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Abstract. 
This paper investigates the potential application of artificial neural networks in permanent deformation parameter identification for rockfill dams. Two kinds of neural network models, multilayer feedforward network (BP) and radial basis function (RBF) networks, are adopted to identify the parameters of seismic permanent deformation for Zipingpu Dam in China. The dynamic analysis is carried out by three-dimensional finite element method, and earthquake-induced permanent deformation is calculated by an equivalent nodal force method. Based on the sensitivity analysis of permanent deformation parameters, an objective function for network training is established by considering parameter sensitivity, which can improve the accuracy of parameter identification. By comparison, it is found that RBF outperforms the BP network in this problem. The proposed inverse analysis model for earth-rockfill dams can identify the seismic deformation parameters with just a small amount of sample designs, and much calculation time can be saved by this method.


1. Introduction  
The dynamic response of rockfill dams under earthquake actions, mainly including absolution acceleration and permanent deformation, attracts more and more attention from engineers. The former is used to assess the dynamical load and seismic resistance of the dam. The latter is adopted to provide a basis for the dam height reserved during the design phase. So the prediction of permanent deformation is an essential problem in the seismic design for rockfill dams. As a result, it is important to select model parameters of rockfill dams reasonably, which makes for improving the accuracy of the numerical calculation.
  However, it is not easy to carry out. Because of the difference of construction technology and construction quality and so on, the spatial distribution of material properties is considerably random in each project. Along with the development of construction technology, the maximum particle size of materials of rockfill dams may be bigger and bigger, but the model parameters are usually measured in the laboratory by using samples with much smaller size. The prepared experimental samples in the laboratory are different from the construction conditions. Therefore, the mechanical properties of samples determined in the laboratory may be more or less differing from those in situ. And then the stress and deformation acquired with laboratory parameters deviate far from the actual values inevitably. As a consequence, it is necessary to take measures to get model parameters in accord with the results of dam observation and make an accurate evaluation of dam safety and stability after that. Displacement backanalysis is an effective method to check and modify the parameters of soils. 
In recent years, reverse analysis is mainly based on two methodologies: optimization algorithms and neural networks [1–5]. There are three types of optimization algorithms that have been frequently used in inverse analysis. The first type is gradient-based direct search algorithms, such as Levenberg-Marquardt method. The second type is the relatively simple direct search methods making no use of gradient, such as the simplex search method. The last type is kinds of intelligent global search algorithms, such as genetic algorithms, differential evolution, particle swarm optimization, and ant colony optimization. The first and the second type algorithms both have an advantage of estimating the solutions in relatively short computational time, but the results are affected by the initial values, and premature convergence is likely to happen. As an alternative to the direct search algorithms, intelligent global search algorithms are being widely adopted in reverse analysis, but they have a disadvantage of being time consuming. 
In the geotechnical engineering field, intelligent backanalysis methods based on artificial neural networks (ANNs) and genetic algorithms [6, 7] are often adopted. As for generic algorithms, the range and trial values of the undetermined parameters should be given before the analysis, and then the time-consuming finite element method (FEM) calculation is performed repeatedly, so it is hard to ideally solve complicated nonlinear problems with a lot of finite elements. That is why it has been primarily used for seeking answers to static problems and two-dimensional problems so far. They need relatively few iterations and finite elements. Comparatively speaking, the strong nonlinear relationship between the known and unknown quantity in geotechnical engineering can be mapped well by using ANNs. And neural network approach can obtain inversion parameters quickly with just a small amount of sample designs.
The aim of this paper is to present an inverse analysis model for seismic permanent deformation parameters of earth-rockfill dams based on artificial neural networks. Section 2 presents the theories of forward computational models for static analysis, dynamic response analysis, permanent deformation analysis, and sensitivity analysis of design parameters. Section 3 introduces backprorogation neural networks (BPNNs) and radial basis function neural networks (RBFNNs). Section 4 shows the performance of both ANNs. Finally, conclusions are made in Section 5. 
2. The Mathematical Model
2.1. Static Analysis
   Duncan and Chang’s E-B model [8] is used to simulate the mechanical behavior of the rockfill materials. It is a nonlinear elastic model with wide application and is characterized by seven parameters: cohesion 
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. The nonlinear stress-strain relation of rockfill is represented by a hyperbola, whose instantaneous slope is the tangent modulus 
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							The E-B model follows the Mohr-Coulomb criterion, and the wider the range of pressure involved the greater the curvature of the Mohr-Coulomb envelopes, since friction 
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2.2. Dynamic Analysis
  Equivalent linear elastic model [9] is used to simulate the dynamic properties of the earth-rock mixtures with two basic characteristics: nonlinearity and hysteresis. Soils have been deemed to be viscoelasticity in the model, and the dynamic stress-strain relationship is reflected with equivalent shear modulus 
	
		
			

				𝐺
			

		
	
 and equivalent damping ratio 
	
		
			

				𝜆
			

		
	
. The key of the model is to determine the relation between maximum dynamic shear modulus 
	
		
			

				𝐺
			

			
				m
				a
				x
			

		
	
 and mean effective principal stress 
	
		
			

				𝜎
			

			

				0
			

		
	
, as well as the variation of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			

				𝜆
			

		
	
 along with the amplitude of dynamic shear strain. Based on a large number of experiments conducted by China Institute of Water Resources and Hydropower Research (IWHR), maximum dynamic shear modulus 
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The effects of hydrodynamic pressure have to be considered when analyzing the dynamic interaction between dam and water in reservoir, since reservoirs may not always operate at a low water level during an earthquake. An ideal way to consider the effects is to divide finite element grids regarding the water and dam body as a whole, and interface element is utilized between contacting surfaces. However, it requires the computer with sufficient memory for the process and is very time consuming. Besides, stiffness coefficient of the interface element is hard to determine. So the additional mass method has been widely used so far. The effects of dynamic water pressure on seismic response of the dam are taken into account with the equivalent additional mass, and the dynamic analysis is done by adding the equivalent mass and the mass of the dam itself.
 In this paper, equivalent additional mass is calculated by the lumped-mass method. The equivalent additional mass focusing on node 
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2.3. Permanent Deformation Analysis
2.3.1. The Model of Permanent Deformation 
   There have been several models for permanent deformation calculation at present, such as IWHR model [11], Debouchure model, Shen Zhujiang model [12], and improved models about them [13, 14], among which Shen Zhujiang model owns the broadest application so that the model is expressed in an incremental form, and permanent deformations in various conditions including different vibrations, dynamic shear strain, and stress levels can be calculated with only a set of parameters. Compared with the other models, Shen Zhujiang model not only has a consideration on both shearing deformation and volume deformation, but also is easier to use. Residual volumetric strain 
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However, studies in recent years have suggested that the deformations calculated by Shen Zhujiang model are larger than actual performance, and it is adverse to an accurate evaluation of the seismic behavior of faced rockfill dams. So it is necessary to appropriately improve the model. Zou Degao focused on the influence of stress level on the residual shear deformation and presented an improved model based on a large number of cycle triaxial experiments [13]. When the earthquake-induced permanent deformations are calculated with FEM, the improved model can be expressed as an incremental form as follows:         
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2.3.2. The Method of Permanent Deformation Analysis
   The major ways of overall seismic deformation analysis are based on the method of equivalent nodal force and modulus soften model [15] now. The calculation process of modulus soften model is relatively complicated, so the method of equivalent nodal force is a better choice for the permanent deformation analysis; the ideal about it is that the residual strain during an earthquake is determined firstly by an empirical formula, then the residual strain is converted to equivalent node force of finite elements, and the contributions of residual strain to the dam are replaced by the displacement calculated with the equivalent nodal force. The procedure comprises the following three steps.(1)Perform static calculation for the dam with midpoint incremental method, to get the initial static stress 
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.(2)Perform dynamical calculation through the approach on the basis of equivalent linear viscoelastic model, to get the dynamic stress of soil, then convert the dynamic stress to stress state in laboratory, and get residual strain potential 
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3. Permanent Deformation Parameters Inversion Using Artificial Neural Networks
3.1. BP Neural Networks
   For a BPNN with a structure 
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Figure 1: Structure of BP neutral network.


   The weights were estimated and adjusted in the learning process with an aim of minimizing an error function 
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3.2. RBF Neural Networks 
   RBFNN is a kind of feedforward neural network and generally consists of three components: input layer, hidden layer, and output layer. Figure 2 displays an RBF network with a structure 
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; one common function is the Gaussian function:           
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							where 
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 is spread constant, the role of which is to adjust sensitivity of the Gaussian function.  


	
	
		
	
	
	
	
	
	
		
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
		
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	

Figure 2: Structure of RBF neutral network.


The final output of unit 
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 can be expressed as                
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							where 
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 is the weight of output layer and 
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				𝑗
			

		
	
 is spread constant of the base function.
3.3. Sample Set Designs
The prediction accuracy of neural networks is determined by sample quality to some extent, the samples used for inversion have to be accurate and balanced, so as to be representative enough, and it is better to reflect inner characters of the model system. In this paper, the methods of central composite design [16] and orthogonal design are utilized to design samples. The central composite design was presented by Box and Wilson. It consists of the following three parts: a full factorial or fractional factorial design, a central point, and an additional design, often a star design in which experimental points are at a distance 
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 from its center. Figure 3 illustrates the full central composite design for optimization of three variables. Full uniformly rotatable central composite designs present the following characteristics:(1)require an experiment number according to 
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. For two, three, and four variables, it equals 1.41, 1.68, and 2.00, respectively.(3)All factors are studied in five levels 
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Figure 3: Central composite design schemes for three factors.


As a result, samples designed by both methods embody not only inner but also outer conditions of the cube within certain realms, and they have good density distribution and representativeness. 




3.4. Parameter Sensitivity Analysis 
Sensitivity analysis can estimate the influence of parameter variation on outputs and make us have a more intuitive understanding about the parameters to be considered. Morris method [17] was more applied in sensitivity analysis. It figured out the influence of arguments on the dependent variable through disturbing a parameter and keeping the others the same. The corrected Morris method changed arguments at a fixed step size, calculated the value of influence in each condition, and then took the average like this:        
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							where 
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 is the sensitivity factor, 
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 is the output of condition 
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, 
	
		
			

				𝑌
			

			

				0
			

		
	
 is the output derived from the initial parameters, 
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 is the percentage of parameter variations in condition 
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 compared to the initial parameters, and 
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 is the number of conditions.
4. Example Analysis
4.1. Brief Introduction to the Project 
The Zipingpu dam is located in a valley, 9 km away in northwest from the Chengdu City, Sichuan province. It is one of the high CFRDs more than 150 m in China, with a maximum height of 156 m and the crest length 663.77 m. It encountered the Sichuan 8.0-magnitude earthquake which was higher than its actual design level. The dam body emerged obvious damage, and it provided rich and precious materials [18, 19] for earthquake engineering research on CFRDs.
4.2. Results of Static Calculation 
Static parameters were directly selected from the experimental results coming from the IWHR, considering as well the results from Professor Zhu Cheng who partly backanalyzed the parameters of the project by immune genetic algorithm. Integrating both results, the parameters of rockfill were determined in Table 1. Besides, the linear elastic model was adopted for the calculation of concrete panels, concrete strength grade was 
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25, and the corresponding material parameters were density 
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MPa, Poisson’s ratio 
	
		
			
				𝜇
				=
				0
				.
				1
				6
				7
			

		
	
.
Table 1: The principal parameters for static calculation.
	

	Material  zoning	
	
		
			

				𝜌
			

		
	
 (kg/m3)	
	
		
			

				𝜑
			

		
	
 (°)	
	
		
			
				Δ
				𝜑
			

		
	
 (°)	
	
		
			

				𝑅
			

			

				𝑓
			

		
	
	
	
		
			

				𝐾
			

		
	
	
	
		
			

				𝑛
			

		
	
	
	
		
			

				𝐾
			

			

				𝑏
			

		
	
	
	
		
			

				𝑚
			

		
	

	

	Cushion layer	2300	57.51	10.65	0.84	1274	0.44	1260	−0.026
	Transition layer	2250	57.63	11.44	0.75	1153	0.38	1085	−0.089
	Main rockfill	2160	55.39	10.60	0.75	1120	0.32	490	0.12
	Secondary rockfill	2150	55.39	10.60	0.71	1033	0.38	338	0.03
	Covering layer	2150	49.00	10.00	0.80	820	0.40	430	0.25
	



To simulate the process of construction and impoundment of the CFRD, midpoint incremental method and multistage loading process were used in the calculations. The dam was meshed into 6772 finite elements with total 6846 nodes, as shown in Figure 4. And the main results of a typical cross-section in rockfill zone were shown as in Figures 5 and 6, which were at operational water level before the earthquake.   


	
		
			
		
		
			
		
		
			
				
			
		
	
	
	
	
	
		
	
	
	
	
	
	
		
	
	
	
		
			
		
		
			
		
		
			
		
			
		
			
	
	
		
	

Figure 4: 3D mesh of the dam for calculation.




	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
	

Figure 5: Continuous contours of vertical displacement of the dam before earthquake (m).




	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
	
	
	
	
	
	
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
	
	
		
	
	
		
	

Figure 6: Continuous contours of major stress of the dam before earthquake (MPa).


4.3. Results of Dynamic Calculation
Due to influence of all kinds of factors, Zipingpu dam had no acceleration recordings of the actual principle shock of base rock. According to analysis [20, 21] of many scholars, the actual input ground motion was likely to be more than 0.5 g. Referring to the attenuation relationship [22] given by Yu et al., and considering the hanging wall and footwall effects, Professor