	
 decreased monotonously with time until it converged to a steady-state value. This behavior was related to conduction as the dominant heat transfer mechanism for low 
	
		
			
				R
				a
			

		
	
 value. However, for 
	
		
			
				R
				a
				=
				1
				0
			

			

				2
			

		
	
, 
	
		
			
				
			
			
				N
				u
			

			

				ℎ
			

		
	
 dropped to a minimum value first and then increased continuously to a steady-state value. Similar behavior could be observed for 
	
		
			
				R
				a
				>
				1
				0
			

			

				2
			

		
	
, dropping to a minimum and increasing with some oscillations to a steady-state value. As we observed, the steady-state value was reached faster with the increasing in 
	
		
			
				R
				a
			

		
	
. This was a consequence of increased convective motion with the increasing on Raleigh number.
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(b)
Figure 5:  Variations of the average Nusselt number on the hot wall with time, 
	
		
			
				𝑡
				=
				0
			

		
	
 to 
	
		
			
				𝑡
				=
				1
				.
				0
			

		
	
.


Figure 6 illustrates the variation of the local Nusselt number 
	
		
			
				N
				u
			

			

				ℎ
			

		
	
 along the hot wall (left) and 
	
		
			
				N
				u
			

			

				𝑐
			

		
	
 for cold wall (right) at the steady-state regime for different 
	
		
			
				R
				a
			

		
	
. It was observed that, for all 
	
		
			
				R
				a
			

		
	
 considered, except for 
	
		
			
				R
				a
				=
				1
				0
			

		
	
, the 
	
		
			
				N
				u
			

			

				ℎ
			

		
	
 decreased to a minimum value first, followed by a sharp increase near the top wall. For all values of 
	
		
			
				R
				a
			

		
	
, the 
	
		
			
				N
				u
			

			

				𝑐
			

		
	
 decreased continuously along the ceiling to the adiabatic right wall.
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(b)
Figure 6: Variations of the local 
	
		
			
				N
				u
			

			

				ℎ
			

		
	
 and local 
	
		
			
				N
				u
			

			

				𝑐
			

		
	
 on the hot and cold wall, respectively, for different 
	
		
			
				R
				a
			

		
	
 at steady-state condition.


5. Conclusion
The present study considers a transient natural convection in a two-dimensional square cavity filled with a porous medium heated from the left vertical wall and cooled from the top wall, while the other walls are kept adiabatic. The effect of Rayleigh number on the transient thermal behavior was investigated. Initially, the heat transfer process was characterized by pure conduction. However, after a short time and for Rayleigh number 
	
		
			
				R
				a
				>
				1
				0
			

		
	
, the convection dominated the flow motion in the enclosure. Increasing the Rayleigh number could lead to more convective motion and shorter time to reach a steady-state condition. 
Nomenclature
	
	
		
			

				𝑔
			

		
	
:	Magnitude of gravitational acceleration
	
	
		
			

				𝐾
			

		
	
:	Permeability of the porous medium
	
	
		
			

				𝐿
			

		
	
:	Cavity height/width
	
	
		
			
				N
				u
			

		
	
:	Nusselt number
	
	
		
			
				R
				a
			

		
	
:	Rayleigh number for porous medium
	
	
		
			

				𝑡
			

		
	
:	Time
	
	
		
			

				𝑇
			

		
	
:	Fluid temperature
	
	
		
			
				𝑢
				,
				𝑣
			

		
	
:	Velocity components along 
	
		
			

				𝑥
			

		
	
- and 
	
		
			

				𝑦
			

		
	
-axes, respectively
	
	
		
			
				𝑈
				,
				𝑉
			

		
	
:	Nondimensional along 
	
		
			

				𝑋
			

		
	
- and 
	
		
			

				𝑌
			

		
	
-axes, respectively
	
	
		
			
				𝑥
				,
				𝑦
			

		
	
:	Cartesian coordinates
	
	
		
			
				𝑋
				,
				𝑌
			

		
	
:	nondimensional Cartesian coordinates.

Greek Symbols	
	
		
			

				𝛼
			

		
	
:	Effective thermal diffusivity
	
	
		
			

				𝛽
			

		
	
:	Coefficient of thermal expansion
	
	
		
			

				𝜃
			

		
	
:	Nondimensional temperature
	
	
		
			

				𝜅
			

		
	
:	Wave number
	
	
		
			

				𝜈
			

		
	
:	Kinematic viscosity of the fluid
	
	
		
			

				𝜎
			

		
	
:	Ratio of composite material heat capacity to convective fluid heat capacity
	
	
		
			

				𝜏
			

		
	
:	Non-dimensional time
	
	
		
			

				𝜓
			

		
	
:	Stream function
	
	
		
			

				Ψ
			

		
	
:	Nondimensional stream function.

Subscripts and Superscripts	
	
		
			

				𝑐
			

		
	
:	Cold wall
	
	
		
			

				ℎ
			

		
	
:	Hot wall.
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