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Abstract. 
In this paper, a hybrid scheme is proposed to find the reliable point-correspondences between two images, which combines the distribution of invariant spatial feature description and frequency domain alignment based on two-stage coarse to fine refinement strategy. Firstly, the source and the target images are both down-sampled by the image pyramid algorithm in a hierarchical multi-scale way. The Fourier-Mellin transform is applied to obtain the transformation parameters at the coarse level between the image pairs; then, the parameters can serve as the initial coarse guess, to guide the following feature matching step at the original scale, where the correspondences are restricted in a search window determined by the deformation between the reference image and the current image; Finally, a novel matching strategy is developed to reject the false matches by validating geometrical relationships between candidate matching points. By doing so, the alignment parameters are refined, which is more accurate and more flexible than a robust fitting technique. This in return can provide a more accurate result for feature correspondence. Experiments on real and synthetic image-pairs show that our approach provides satisfactory feature matching performance.


1. Introduction
Given two or more images of a scene, the ability to match reliable corresponding points between these images is a fundamental and very important problem in computer vision field. In fact, many computer vision applications rely on the success of finding corresponding points [1–5], for example, stereo vision, image registration, motion analysis, object recognition, and 3D reconstruction. Point correspondences are usually established by matching the local descriptors of a small region around the interest points [6–9]. However, usually a large proportion of them are false matches because of perceptual alias, occlusion, change of illumination and view-points, and so forth. One strong feature may appear weak in the two images, which makes feature matching nearly impossible. In extreme situation, the correspondence is physically meaningless, even though they have similar local appearance. Although the point correspondence problem techniques have been much developed in last decades, it still remains a challenge in various situations.
Nowadays, a considerable amount of previous research has been conducted on the works on efficient feature descriptors, which have used the spatial domain representation of various image features [6–9], such as line segments, corners, implicit and parametric curves and surfaces. Actually, any geometrical feature can be represented as a point set to find meaningful correspondence with another point set. A common approach to obtain such feature that possess above properties is known as “key-point” or “interest point” extraction [6, 7], involving identify points that can be reliably extracted from different images of the same scene. Some of them are well known, for example, Harris, SIFT [7], and SURF (Speeded Up Robust Features) [9, 10]. In the spatial domain representation, many works registered the images by selecting a number of windows in high-variance areas of one image, locating the corresponding windows in the other image and using the window geometric centers as control points to determine the registration parameters [11, 12].
However, those spatial domain approaches conduct exhaustive search of local appearance templates, making it very time consuming and difficult, especially in presence of occlusion junctions, large change of viewpoint, multiple similar structure, and handling of appearing and disappearing features. Even when the most effective invariant descriptors are applied, the performance of feature correspondence in spatial representation is not very satisfactory. These drawbacks are the common problems where overall images are used as the search space for exhaustively finding putative correspondence without guidance. Another more difficult problem is that some difference between the images due to object movements, lighting changes, using different types of sensors or with different sensor parameters, cannot be modeled by a spatial transform alone. They make the registration more difficult since accurate registration can be no longer achieved between two images, even after spatial transformation. 
Due to the limitations of spatial domain methods, some researchers take advantage of frequency representation information to assist the image registration process or motion analysis [4, 5, 13, 14]. Since the image pairs can be related by the camera motion which consists of relative translation, rotation, scale, and other geometric transformation, so motion estimation techniques could be introduced into our algorithm. Frequency domain processing has several advantages over spatial domain methods. The motion estimation is based on the phase changes of the Fourier Transformation, so it is robust to global illumination changes. The partial occlusion does not affect the deformation analysis, as the initial geometric transformation estimation is to be obtained in the frequency domain instead of spatial information. However, transformation computation in frequency domain processing alone is not adequate for all image registration tasks, so spatial information is used for more accurate correspondence. 
This suggests a simple but effective approach that we denote a coarse-to-fine hierarchical approach. In fact, coarse-to-fine hierarchical ways have been applied by various researchers [3, 15, 16]. However, until now, there have been few approaches to solve the strongly interconnected problems that can take advantage of both frequency and spatial domain information. 
In this paper, we propose a novel way to hierarchically integrate the estimation in the frequency domain and in the spatial domain. These problems are alleviated by firstly resorting to a rough estimate of the transformation parameters between the image pairs at the coarsest level using the frequency information, then this reasonable approximation guide the matching process in spatial domain at the original level. In such a way, we fuse spatial and frequency domain information in a new efficient manner. The integration of frequency and spatial domain can not only avoid the drawbacks of spatial domain methods, but also make use of spatial information for precise feature localization. It should be noted that our idea in certain steps seems similar to some image registration approaches, that employ a set of correspondence features to determine the transformation between the image pairs. Indeed, to the best of our knowledge, this is the first time that by introducing Fourier-Mellin Transform at the coarse-scale, the captured deformation parameters are then applied to assist the feature matching procedure in spatial domain. 
The paper is organized as follows. Section 2 introduces our hybrid image registration scheme. Section 3 presents experimental results that demonstrate the advantage of this combination of matching schemes. Section 4 summarizes the paper.
2. Problem Presentation and Our Approach
It is assumed that the image pairs containing the same scene are taken at different times, from different imaging devices, or from different perspectives, due to changes in camera position and pose. 
We present a novel algorithm that takes advantage of both spatial and frequency domain information in a hierarchical multiscale decomposition way, as is described in Figure 1. The main idea is to take advantage of the estimation obtained in the frequency domain at the coarse scale, to guide the accurate spatial feature matching. Meanwhile, the multiscale decomposition also reduces much time for the point correspondences. The Fourier-Mellin Transform (in frequency domain) is applied to determine the coarse transformation parameters that map the current image to the source image, which is beneficial to establish the quick correspondence of a set of features. This strategy alleviates the difficult and time-consuming identification of corresponding features in the image pairs and is not dependent upon exact exhaustive searching of point correspondences. Our approach saves much computational efforts, since it need not to search through overall image space for each key point, but in a small window guided by the transformation. 


	
		
			
			
				
			
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
			
				
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
	
		
	
		
	
		
			
				
			
				
			
		
	
	
		
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
	
		
	
		
			
				
			
				
			
		
	


	
		
			
		
			
		
	




	
		
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	

Figure 1: Framework of the presented method.


2.1. Coarse Transformation Estimation by Frequency Domain Alignment
Since the image pairs can be related by the camera motion which consists of relative translation, rotation, scale, and other geometric transformation, so motion estimation techniques could be introduced into our algorithm. The affine motion model [11] is adopted in this paper as it provides good tradeoff between generality and ease of estimation. Actually, any Rotation-Scale-Translation (RST) transformation may be expressed as a combination of a single translation, rotation, and scale factor, all operating in the plane of the image. The wrap model between the reference image 
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Global motion estimation methods can be broadly classified into two categories: spatial domain [2, 15, 16] and frequency domain. Frequency domain [4, 5, 13, 14] processing has several advantages over spatial domain methods. The motion estimation is based on the phase changes of the Fourier Transformation, so it is robust to global illumination changes. Its computational cost is significantly lower, making it more useful for practical applications. The partial occlusion does not affect the motion analysis, as the initial geometric transformation estimation is to be obtained in the frequency domain instead of spatial information.
In this paper, we recover the coarse rotation, translation, and scale parameters of the transformation at the top level by using the Fourier-Mellin Transform (FMT), which is essentially a phase correlation method based on the Fourier and Log-polar transform. The idea behind FMT method is to makes use of the Fourier Shift Theorem and the Fourier Rotation Theorem to provide invariance to rotation, translation, and scale. Then it is performed by phase correlation of the cross-power spectra. 
Equation (2.1) can be expressed in Fourier domain as
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We can see that, the Fourier Transform (FT) itself is translation invariant. So the rotation and scaling parameters can be determined independent of the translation parameter.
Since dynamic range of the output of FFT is very high, making interpolation in the frequency domain difficult; this range is compressed by resampling the Fourier magnitude spectra on log-polar grid. When the Fourier magnitude spectra are converted from Cartesian coordinate system to a log-polar representation 
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In other words, it can be written in the following way,
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It can be seen that, the Fourier-Mellin transform (FMT) gives a transform that its resulting spectrum is invariant in rotation, translation, and scale.
We can summarize the Fourier-Mellin Transform (FMT) as follows. Firstly, by working in this translation invariant (Fourier-Mellin) domain, linear component 
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Figure 2: Coarse Estimation By Fourier-Mellin Transform at the top level of the multiscale image pyramid.


Since Fourier magnitude spectrum is applied as translation invariant domain, FFT of whole original image is needed, making it computational expensive. This problem is alleviated by multiscale decomposition [3, 15, 16]. The coarse-scale images contain only the main shapes and general features and less noise, so resulting transformation procedure is much faster than in original fine scale. For better efficiency, integer low-pass filter is used with very few nonzero bits in the coefficients. Thus, supplement the frequency method with a coarse-to-fine multiresolution approach and feature-based registration can overcome most limitations of the previous scheme.
2.2. Guided Constrained Search in Spatial Domain
Thus, by Fourier-Mellin Transform in the frequency domain of the coarse-scale image, the initial transformation parameters in (2.1) are obtained. Once the transformation is computed, the coarse locations of corresponding points are simply handled by applying the transformation to each interest point extracted in the reference image:
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 is used to significantly limit the search space for finding conjugate point-pairs. Under the guidance of transformation of each interest point, efficient candidate correspondence can be estimated within a small region, without meaningless exhaustive search in the entire image. This strategy is illustrated in the following figure.
2.3. Correspondence Refinement by RANSAC and Geometrical Relationships
Once the transformation parameters are obtained in the frequency domain, under the guidance for each interest feature extracted in the source image, a set of features correspondence can be established by search within a small area around the ideal projected center. Even so, it is not assured that all of the matches are necessarily the exact correspondences. Sometimes, even a small error can have a large influence in the recovered parameters. Actually, in the case of occlusion or removal, a most similar feature point within that window will be proved to be false candidate match.
To identify and eliminate outliers, we apply the robust estimation algorithm RANSAC [17] to find the transformation that is consistent with the largest number of inliers. Inliers are defined as those putative matches 
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 is a threshold. RANSAC returns the transformation with the largest consensus and the list of matches in the consensus set. If the set of inliers changes with the improved transformation, we continue to reestimate the transform until the consensus set converges. Those false matches which are not consistent with the dominant transformation are rejected as outliers, ignored at the rest steps. To further improve the estimate, we use the consensus set to reestimate the transform with all inliers. At each iteration of RANSAC, the location of each inlying corresponding feature is rectified as follows:
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th iteration. This update can undoubtedly accelerate the convergence process. By this step, simultaneous precise feature correspondence and refined wrap between the image pairs are achieved in a hybrid way.
Then, we make use of the distribution of collections of nearby interest points to increase the correspondence belief for each other. But how to select such a group of points and what metrics can be utilized to enhance the performance is a challenge. Following the works in [18], we make use of structural relationship of interest points to avoid the false matches caused by local similar regions. The stable geometrical relationships between a set of interest points can make such a group of points distinct from the similar ones, even in the case that they looks similar within the single local neighborhood.
An instance of the distribution of nearby corresponding point sets is designed as follows. For every initial matched feature point pair 
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 are the predefined thresholds to justify whether the neighboring points around the potential corresponding point are also matched well.
3. Experiments
 In this section, we conduct the point correspondence experiments using both the real images and synthetic deformed image-pairs. We demonstrate the accuracy and the robustness of the algorithm presented in the second section.
3.1. Real Remote-Sense Image Matching
Image matching plays a critical important role in remote sensing applications. Due to the large volumes of remote-sensing data available, automated feature correspondence is highly desirable. We will consider images that differ by a approximate planar motion, which is suitable for remote