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Abstract. 
Most current studies of neuronal activity dynamics in cortex are based on network models with completely random wiring. Such models are chosen for mathematical convenience, rather than biological grounds, and additionally reflect the
notorious lack of knowledge about the neuroanatomical microstructure. Here, we describe some families of new, more realistic network models and explore some of their properties. Specifically, we consider spatially embedded networks and impose specific distance-dependent connectivity profiles. Each of these network models can cover the range from purely local to completely random connectivity, controlled by a single parameter. Stochastic graph theory is then used to describe and analyze the structure and the topology of these networks.


1. Introduction
The architecture of any network can be an essential determinant of its respective function. Signal processing in the brain, for example, relies on a large number of mutually connected neurons that establish a complex network [1]. Since the seminal work of Ramón y Cajal more than a hundred years ago, enormous efforts have been put into uncovering the microcircuitry of the various parts of the brain, including the neocortex [2–6]. On the level of networks, however, our knowledge is still quite fragmentary, rendering computational network models for cortical function notoriously underdetermined.
Networks with a probabilistically defined structure represent, from a modeler’s perspective, a viable method to deal with this lack of detailed knowledge concerning cell-to-cell connections [7]. In such models, data from statistical neuroanatomy (e.g., coupling probabilities) are directly used to define ensembles of networks where only few parameters are needed to define relatively complex network structures. Properties that all members of such a statistical ensemble have in common are then regarded as “generic” for this type of network.
Random graphs [8, 9] and more general stochastic graph models have been mathematically analyzed in great detail. The main motivation was that striking threshold behavior and phase transitions could be observed when certain parameters of such systems were varied. Recently the theory of “complex networks” began to raise even more interest as it was discovered that real-world networks of very different nature (e.g., social networks, the Internet, and metabolic networks) share a number of universal properties [10–12]. Applications to large-scale brain organization were among the earliest applications of the new concepts [13–15]. Here, we suggest to import some of the ideas and methods that came up in the abstract theory of complex networks and apply them to neuronal networks at a cellular level (Figure 1). Specifically, we provide several parametric models for spatially embedded networks. These models allow us to synthesize biologically realistic networks with controlled statistical properties, which serve as candidate models for cortical networks. Providing such models supports the joint structural analysis of synthetic and biological networks. 





	
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
	
	
		
			
		
		
			
		
		
			
		
		
			
	
	
		
			
		
		
			
		
		
			
				
			
		
	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
	
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
		
			
		
		
			
		
		
		
			
		
			
		
			
	
	
		
		
		
		
		
		
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
	
	
		
		
		
		
		
		
	
	
		
	
	
		
		
		
		
	
	
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
	
	
		
		
		
		
	
	
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
	
	
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
	
	
		
		
		
		
	


Figure 1: Left: reconstruction of a pyramidal cell stained in a tangential slice of the rat neocortex (top view). Middle: schematic 2D section representing a spatially embedded network composed of locally (red lines) connected pyramidal cells (black triangles). Right: different types of abstract networks.


The graph-theoretic analysis of cortical networks raises the following problem: graphs usually do not deal with space (right part Figure 1), even though a spatial embedding of the physical network implicitly determines some of its properties. Horizontal wiring between cortical neurons, for example, exhibits a clear dependence on the distance of the involved cells, indicated by the left part of Figure 1. Many synaptic contacts are formed between close neighbors, in accordance with, and constrained by, the geometry of neuronal dendrites and local axons [16–18]. However, there is also an appreciable number of axons that travel for longer distances within the gray matter before making synaptic contacts with cells further away [6, 7, 19, 20]. Absolute numbers of local and nonlocal synaptic connections are still a matter of debate among neuroanatomists, and the same is true for the details of the spatial organisation of synaptic projections [1, 6, 7]. Here, we consider three different candidate network models, each representing one possible concept for the geometric layout of distance-dependent connectivity. The uncertainty concerning the ratio of local versus nonlocal synapses is reflected by the systematic variation of a suitable parameter in each model. Moreover, if spatial aspects are included in simulating and analyzing cortical network dynamics, neurons are commonly placed on the grid points of a regular lattice [21, 22]. Cortical neurons, however, are unlikely to be arranged in a crystal-like fashion [1], neither in three dimensions nor in a two-dimensional projection. 
Altogether, we face a spatially embedded and very sparsely connected network, where only a very small fraction of neuron pairs are synaptically coupled to each other directly. What is the impact of these general structural features of synaptic wiring in the cortex? Do these features matter in determining the global topology of the network? Sparse couplings save cable material, but they also constrain communication in the network. Can the sparsity, in principle, be overcome by smart circuit design? Likewise, admitting only neighborhood couplings saves cable length but increases the topological distance between nodes in the network, that is, the number of synapses engaged in transmitting a signal between remote neurons becomes quite large [23, 24]. On the other hand, allowing for distant projections reduces the topological distance, but it induces a higher consumption of wiring material. These wires occupy space that is clearly limited within the skull. Has cortex optimized its design by making use of such tricks? Here, we approach these and related biological questions by establishing suitable parametric families of stochastic network models and by exploring their properties numerically.
Preliminary results of this study have been presented previously in abstract form [25, 26].
2. Methods
We considered network models that comprised neurons with directed synaptic connections. Therefore, our cortical networks were represented by directed graphs 
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 (see Figure 2, middle). We did neither allow for autapses (self-coupling) nor for multiple synapses for any pair of neurons. Also, our choice of the adjacency matrix approach did not allow, at this point, to differentiate between excitatory and inhibitory synaptic contacts. Our networks were composed of 
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 possible links was realized in each particular network. These synaptic connections were established according to probabilistic rules common to all neurons. In general, the expected number of both incoming and outgoing synapses was fixed to 
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; see Table 1. The same distribution for incoming 
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 links, respectively, held for all nodes. However, in any specific network realization, each node had random in- and out-degrees. Along the same lines, all other network properties assumed random values if computed from individual networks. To obtain characteristic mean values, we generated 20 independent realizations for each type of network and calculated the corresponding averages and the standard errors of the means (SEM).
Table 1: List of randomness parameters used to construct the spatially embedded RPNs. 
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 is the rewiring probability for the SW model, 
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 describe range and probability of connectivity in the FN model, and 
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 are the parameters for the adjusted GN networks.
	

	  SW: 
	
		
			

				𝜙
			

		
	
	 0	 0.01	 0.02	 0.05	 0.1	 0.2	 0.5	 0.8	 1
	 FN: 
	
		
			

				𝑝
			

		
	
	 1	 0.99	 0.98	 0.95	 0.9	 0.8	 0.5	 0.2	 0.01
	 FN: 
	
		
			

				𝑟
			

		
	
	 0.0611	 0.0614	 0.0617	 0.0627	 0.0644	 0.0683	 0.0864	 0.1366	 0.5 
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 (FN, LPN)	 12	 —	 11.76	 11.4	 10.8	 10.2	 12.00	 12.00	 11.9 
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	 1	 —	 —	 0.95	 0.9	 0.8	 0.5	 0.2	 0.05
	 GN: 
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	 0.0432	 —	 —	 0.0443	 0.0455	 0.0483	 0.061	 0.0965	 0.197
	








	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
		
			
		
		
			
		
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	








	
		
			
		
		
			
		
		
	
	
		
	
	
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	








	
		
		
			
				
			
			
				
			
			
		
	


	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
		
		
			
		
		
			
	
	
	
		
			
		
		
			
		
		
			
	
	
	
		
	
	
		
	
	
		
	



Figure 2: Left: simple ring graph composed of 6 nodes. Middle: the corresponding adjacency matrix. Right: scheme describing the construction of spatially embedded networks with distance-dependent connectivity. Each node (red dots) has a connectivity disk (filled circle); blue arrows indicate periodic boundary conditions (torus topology).


2.1. Spatially Embedded Graphs
Each neuron was situated in a quadratic domain of extent 
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, wrapped to a torus to avoid boundary effects (see Figure 2, right). We considered the following two types of 2D spatially embedded networks, random position networks (RPNs), and lattice position networks (LPNs). In RPNs, the positions of all nodes were drawn independently from the same uniform probability distribution. In LPNs, the nodes were placed on the grid points of a rectangular lattice. For a comparison, we also analyzed the corresponding 1D ring graphs.
In a network with no long-range connections, nodes placed within a circular neighborhood of radius 
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. This neighborhood consisted of 8 nearest neighbors and 4 additional next-to-nearest neighbors, compatible with 
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 for all networks considered in this study.
We considered the following three families of networks, each spanning the full range from regular to random connectivity.(i)Fuzzy neighborhood (FN) network: this model assumed uniform connectivity of probability 
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 within a circular neighborhood of radius 
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. No connections were established with nodes further away. Starting from a symmetric adjacency matrix 
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.(ii)Small-world- (SW-) like network: again starting from 
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, we applied a rewiring procedure in order to introduce long-range links, that is, connections spanning larger distances than 
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. Each individual link of the graph was, with probability 
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, replaced by a randomly selected one. For 
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 we again ended up with a completely random graph.(iii)Gaussian neighborhood (GN) network: Gaussian profiles were used to define a smooth distance-dependent connection probability, adjusted to the connectivity parameters of the FN networks. The corresponding parameter pairs were 
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 was the width of the Gaussian profile used. For technical reasons, we confined our investigation here to RPN models. In contrast to the FN and SW models, the initial adjacency matrix 
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 was nonsymmetrical. Motivated by neuroanatomical data [16], GN models represent a biologically more realistic connectivity model.
2.2. Characteristic Network Properties
The following descriptors were used to characterize and compare the network models described above. Most quantities are well established in the context of graph theory (see, eg., [10, 11]).
(a) Degree distributions and correlations: counting incoming and outgoing links for each node of a graph yield an estimate of the distribution of in-degrees 
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, respectively. Here, we only used the out-degree for analysis. The two-node degree correlation 
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 describes out-degree correlations between connected nodes 
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. In addition, to account for the spatial embedding aspect of our graphs, we considered histograms of the number of links between any two nodes depending on their spatial distance.
(b) Small-world characteristics: the cluster coefficient describes the probability that two nodes, both connected to a common third node, are also directly linked to each other. Let 
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 for all pairs of distinct nodes, referred to as “characteristic” path length. If delays in a neuronal network are mainly generated by synaptic and dendritic integration times, 
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 together constitute the so-called small-world characteristics [10–12].
(c) Wiring length: since we deal with spatially embedded networks, any pair of nodes 
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.
(d) Eigenvalues and eigenvectors: for any graph 
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 imply that it is more uniformly spread over the whole domain (see Figure 3 (bottom-right)). For comparison, we also considered two other measures, the entropy 
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 is assumed if the mass is concentrated in one point in space. As the circular variance, both measures were used to asses the spatial concentration of eigenfunctions. Figure 3 shows four sample eigenvectors arising from different networks, with the corresponding values for the three locality measures indicated above each plot.





	
		
			
		
		
			
		
		
			
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
	
	
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
	








	
		
			
		
		
			
		
		
			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
	
	
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
		
	








	
		
			
		
		
			
		
		
			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
	








	
		
			
		
		
			
		
		
			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
