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The Hotelling T2 statistic is themost popular statistic used inmultivariate control charts to monitor
multiple qualities. However, this statistic is easily affected by the existence of more than one outlier
in the data set. To rectify this problem, robust control charts, which are based on the minimum
volume ellipsoid and theminimum covariance determinant, have been proposed.Most researchers
assess the performance of multivariate control charts based on the number of signals without
payingmuch attention to whether those signals are really outliers. With due respect, we propose to
evaluate control charts not only based on the number of detected outliers but also with respect to
their correct positions. In this paper, an Upper Control Limit based on the median and the median
absolute deviation is also proposed. The results of this study signify that the proposed Upper Con-
trol Limit improves the detection of correct outliers but that it suffers from a swamping effect when
the positions of outliers are not taken into consideration. Finally, a robust control chart based on the
diagnostic robust generalised potential procedure is introduced to remedy this drawback.

1. Introduction

In statistical quality control, a process changes into an out-of-control situation when outliers
appear in two different ways, namely, outliers that are randomly distributed within a data
set and outliers that sequentially occur after a specific observation during a specific period of
time in the data set. The former and the latter situations are referred to as scatter outliers and
a sustained step shift, respectively, [1–4].

The detection of correct outliers in phase I of the monitoring scheme is crucial. If
outliers are not correctly detected, the result leads to model misspecification and to incorrect
results during phase II [5]. The Hotelling T2 statistic, which was first introduced byHotelling
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in [6], is the most popular statistic used in multivariate control charts to monitor multiple
quality characteristics [7–11].

Vargas [12] demonstrated that a T2 statistic based on the usual classical estimators
fails to detect multiple scatter outliers for individual observations (n = 1), although this
statistic is effective in the presence of a small number of outliers. It is now evident that the
Hotelling T2 statistic, which is based on the usual classical sample mean vector and variance-
covariance matrix, is easily affected by the existence of more than one outlier in the HDS
(Historical Data Set). In addition, the T2 statistic suffers from a masking or swamping effect
[13, 14]. Sullivan and Woodall [10] showed that the T2 statistic based on the usual sample
variance-covariance matrix for individual observations is not only less effective in detecting
scatter outliers in the HDS but also poor in sustained step shifts in the mean vector.

Robust methods for multivariate data, based on the MVE andMCD, have been widely
used in regression contexts for diagnosing influential observations and high leverage points
and outliers [14, 15] but have only recently been applied to multivariate quality control
process applications. Vargas [12] employed the minimum volume ellipsoid (MVE) and the
minimum covariance determinant (MCD) as two robust estimates of location and disper-
sion [16], instead of the usual classical sample mean vector and covariance matrix in the
Hotelling T2 statistic. The application of robust control charts for individual observations
based on the MVE and MCD has also been discussed extensively by Jensen et al. [17]. It is
worth mentioning that there is no guarantee that the mathematical distribution of the T2

statistic is preserved by replacing the location and scale estimators with robust versions. To
remedy this problem, Vargas [12] and Jensen et al. [17] used an empirical distribution of the
robust T2 statistic for calculating the emprical upper control limits (UCLs) of their proposed
robust control charts.

We have seen the application of MVE andMCDmethods in the development of robust
control charts. Other methods such as outlier identification in high dimensions [18] and some
proposed multivariate outlier detection techniques [19]may also be considered in the control
process applications. Our main aim in this paper is to propose a robust multivariate control
chart based on the diagnostic robust generalised potential (DRGP), which was initiated by
Habshah et al. [20]. This is the first attempt to introduce another robust control chart as an
alternative to the two existing robust MVE-based and MCD-based control charts. Hence, our
focus in this paper is only limited to the DRGP-based control chart and compare its per-
formance with the two preceding charts. We do not wish to compare these charts with other
charts based on other methods mentioned in Wilcox [19] and Filzmoser et al. [18].

Vargas [12] and Jensen et al. [17] evaluated the performance of each control chart
based on the number of detected outliers, regardless of whether they came from a correct
outlier positions. In other words, their work is only devoted to the detection of outliers
regardless of whether the outliers are true (correct outlier position) or false outliers. Their
work has motivated us to consider the identification of correct outliers when evaluating dif-
ferent control charts. In this regard, we introduce another empirical method for calculating
the UCLs of the robust T2 statistic based on the median and the MAD of the estimators.

2. Diagnostics for the Identification of High Leverage Points

High leverage points are a type of influential observation that is substantially different for one
ormore predictor variables [21, 22]. It is now evident that high leverage points are responsible
for leading to model misspecifications and misleading results [23–25].
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There are some methods in the literature for identifying high leverage points in linear
regression models [14, 22, 25–28]. The ith diagonal elements of hat matrix H are referred to
as leverage points and are denoted by

hii = vT
i

(
V TV

)
vi, i = 1, 2, . . . , m, (2.1)

where V is an m × k matrix of predictor variables of regression model. Hoaglin and Welsch
[29] considered observations to be high leverage points when hii are greater than 2k/m. Hadi
[30] introduced anothermeasure to diagnose high leverage points, which is known as “poten-
tial measures.” According to Hadi [30], the ith potential is defined as follows:

pii = vT
i

(
V T
(i)V(i)

)−1
vi, (2.2)

where V(i) is the data matrix with its ith row deleted. By using simple matrix algebra, it is easy
to obtain a relationship between the potentials and the diagonal elements of H, as follows:

pii =
hii

1 − hii
. (2.3)

Hadi [30] suggested a confidence bound cutoff point for pii as follows:

Median
(
pii

)
+ cMAD

(
pii

)
, (2.4)

where MAD(pii) = Median{|pii −Median(pii)|}/0.6745 and c is a constant that is chosen bet-
ween 2 or 3, as appropriate. Robust version of the Mahalanobis distance is also being used
to identify high leverage points [14, 18, 20]. Habshah et al. [20] pointed out that although
these robust diagnostic techniques can rectify the masking problem, they are affected by the
swamping effect, which is not desirable either.

To remedy this problem, Habshah et al. [20] proposed a unified approach, which is
called the diagnostic robust generalised potential (DRGP)methodwhich accommodates both
the diagnostic and robust approaches together. The robust approach is utilised to detect the
suspected high leverage points and then diagnostic approach is utilised to confirm our sus-
picion. The DRGP partitions the data into two sets. The first set consists of suspicious cases,
which are deleted from the original observations (denoted byD), and the second set contains
the remaining data (denoted by R). It is clear that if d is the number of cases that includes
D, then the R set contains m − d observations and d < m − k. Without loss of generality, we
assume that d cases are placed in the last d rows of Y and V so that the hat matrix is par-
titioned and that the ith deletion leverage is defined as follows:

h
(−D)
ii = vT

i

(
V T
R VR

)−1
vi, (2.5)
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where VR indicates the remaining observation matrix [31]. By considering (2.2), (2.3) and
(2.5), the generalised potential is defined as follows:

p∗ii =

⎧
⎪⎪⎨
⎪⎪⎩

h
(−D)
ii

1 − h
(−D)
ii

for i ∈ R

h
(−D)
ii for i ∈ D.

(2.6)

Similar to the potential values and with regard to (2.4), the cutoff point for p∗ii is

Median
(
p∗ii

)
+ cMAD

(
p∗ii

)
. (2.7)

It is worth mentioning that the DRGP employs the robust Mahalanobis distance in the
first step to detect high leverage points as preliminary suspicious observations; these points
are placed in the D set. Next, in the second step, only the cases that are greater than (2.7)
are reported as the final detections. In the next section, the DRGP is employed to effectively
detect outliers in multivariate quality control charts for individual observations.

3. Multivariate Robust T 2 Control Charts

Suppose that there is an HDS in the phase I monitoring scheme that consists of m time-or-
dered observation vectors of dimension p, which are observed independently, where p is the
number of quality characteristics that are measured (p < m). It is assumed that each vector
comes from a p-variate normal distribution. Thus, if Xi ∈ R

p is a vector in the HDS for the ith
time period, Xi ∼ Np(μ,Σ), where μ and Σ are the population mean vector and the variance-
covariance matrix, respectively. As mentioned earlier, the Hotelling T2 statistic is used to
detect outliers in multivariate control charts. The general form of this statistic is

T2
i =

(
Xi − μ

)T −1∑(
Xi − μ

)
, i = 1, 2, . . . , m. (3.1)

Because the parameters in (3.1) are usually unknown, the usual sample mean and
variance-covariance matrix are used as the classical estimations of μ and Σ. In practice, these
variables are expressed by

X =
1
m

m∑
i=1

Xi,

S =
1

m − 1

m∑
i=1

(
Xi −X

)(
Xi −X

)T
.

(3.2)

In phase I, the parameters are retrospectively estimated based on the current HDS;
as a result, the vector Xi is not independent of the estimators X and S. In this situation,
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the statistical distribution of (3.1) is given as

T2 ∼
[
(m − 1)2

m

]
B

(
p

2
,
m − p − 1

2

)
, (3.3)

where B(p/2, (m− p − 1)/2) represents a beta distribution with parameters p/2 and (m− p −
1)/2 [8, 11]. From (3.3), the upper control limit (UCL) of T2 is ((m − 1)2/m)B(α, p/2, (m−p−
1)/2), where α is the probability of a false alarm for each point plotted on the control chart
and B(α, p/2, (m−p−1)/2) is the αth upper quantile of the beta distribution with parameters
p/2 and (m − p − 1)/2.

The lower control limit (LCL) is often set to zero [8, 32]. It should be noted that the
aforementioned UCLs are exact when applied to a single point in phase I, whereas phase I is
a retrospective analysis of all observations. Therefore, the values of α cannot be applied to a
set of points. In this situation, if all of the statistics were distributed independently, then the
overall probability of a false alarm would be

α′ = 1 − (1 − α)m, (3.4)

where α indicates the probability of a false alarm, which is assigned for each observation
plotted on the control chart in a subgroup of size m. In practice, it is reasonable to determine
the UCL by simulation to give a specified overall false alarm [5, 33, 34]. Hereafter, in this
paper, we still refer to the overall false, α′ as α for simplicity.

The use of (3.1) is not effective in the presence of multiple outliers, so robust alterna-
tives are proposed. In this regard, two of the recently proposed robust alternative approaches
to T2 are based on the MVE and the MCD estimators, which will be denoted by T2

mve and
T2
mcd, respectively, and are defined as follows:

T2
mve,i =

(
Xi −Xmve

)T
S−1
mve

(
Xi −Xmve

)2
, i = 1, 2, . . . , m, (3.5)

T2
mcd,i =

(
Xi −Xmcd

)T
S−1
mcd

(
Xi −Xmcd

)2
, i = 1, 2, . . . , m, (3.6)

where Xmve and Xmcd are the robust estimations of the sample mean and S−1
mve and S−1

mcd are
the corresponding estimators of the sample variance-covariance matrix. As previously men-
tioned in Section 1, due to the unknown distribution of T2

mve and T2
mcd, empirical methods

are used to determine the UCLs. The empirical simulated UCLs for (3.5) or (3.6) are usu-
ally determined by finding the αth upper quantile of the empirical distribution of the corre-
sponding statistic. For this situation, Jensen et al. [17] and Vargas [12] defined α as the overall
false alarm. Following the idea of Habshah et al. [20], another empirical UCL is proposed as
follows:

Median
(
T2
mve/mcd,i

)
+ cMAD

(
T2
mve/mcd,i

)
, (3.7)

where MAD is the median absolute deviation of either T2
mve,i or the T

2
mcd,i, as defined in (2.4).

For simplicity, the first empirical UCL is referred to as Empr, and the proposed UCL will be
denoted byMed-Mad. As will be shown later, (3.7) tends to declare too many observations as
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outliers, by detecting outliers regardless of whether the detected outliers are true (in a correct
outlier position) or false, even though (3.7) has a better performance in detecting real outliers
at their correct positions in the HDS than Empr UCL. In this regard, we propose to apply the
DRGP based on the MVE andMCDwith the Med-Mad UCLs to reduce the number of undue
signals caused by the detection of outliers irrespective of their correct positions and, at the
same time, to effectively detect correct outliers.

Vargas [12] and Jensen et al. [17] employed the probability of signals to evaluate and
compare control charts based on T2

mve and T2
mcd. Their work is only based on the number of

detections, without considering whether those detections are correct outliers. It is worth men-
tioning that the probability of signals cannot be properly judged if there is a swamping effect
in the monitoring scheme. In the following section, we will present our proposed control
scheme and explain how it can detect real outliers at their correct positions.

4. Simulation Study

In this section, a Monte Carlo simulation study is carried out to assess the performance of the
control schemes discussed previously. The simulation is designed based on three subsamples,
each of size m = 30, 50, and 100, with a number of characteristics p = 2, 3, 5, and 10. Let us
assume that the in-control process is a p-variate normal distribution with mean vector μ0 and
covariance matrix Σ.

The simulated empirical UCLs are obtained by generating 5000 in-control data sets for
each combination ofm and p. Due to the affine equivariant property of the T2 statistics, these
limits are applicable to any values of μ and Σ. Many researchers, such as Jensen et al. [17] and
Vargas [12], have determined the Empr UCLs by calculating all of the T2 statistics for each
observation in generated data sets of each subgroup of size m and recording the maximum
value of the T2 statistics. Subsequently, the upper αth percentile of the 5000 recorded maxi-
mum values of the T2 statistics is declared as the Empr UCL. In this manner, they defined α
as the overall false alarm. In this paper, we consider the probability of the overall false alarm,
which is equal to α = 0.05.

To make the overall false alarm of the control charts based on the Med-Mad UCLs
equivalent to Empr UCLs, which is equal to α = 0.05, the following steps are considered. The
Med-Mad UCLs are attained based on all m × 5000 values of the simulated T2 statistics. It is
worth mentioning here that, to keep the overall false alarm at α = 0.05, the probability of
a false alarm for each observation in each subgroup of size m is calculated based on (3.4).
Hence, to have the same overall false alarm, the values for c in (3.7) and for m = 30, 50, and
100 must be chosen as Φ−1

(0.002) � 2.88, Φ−1
(0.001) � 3, and Φ−1

(0.001) � 3, respectively. The Empr
and Med-Mad UCLs of T2, T2

mve, and T2
mcd for each combination of m and p are presented in

Table 1.
Then, a contaminated data set of size m in the p dimension is generated for different

values of the noncentrality parameter (ncp). The out-of-control process is a p-variate normal
distribution with the same covariance matrix but with a shifted mean vector of μ1. Thus, the
variation here remains stable. The magnitude of the shift is measured by a scalar defined as
follows:

(
μ1 − μ0

)TΣ−1(μ1 − μ0
)
. (4.1)
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Table 1: The simulated UCLs for all of the T2 statistics.

p m
Empirical upper control limit (UCL)

Empr Med-Mad
T2 T2

mve T2
mcd T2 T2

mve T2
mcd

2
30 10.561 24.351 58.812 5.501 6.080 8.796
50 12.302 21.042 34.615 5.666 6.289 7.967
100 14.124 20.478 24.441 5.680 6.314 7.145

3
30 12.202 29.028 108.530 7.995 8.606 13.204
50 13.976 25.145 50.430 8.266 8.883 11.985
100 16.503 23.011 30.371 8.278 8.967 10.425

5
30 14.950 49.371 319.625 11.969 12.780 20.501
50 17.581 33.792 111.725 12.482 13.160 19.823
100 20.054 28.448 41.639 12.639 13.366 16.142

10
30 20.033 80.693 1555.711 19.541 19.812 25.827
50 24.250 63.427 393.625 20.894 21.852 33.893
100 27.964 44.287 84.655 21.470 22.287 29.604

Table 2: The number of correctly detected outliers and the number of detected outliers for p = 2 andm = 30.

ε ncp Empr UCL Med-Mad UCL
T2 T2

mve T2
mcd T2 T2

mve T2
mcd

(5%) 2 outliers

5 0 (0) 0 (0) 0 (0) 1 (2) 1 (2) 1 (4)
15 0 (0) 1 (1) 0 (0) 1 (2) 2 (3) 2 (5)
25 1 (1) 1 (1) 1 (1) 2 (2) 2 (3) 2 (5)
35 1 (1) 2 (2) 1 (1) 2 (2) 2 (3) 2 (5)
45 1 (1) 2 (2) 1 (1) 2 (2) 2 (3) 2 (5)
55 1 (1) 2 (2) 2 (2) 2 (2) 2 (3) 2 (5)

(10%) 3 outliers

5 0 (0) 0 (0) 0 (0) 1 (2) 1 (2) 1 (4)
15 0 (0) 1 (1) 0 (0) 2 (2) 2 (4) 3 (5)
25 0 (0) 2 (2) 1 (1) 2 (3) 3 (4) 3 (6)
35 0 (0) 2 (2) 1 (1) 2 (3) 3 (4) 3 (6)
45 0 (0) 3 (3) 2 (2) 3 (3) 3 (4) 3 (6)
55 0 (0) 3 (3) 2 (2) 3 (3) 3 (4) 3 (6)

(15%) 5 outliers

5 0 (0) 0 (0) 0 (0) 1 (2) 1 (2) 2 (4)
15 0 (0) 1 (1) 0 (0) 1 (2) 3 (4) 4 (6)
25 0 (0) 2 (2) 1 (1) 2 (2) 4 (5) 5 (7)
35 0 (0) 4 (4) 2 (2) 2 (2) 5 (5) 5 (7)
45 0 (0) 4 (4) 3 (3) 2 (2) 5 (5) 5 (7)
55 0 (0) 5 (5) 4 (4) 2 (2) 5 (5) 5 (7)

(20%) 6 outliers

5 0 (0) 0 (0) 0 (0) 1 (1) 1 (3) 2 (5)
15 0 (0) 1 (1) 1 (1) 1 (2) 3 (4) 5 (7)
25 0 (0) 3 (3) 1 (1) 1 (2) 5 (6) 6 (7)
35 0 (0) 4 (4) 2 (2) 1 (2) 6 (6) 6 (7)
45 0 (0) 5 (5) 3 (3) 1 (2) 6 (7) 6 (7)
55 0 (0) 6 (6) 4 (4) 1 (2) 6 (7) 6 (8)

This measure is called the noncentrality parameter and is hereafter referred to as ncp.
Four outlier percentage levels are considered, which are denoted by ε = 5%, 10%, 15%, and
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Table 3: The number of correctly detected outliers and the number of detected outliers for p = 2 andm = 50.

ε ncp Empr UCL Med-Mad UCL
T2 T2

mve T2
mcd T2 T2

mve T2
mcd

(5%) 3 outliers

5 0 (0) 0 (0) 0 (0) 1 (3) 1 (4) 1 (5)
15 0 (0) 1 (1) 1 (1) 2 (4) 3 (5) 3 (6)
25 1 (1) 2 (2) 2 (2) 3 (4) 3 (5) 3 (6)
35 1 (1) 3 (3) 2 (2) 3 (4) 3 (6) 3 (7)
45 1 (2) 3 (3) 3 (3) 3 (4) 3 (6) 3 (7)
55 2 (2) 3 (3) 3 (3) 3 (4) 3 (6) 3 (7)

(10%) 5 outliers

5 0 (0) 0 (0) 0 (0) 1 (3) 2 (4) 2 (5)
15 0 (0) 1 (1) 1 (1) 3 (4) 4 (6) 4 (7)
25 0 (0) 3 (3) 3 (3) 4 (4) 5 (7) 5 (8)
35 0 (0) 5 (5) 4 (4) 4 (5) 5 (7) 5 (8)
45 0 (0) 5 (5) 5 (5) 4 (5) 5 (7) 5 (8)
55 0 (0) 5 (5) 5 (5) 4 (5) 5 (7) 5 (8)

(15%) 8 outliers

5 0 (0) 0 (0) 0 (0) 2 (3) 2 (4) 3 (5)
15 0 (0) 2 (2) 1 (1) 2 (3) 6 (7) 7 (9)
25 0 (0) 5 (5) 4 (4) 3 (4) 8 (9) 8 (10)
35 0 (0) 7 (7) 6 (6) 3 (4) 8 (10) 8 (10)
45 0 (0) 8 (8) 7 (7) 3 (4) 8 (10) 8 (10)
55 0 (0) 8 (8) 8 (8) 3 (4) 8 (10) 8 (10)

(20%) 10 outliers

5 0 (0) 0 (0) 0 (0) 1 (3) 2 (3) 3 (5)
15 0 (0) 2 (2) 1 (1) 2 (3) 7 (8) 8 (10)
25 0 (0) 5 (5) 4 (4) 2 (3) 9 (11) 10 (11)
35 0 (0) 8 (8) 7 (7) 2 (3) 10 (11) 10 (12)
45 0 (0) 10 (10) 9 (9) 2 (3) 10 (12) 10 (12)
55 0 (0) 10 (10) 10 (10) 2 (3) 10 (12) 10 (12)

20%. It is clear from (4.1) that the severity of the shift only depends on the values of μ1. Hence,
without loss of generality, it can be assumed that μ0 is a zero vector and Σ is a p × p identity
matrix.

The control charts are assessed based on the proposed criterion, which are based on the
number of true detected outliers with regard to the correct position of the generated out-of-
control observations in the data set. The number of outliers detected without regard to their
positions is also presented for comparison.

Repeating this process 5000 times, the number of detections and the number of cor-
rectly detected outliers with correct positions are recorded for each replication. The numbers
of detected outliers are determined by comparing each of the T2 values with the respective
UCLs given in Table 1. Each detected outlier is checked by its position in the data set to
determine whether it can truly be generated from the intentional simulated contaminated
points in the data set. The true or correctly detected outliers refer to the outliers detected at
the correct position. The number of detected outliers simply indicates the outliers that have
been detected irrespective of their correct position. The average number of detections over
5000 iterations is presented for p = 2, m = 30, 50, and 100 in Tables 2, 3, and 4. It is important
to note that the presented values were rounded up to two digits. The values in parentheses
represent the number of outliers detected regardless of their correct positions.
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Table 4: The number of correctly detected outliers and the number of detected outliers for p = 2 and
m = 100.

ε ncp Empr UCL Med-Mad UCL
T2 T2

mve T2
mcd T2 T2

mve T2
mcd

(5%) 5 outliers

5 0 (0) 0 (0) 0 (0) 2 (6) 2 (7) 2 (8)
15 1 (1) 2 (2) 2 (2) 4 (7) 5 (10) 5 (10)
25 1 (1) 4 (4) 4 (4) 5 (7) 5 (10) 5 (11)
35 2 (2) 5 (5) 5 (5) 5 (7) 5 (10) 5 (11)
45 2 (2) 5 (5) 5 (5) 5 (7) 5 (10) 5 (11)
55 3 (3) 5 (5) 5 (5) 5 (7) 5 (10) 5 (11)

(10%) 10 outliers

5 0 (0) 0 (0) 0 (0) 3 (6) 4 (8) 4 (9)
15 0 (0) 3 (3) 3 (3) 6 (8) 9 (13) 9 (13)
25 0 (0) 7 (7) 7 (7) 7 (9) 10 (14) 10 (15)
35 0 (0) 9 (9) 9 (9) 8 (10) 10 (15) 10 (15)
45 0 (0) 10 (10) 10 (10) 8 (10) 10 (15) 10 (15)
55 0 (0) 10 (10) 10 (10) 9 (11) 10 (15) 10 (15)

(15%) 16 outliers

5 0 (0) 0 (0) 0 (0) 3 (6) 4 (8) 5 (9)
15 0 (0) 3 (3) 3 (3) 5 (7) 13 (16) 14 (17)
25 0 (0) 11 (11) 10 (10) 6 (8) 16 (19) 16 (19)
35 0 (0) 15 (15) 14 (14) 6 (8) 16 (20) 16 (20)
45 0 (0) 16 (16) 16 (16) 7 (8) 16 (20) 16 (20)
55 0 (0) 16 (16) 16 (16) 7 (9) 16 (20) 16 (20)

(20%) 20 outliers

5 0 (0) 0 (0) 0 (0) 3 (6) 5 (7) 5 (8)
15 0 (0) 3 (3) 3 (3) 4 (6) 15 (18) 16 (19)
25 0 (0) 12 (12) 12 (12) 4 (6) 20 (23) 20 (23)
35 0 (0) 18 (18) 17 (17) 5 (6) 20 (23) 20 (23)
45 0 (0) 20 (20) 19 (19) 5 (6) 20 (24) 20 (23)
55 0 (0) 20 (20) 20 (20) 4 (6) 20 (24) 20 (23)

Table 5: The number of correctly detected outliers and the number of outliers detected using the DRGP
when p = 2.

ncp
m = 30 m = 100

ε = 5% ε = 20% ε = 5% ε = 20%
T2
mve T2

mcd T2
mve T2

mcd T2
mve T2

mcd T2
mve T2

mcd

5 1 (3) 1 (3) 1 (2) 2 (2) 2 (6) 2 (6) 5 (7) 5 (6)
15 2 (3) 2 (3) 3 (4) 5 (5) 5 (9) 5 (9) 15 (15) 16 (14)
25 2 (3) 2 (3) 5 (6) 5 (5) 5 (8) 5 (8) 20 (20) 20 (20)
35 2 (3) 2 (3) 6 (6) 6 (6) 5 (8) 5 (8) 20 (21) 20 (21)
45 2 (3) 2 (3) 6 (6) 6 (6) 5 (8) 5 (8) 20 (21) 20 (21)
55 2 (3) 2 (3) 6 (6) 6 (6) 5 (8) 5 (8) 20 (21) 20 (21)

Let us first focus on the results of T2, T2
mve, and T2

mcd obtained by using the Empr and
Med-Mad UCLs. Following these results, we will see later why the DRGP approach is pro-
posed.

As can be seen from these tables, the UCLs based on the Med-Mad approach for all
three control charts have better performance in detecting the real outliers at their correct
positions, compared to Empr UCL. The classical T2 chart, based on Empr UCL, performs very
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Table 6: The correct detection rate form = 50 and p = 2.

ε
Correct detection rate

Detection method ncp = 5 ncp = 15 ncp = 25 ncp = 35 ncp = 45 ncp = 55

(5%) 3 outliers
DRGP T2

mve 0.38 0.66 0.69 0.68 0.67 0.68
T2
mcd 0.37 0.65 0.69 0.69 0.68 0.69

Without DRGP T2
mve 0.36 0.59 0.60 0.60 0.59 0.59

T2
mcd 0.31 0.52 0.53 0.53 0.53 0.54

(10%) 5 outliers
DRGP T2

mve 0.49 0.78 0.81 0.81 0.81 0.80
T2
mcd 0.49 0.78 0.82 0.82 0.82 0.80

Without DRGP T2
mve 0.47 0.71 0.72 0.72 0.72 0.71

T2
mcd 0.42 0.66 0.67 0.68 0.68 0.68

(15%) 8 outliers
DRGP T2

mve 0.55 0.85 0.91 0.91 0.92 0.91
T2
mcd 0.56 0.87 0.91 0.91 0.92 0.91

Without DRGP T2
mve 0.54 0.8 0.83 0.83 0.83 0.83

T2
mcd 0.52 0.78 0.82 0.81 0.81 0.81

(20%) 10 outliers
DRGP T2

mve 0.54 0.81 0.93 0.95 0.95 0.95
T2
mcd 0.55 0.85 0.94 0.95 0.95 0.95

Without DRGP T2
mve 0.57 0.81 0.87 0.87 0.87 0.86

T2
mcd 0.56 0.84 0.87 0.86 0.87 0.86

poorly. It can be seen that the Med-Mad UCLs are more reliable in detecting the correctly
detected outliers for the robust control charts compared to Empr UCLs, particularly when the
percentage of outliers increases. However, the results signify that both T2

mve and T2
mcd based

on the Med-Mad UCLs suffer from a swamping effect due to the detection of more outliers
without regard to their correct positions.

For example, at 10%, regarding outliers in the HDS with m = 100, p = 2, and ncp = 25
and both T2

mve and T2
mcd based on the Med-Mad UCLs, the methods detect exactly 10 outliers

at the correct positions, but they also detect 15 outliers irrespective of their correct positions.
It is interesting to note that the performance of the robust control charts based on the Empr
UCLs is reasonably close to that of the robust control charts based on the Med-Mad UCLs for
very large values of ncp, such as ncp ≥ 45. The T2

mve and T2
mcd parameters, based on the

Med-Mad UCLs, are equally good at detecting correct outliers. Nonetheless, with increasing
subgroup size, T2

mcd based on the Med-Mad UCL is slightly better than the T2
mve based on

Med-Mad, particularly for a large percentage of outliers.
We can see that although the classical T2 Med-Mad-based method is better than the

T2 Empr-based method, it detects a smaller number of exact outliers as the percentage of
outliers increases. These results are consistent with other values of p but are not reported
here due to space constraints. The findings of Tables 2 to 4 seem to suggest that the Med-Mad
UCLs are more reliable than Empr UCLs in detecting correct outliers. However, theMed-Mad
UCLs detected more outliers irrespective of their correct positions due to swamping effects.
In other words, we have shown that the robust control charts based on the Med-Mad UCLs
effectively detect the number of correct outliers, but they overdetected outliers irrespective of
their correct positions. As such, we need to employ control charts that can reduce such undue
detections. In this regard, we suggest applying the DRGP procedure discussed in Section 2.
The same simulation procedure was then carried out, and the DRGP was applied to the data
sets.
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Figure 1: The correct detection rate for different outlier percentages for p = 2: m = 30 (a) and m = 100 (b).

The results obtained by using the DRGP approach are exhibited in Table 5. Due to
space limitations, the results are presented only for m = 30, 100 and ε = 5%, 20%. As can be
seen from Table 5, there is a steady decrease in the number of undue observations when the
DRGP approach is applied. For example, as shown in Table 4, the total number of detections
by the Med-Mad UCL with ncp = 55 is 24 for the MVE and MCD, while it decreases to 21 in
Table 5. To simplify the presentation of results, the proportion of correctly detected outliers
to detected outliers is calculated and referred to as the correct detection rate. The values of
the correct detection rates form = 50 and p = 2 are shown in Table 6. The results indicate that
the DRGP approach provides higher correct detection rates compared to the other methods.

However, these results were not very encouraging for small shifts (ncp = 5). It can
be seen from Table 6 that there is a gradual and steady rise in the correct detection rate with
increasing outlier percentage. The results are similar for other values of m and p, which are
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Figure 2: The correct detection rate for different outlier percentages for p = 3 : m = 30 (a) andm = 100 (b).

not tabulated due to space limitations. For more clarification, the correct detection rates for
various values ofm and p are plotted in Figures 1 and 2. These figures confirm that the DRGP
approach gives a higher correct detection rate.

5. Numerical Example

In this section, a numerical example is introduced to assess the performance of our method.
This is a bivariate data set which is taken from Shewhart [35]. It presents the measurements
of the depth of sapwood and the depth of penetration of creosote in telephone poles. The
subgroup size of the original dataset is 10 and we only focus on the first column of the data
set based on 20 subgroups. The T2, T2

mve, T2
mcd, and the DRGP statistics were then applied

to the data set. The Empr UCLs and the Med-Mad UCLs for T2, T2
mve, and T2

mcd statistics
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Figure 3: Control charts for the creosoting Telephone Poles Data, based on the Empr UCLs.
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Figure 4: Control charts for the creosoting Telephone Poles Data, based on the Med-Mad UCLs.

are 9.010, 31.723.738, and 113.140 and 7.010, 5.910, and 9.461, respectively. These UCLs are
calculated using the simulation, as discussed in Section 4, for α = 0.05.

Figure 3 shows the different T2 control charts for Empr UCLs. As can be seen from this
graph, none of the control charts based on the Empr UCL is able to detect any outlier in the
data set. On the other hand, robust T2 statistics based on the Med-Mad UCLs can identify
severed outliers (Figure 4).

The points 6 and 16 are detected by T2
mve as outliers, and T2

mcd identified the cases of 1, 6,
8, 16, and 21. The robust control charts based on the DRGP approach detected one observation
as outlier which is observation number 6. The results are not included here due to space
limitations.

6. Conclusions

Most research studies evaluate the performance of robust multivariate T2
mve and T2

mcd control
charts based on the number of outliers detected without regard to the correct position of
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outliers in the data set. The detection of real outliers (outliers at the correct position in the data
set) is crucial to avoid making wrong inferences. This study has shown that although the T2

mve
and the T2

mcd based on the Med-Mad UCLs are effective in the detection of correct outliers,
they have the tendency to declare undue observations as outliers (irrespective of whether
they are true or false outliers) due to a swamping effect. In this respect, in the evaluation of
robust control charts, we suggest not only a consideration of the number of outlier detections
but also a consideration of the correct position of the detected outliers.

Our findings also suggest that the proposed Med-Mad UCLs have better performance
than the commonly used Empr UCLs in detecting outliers with regard to the correct position
of outliers, especially for higher proportions of outliers. The practical finding of this paper
is that the robust control chart based on the DRGP with the proposed Med-Mad UCLs gives
credible performance.

The limitations of our study are that inferences or conclusions are only confined to
the detection of multiple outliers for individual observations, scatter outlier situations, and
moderate dimensional data sets (p ≤ 10).
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