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Abstract. 
The steady mixed convection flow towards an impermeable vertical plate with a convective surface boundary condition is investigated. The governing partial differential equations are first reduced to ordinary differential equations using a similarity transformation, before being solved numerically. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Both assisting and opposing flows are considered. The results indicate that dual solutions exist for the opposing flow, whereas for the assisting flow, the solution is unique. Moreover, increasing the convective parameter is to increase the skin friction coefficient and the heat transfer rate at the surface.


1. Introduction 
The study of heat transfer of combined free and forced convection flow has attracted the interest of many researchers over the last few decades. Mixed convection flows are important when the buoyancy forces significantly affect the flow and the thermal fields due to the large temperature difference between the wall and the ambient fluid. One of the early investigations of mixed convection towards a vertical surface was made by Ramachandran et al. [1], who studied the two-dimensional stagnation flows considering both cases of arbitrary wall temperature and arbitrary surface heat flux variations. Ali and Al-Yousef [2] considered the laminar flow over a moving vertical surface with suction or injection when the buoyancy forces assist or oppose the flow. A similar problem was studied by Lin and Hoh [3], where, in addition, the flow also arises from the interaction of the flowing free stream. Partha et al. [4] studied the mixed convection from an exponentially stretching surface by considering the effect of buoyancy and viscous dissipation. Some other related works can also be found in the papers by Chen [5], Ali [6, 7], Ishak [8], Bachok et al. [9], and Lok et al. [10].
The aim of this paper is to study the two-dimensional mixed convection flow on a vertical plate with a convective surface boundary condition. The boundary layer flow concerning a convective boundary condition for the Blasius flow has been discussed by Aziz [11]. Bataller [12] investigated a similar problem by considering radiation effects on the Blasius and Sakiadis flows. The effects of suction and injection on a similar problem has been studied by Ishak [13], while Yao et al. [14] studied the flow and heat transfer characteristics of a generalized stretching/shrinking wall with convective boundary conditions. Recently, Merkin and Pop [15] studied the forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition. 
In the present paper, the governing equations are transformed into a system of nonlinear ordinary differential equations, which are then solved numerically. Representative results for the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number, which represents the heat transfer rate at the surface, are presented for some values of the governing parameters. 
2. Problem Formulation
Consider a two-dimensional steady boundary layer flow towards a vertical plate immersed in a viscous fluid of ambient temperature 
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				𝑇
			

			

				𝑓
			

		
	
, which provides a heat transfer coefficient 
	
		
			

				ℎ
			

			

				𝑓
			

		
	
. Under the Boussinesq and boundary layer approximations, the governing equations are
						
	
 		
 			
				(
				2
				.
				1
				)
			
 			
				(
				2
				.
				2
				)
			
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝜕
				𝑢
			

			
				
			
			
				+
				𝜕
				𝑥
				𝜕
				𝑣
			

			
				
			
			
				𝑢
				𝜕
				𝑦
				=
				0
				,
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
				+
				𝑣
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑦
				=
				𝑢
			

			

				𝑒
			

			
				𝑑
				𝑢
			

			

				𝑒
			

			
				
			
			
				𝜕
				𝑑
				𝑥
				+
				𝜈
			

			

				2
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑦
			

			

				2
			

			
				
				+
				𝑔
				𝛽
				𝑇
				−
				𝑇
			

			

				∞
			

			
				
				,
				𝑢
				𝜕
				𝑇
			

			
				
			
			
				𝜕
				𝑥
				+
				𝑣
				𝜕
				𝑇
			

			
				
			
			
				𝜕
				𝜕
				𝑦
				=
				𝛼
			

			

				2
			

			

				𝑇
			

			
				
			
			
				𝜕
				𝑦
			

			

				2
			

			

				,
			

		
	

					where 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 are the velocity components along the 
	
		
			

				𝑥
			

		
	
-  and  
	
		
			

				𝑦
			

		
	
-directions, respectively, 
	
		
			

				𝑇
			

		
	
  is the fluid temperature in the boundary layer,  
	
		
			

				𝑔
			

		
	
  is the acceleration due to gravity, 
	
		
			

				𝛼
			

		
	
 is the thermal diffusivity, 
	
		
			

				𝛽
			

		
	
 is the thermal expansion coefficient, and 
	
		
			

				𝜈
			

		
	
 is the kinematic viscosity. The boundary conditions may be written as (Aziz [11])
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In order to solve (2.1)–(2.3) subject to the boundary conditions in (2.4), we introduce the following similarity transformation (see Aziz [11] and Ishak [13]):  
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In (2.8), 
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3. Numerical Method
The system of boundary value problem (BVP) of (2.6)–(2.8) was solved numerically via the shooting technique [16–21] by converting it into an equivalent initial value problem (IVP). In this technique, we choose a suitable finite value of 
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4. Results and Discussion
The nonlinear ordinary differential equations (2.6) and (2.7) subject to the boundary conditions in (2.8) were solved numerically for some values of Prandtl number Pr, convective parameter 
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 for which the solutions exist. It should be mentioned that the computations have been performed until the point where the solution does not converge, and the calculations were terminated at this location. It is worth mentioning that the existence of dual solutions in the mixed convection problems was also reported by Ramachandran et al. [1], Bachok et al. [9, 21], Lok et al. [10], Bhattacharyya and Layek [18], Bhattacharyya et al. [19], Afzal and Hussain [22], and Ishak et al. [23–26], among others.















	
	
		
	
	
		
	
	
		
	



	
		
			
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	




	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
	
	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	


	
		
			
		
		
			
			
		
		
			
		
		
			
		
		
			
		
	


	
		
			
			
		
		
			
		
		
			
			
			
			
			
			
			
			
			
			
		
	

Figure 1: Variation of the skin friction coefficient 
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Figure 2: Velocity profiles 
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Figure 3: Variation of the heat transfer rate at the surface 
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Figure 4: Temperature profiles 
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It is evident from Figures 2 and 4 that an increase in the Prandtl number results in an increase in both the skin friction coefficient and the local Nusselt number. This is because a higher Prandtl number fluid has a relatively low thermal conductivity, and thereby it reduces the thermal boundary layer thickness and in consequence increases the heat transfer rate at the surface (Char [27]). Moreover, the fluid on the right side of the plate is heated up by the hot fluid on the left surface of the plate, making it lighter and flow faster. These figures also show that the far-field boundary conditions (2.8) are satisfied asymptotically and hence support the validity of the numerical results obtained, besides supporting the existence of the dual solutions shown in Figures 1 and 3. It is interesting to note that from Figure 1, all curves intersect at 
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Figures 5 and 6, respectively, present the velocity and temperature distributions for some values of buoyancy parameter 
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 when Pr = 1. It is obvious that the first solutions display a thinner boundary layer thickness compared to the second solutions. The effect of convective parameter 
	
		
			

				𝛾
			

		
	
 on the velocity and temperature profiles of the impermeable plate when 
	
		
			

				𝜆
			

		
	
 and Pr are set to unity can be seen in Figures 7 and 8, respectively. It is observed that a larger value of convective parameter 
	
		
			

				𝛾
			

		
	
  produces a higher velocity and temperature gradients at the surface and therefore increasing the surface shear stress and the heat transfer rate at the surface. The temperature profiles are found to be qualitatively agreeing with those obtained by Aziz [11], who considered the boundary layer over a flat plate, and by Ishak [13], who reported the heat transfer over a static permeable flat plate. As reported by Aziz [11], the parameter 
	
		
			

				𝛾
			

		
	
  at any location 
	
		
			

				𝑥
			

		
	
 is proportional to the heat transfer coefficient associated with the hot fluid  
	
		
			

				ℎ
			

			

				𝑓
			

		
	
. The thermal resistance on the hot fluid side is inversely proportional to 
	
		
			

				ℎ
			

			

				𝑓
			

		
	
. Therefore, the hot fluid side convection resistance decreases as 
	
		
			

				𝜆
			

		
	
 increases, and hence the surface temperature 
	
		
			
				𝜃
				(
				0
				)
			

		
	
 increases.


	
	


	










	
		
















	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
	


	
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	


	


	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	




	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	

Figure 5: Velocity profiles 
	
		
			

				𝑓
			

			

				
			

			
				(
				𝜂
				)
			

		
	
 for some values of the buoyancy parameter 
	
		
			

				𝜆
			

		
	
 when  
	
		
			
				𝛾
				=
				1
			

		
	
  and 
	
		
			
				P
				r
				=
				1
			

		
	
.




	
	


	










	
		


	











	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	
	
		
	
	
		
	
	
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	




	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	

Figure 6: Temperature profiles 
	
		
			
				𝜃
				(
				𝜂
				)
			

		
	
 for some values of the buoyancy parameter 
	
		
			

				𝜆
			

		
	
  when 
	
		
			
				𝛾
				=
				1
			

		
	
 and 
	
		
			
				P
				r
				=
				1
			

		
	
.




	














	








	
		
			
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
	


	
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	


	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	

Figure 7: Velocity profiles 
	
		
			

				𝑓
			

			

				
			

			
				(
				𝜂
				)
			

		
	
 for some values of  
	
		
			

				𝛾
			

		
	
  when 
	
		
			
				P
				r
				=
				1
			

		
	
 and  
	
		
			
				𝜆
				=
				1
			

		
	
.




	














	











	
		
			
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	
	
		
	
	
		
	
	
		
	

Figure 8: Temperature profiles 
	
		
			
				𝜃
				(
				𝜂
				)
			

		
	
 for some values of 
	
		
			

				𝛾
			

		
	
  when 
	
		
			
				P
				r
				=
				1
			

		
	
  and  
	
		
			
				𝜆
				=
				1
			

		
	
.


5. Conclusions
In this paper, the mixed convection boundary layer flow over an impermeable vertical plate with a convective surface boundary condition was studied. Similarity solutions for the flow and the thermal fields were obtained when the convective heat transfer from the left side of the plate is proportional to 
	
		
			

				𝑥
			

			
				−
				1
				/
				4
			

		
	
, where 
	
		
			

				𝑥
			

		
	
 is the distance from the leading edge. Using a numerical technique, the transformed governing equations were then solved to obtain the skin friction coefficient and the heat transfer rate at the surface as well as the velocity and temperature distributions for various values of the governing parameters, namely, Prandtl number Pr, buoyancy parameter 
	
		
			

				𝜆
			

		
	
, and convective parameter 
	
		
			

				𝛾
			

		
	
. It was found that both the skin friction coefficient and the heat transfer rate at the surface increase as 
	
		
			

				𝜆
			

		
	
 increases for the selected values of Pr for the assisting flow 
	
		
			
				(
				𝜆
				>
				0
				)
			

		
	
, while dual solutions were found to exist for the opposing flow 
	
		
			
				(
				𝜆
				<
				0
				)
			

		
	
. Moreover, higher values of 
	
		
			

				𝛾
			

		
	
 contribute to an increase in both the skin friction coefficient and the heat transfer rate at the surface. 
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