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This paper works on hybrid force/position control in robotic manipulation and proposes an
improved radial basis functional (RBF) neural network, which is a robust relying on the Hamilton
Jacobi Issacs principle of the force control loop. The method compensates uncertainties in a robot
system by using the property of RBF neural network. The error approximation of neural network
is regarded as an external interference of the system, and it is eliminated by the robust control
method. Since the conventionally fixed structure of RBF network is not optimal, resource allocating
network (RAN) is proposed in this paper to adjust the network structure in time and avoid the
underfit. Finally the advantage of system stability and transient performance is demonstrated by
the numerical simulations.

1. Introduction
1

During robotic operation, the end-effectorsmay perform tactile contact with the environment,
which consists of a force interaction between the end-effector and the environment. In
addition to robot’s position control, the force control is more necessary in order to fulfill its
tasks better. Raibert and Craig [1] firstly introduce such an idea in 1981. After then many
other researchers have proposed and explored new hybrid control strategies, for example, by
combination with visual information [2–4].

Due to uncertainties of the robot model, the system’s performance becomes greatly
weaken or even unstable, so robust control methods for robots are widely concerned. By
using a fixed controller structure, the method has the advantage of eliminating the impact of
the uncertainty, ensuring the stability of the system during its operation.
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The main assumption of the method is the fact that only the upper bound of
uncertainty is known. However, the upper bound is difficult to be measured which is the
limitation of the robust control method. To overpass this limitation, the radial basis functional
(RBF) neural networks (RBFNNs) approximate the function to compensate for the lack of
robust control. RBFNN has a compact topology structure and rapidly convergence, and its
structural parameters can be learned separately [5–8]. Because of its fixed or a more complex
structure, RBF will lead to the result that learning time is too long or wasting network
resources. Therefore, we use resource allocation network (RAN) in this paper. The RAN
method replaces the sampling point by the biggest error sampling point and by doing so,
the network can perform self-learning and its complexity is reduced [9, 10]. Radial Basis
Functional Link Network (RBFLN) increases the weight from input to output; therefore,
RBFNN not only includes RBF advantage, but also compensates for the slow response of
RBF.

2. Manipulator Dynamics

The dynamic equation of the n-link manipulator in joint-space coordinates is given by

M
(
q
)
q̈ + C

(
q, q̇

)
q̇ +G

(
q
)
= τp + τf + JTf +ω

(
q, q̇, t

)
, (2.1)

where the vector q ∈ Rn is the joint angle, the vector q̇ ∈ Rn denotes the joint angular velocity,
the vector q̈ ∈ Rn is the joint angular acceleration, M(q) ∈ Rn×n is the symmetric positive
definite inertia matrix, C(q, q̇)q̇ ∈ Rn denotes the vector of Coriolis and centrifugal forces,
G(q) ∈ Rn denotes the gravitational vector, τp is the vector of joint actuator torques in position
control loop, τf is the vector of joint actuator torques in force control loop, f ∈ Rn is the
force between the end-effector and the environment, J ∈ Rn×n denotes the Jacobain matrix,
and ω(q, q̇, t) represents the vector of external disturbance joint torques and unmodeled
dynamics.

In the position loop, the simplest PD controller can be expressed as

τp = −Kpep −Kvėp, (2.2)

where Kp, KV are the constant matrixes,

ep = q − qd, ėp = q̇ − q̇d. (2.3)

In the force loop, the dynamic equation should be transferred from joint-space to
Cartesian-space [1, 7]. Based on ṙ = Jq̇, r̈ = J̇ q̇ + Jq̈, (2.1) can be derived as follows:

Mrr̈ + Crṙ +Gr = U +ωr + f, (2.4)

where

Mr = J−T M
(
q
)
J−1, Cr = J−T

(
C
(
q, q̇

) −M
(
q
)
J−1J̇

)
J−1,

Gr = J−T G
(
q
)
, U = J−Tτf , ωr = J−Tω

(
q, q̇, t

) (2.5)
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Equation (2.4) which is showed by the Cartesian coordinate has the following
important quality.

Assume that rd is the desired trajectory and fd is the desired force. The force between
the end-effector and the environment is given by the following expression [1, 8]:

f = Ge(r − re), ef = f − fd, (2.6)

whereGe is the environment stiffness, re is reference position of environment, so ṙ = G−1
e (ėf +

ḟd), r̈ = G−1
e (ëf + f̈d).

We can obtain the error equation as follows:

MrG
−1
e ëf + CrG

−1
e ėf − ef + Δ = U +ωr, (2.7)

whereΔ = MrG
−1
e f̈d+CrG

−1
e ḟd+Gr−fd. State variables can be defined as x1 = ef , x2 = ėf+αef ,

where α is a given positive number, (2.7) can be derived as

ẋ1 = x2 − αx1,

MrG
−1
e ẋ2 = −CrG

−1
e x2 + x1 −Δ +U +ωr +ω,

(2.8)

where ω = MrG
−1
e αėf + CrG

−1
e αef .

3. Design of Control Law

In order to obtain the control law, we introduce a theorem in this section. Assume that there
is a system with disturbance as follows:

ẋ = f(x) + g(x)d,
z = h(x),

(3.1)

where d is the disturbance and z is the signal of evaluation.
For the force control loop, the operation space of robot is transformed. Because ṙ = Jq̇,

r̈ = J̇ q̇ + Jq̈, (2.1) is written as

Mrr̈ + Crṙ +Gr = U +ωr + f, (3.2)

where Mr = J−TM(q)J−1, Gr = J−TG(q), U = J−Tτf, Cr = J−T (C(q, q̇) − M(q)J−1J̇)J−1, and
ωr = J−Tω(q, q̇, t).

Suppose rd is the desired position and fd is the desired force. Then f = Ge(r − re),
ef = f − fd = Ge(r − re) − fd. Ge is the rigidity matrix and re is reference position of the
environment. ṙ = G−1

e (ėf + ḟd) and r̈ = G−1
e (ëf + f̈d). Then error equation is

MrG
−1
e ëf + CrG

−1
e ėf − ef + Δ = U +ωr, (3.3)
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where Δ = MrG
−1
e f̈d + CrG

−1
e ḟd + Gr − fd. Then it is transformed into the state space. x1 =

ef , x2 = ėf + αef and α is a positive number. Equation (3.3) becomes

ẋ1 = x2 − αx1,

MrG
−1
e ẋ2 = −CrG

−1
e x2 + x1 −Δ +U +ωr +ω.

(3.4)

where ω = MrG
−1
e αėf + CrG

−1
e αef .

The improved RAN network approaches ωr . εf is the approaching error of the
network. ωr = PfWf + XVf + εf , Pf is output matrix of the hidden layer, Wf is the weight
matrix from hidden layer to output layer. X is input matrix, Vf is the weight from input
layer to output layer. PfWf is the contribution from hidden layer to output layer. XVf is
contribution from input layer to output layer. Equation (3.4) can be derived as

ẋ1 = x2 − αx1,

MrG
−1
e ẋ2 = −CrG

−1
e x2 + x1 −Δ +U + PfWf +XVf + εf +ω

(3.5)

εf is regarded as interfere and its evaluation signal is z = 2cef = 2cx1, then L2 gain is
J = sup‖εf‖/= 0(‖z‖2/‖εf‖2).

Theorem 3.1. For (3.5) if the study law of network is given by the following equation:

Ẇf = −ηWf,

V̇f = −λVf ,

(
λ, η > 0

)
(3.6)

the following controller is expressed for the force loop:

U = −(Ge + I)x1 + Δ − PfWf −XVf −ω −
(

1
2γ2

+ θ

)(
xT
2G

−1
e

)T
(3.7)

and c in z = 2cx1 must meet to (3.8)

α − 2c2 = β, (3.8)

where β and θ are given positive numbers, then the L2 gain of closed-loop system (3.5) and (3.7) is
less than γ .

Proof. For (3.5), the Lyapunov function is defined as

V =
1
2
xT
1x1 +

1
2
xT
2G

−1
e MrG

−1
e x2 +

1
2
WT

f Wf +
1
2
V T
f Vf . (3.9)
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Then
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1 ẋ1 +

1
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e ẋ2 +WT

f Ẇf + V T
f V̇f

= xT
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1
2
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)
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e

(
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)
+ V T

f V̇f +WT
f Ẇf .

(3.10)

Substituting (3.6) into the above equality, we have

V̇ = xT
1 (x2 − αx1) + xT

2G
−1
e

(
x1 −Δ +U + PfWf +XVf + εf +ω

)

− ηWT
f Wf − λV T

f Vf

= −αxT
1x1 − ηWT

f Wf − λV T
f Vf

+ xT
2G

−1
e

(
Gex1 + x1 −Δ +U + PfWf +XVf + εf +ω

)
.

(3.11)

According to HJI, we get

H = V̇ − 1
2
γ2
∥∥εf∥∥2 +

1
2
‖z‖2. (3.12)

Then
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f Vf − 1

2
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(
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(3.13)

Due to
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Figure 1: A two-link manipulator with constraint surface.

we get

H ≤ −β‖x1‖2 − η
∥∥Wf

∥∥2 − λ
∥∥Vf

∥∥2 + xT
2G

−1
e

×
(
Gex1 + x1 −Δ +U + PfWf +XVf +ω +

1
2γ2

(
xT
2G

−1
e

)T
)
.

(3.15)

Substituting (3.7) into the above inequality, we have

H ≤ −β‖x1‖2 − η
∥∥Wf

∥∥2 − λ
∥∥Vf

∥∥2 − θ
∥∥∥xT

2G
−1
e

∥∥∥2 ≤ 0. (3.16)

So the system meets V̇ ≤ (1/2)γ2‖εf‖2 − (1/2)‖z‖2.

4. Experiments and Results

To verify the effectiveness of the proposed control strategy, we made some software
simulation by using methods [11–16]. Here the model is based on two-link manipulator,
which is shown in Figure 1.

In the simulation, we took a horizontal plane as the work space: r = [x y]Tand
describe the constraint surface asX = 1.6, the desired trajectory is yd = 0.007t+0.5, t ∈ [0, 10],
the desired force is fd = 5N. Assume that the initial position of the manipulator end effector
is r0 = [1.5 0]T and initial velocity is dr = [0 0]T . In order to analyze comparatively, we use
PD control and robust neural network control, respectively, in the force control loop. First the
model is controlled by PD controller. The PD parameters are determined by output result.
P = 57, D = 1.3.

We adoptMATLAB Simulink and S-functions to design control system, the parameters
are set α = 18.1, β = 0.1, θ = 0.1, γ = 0.05, c = 3, and η = 0.1, λ = 0.05. The simulation results
are shown in Figures 2–6, among which Figures 2–5 give the tracking results of position and
position error and Figure 6 gives force tracking results.
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Figure 2: Tracking the location along x-axis under robust neural networks control and PD control.
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Figure 3: Tracking the location’s error along x-axis under robust neural networks control and PD control.

Figures 2 and 3 show that the control effect along x-axis is unlikeness. The robust NN
control result is superior to conventional PD along x-axis. Figures 4 and 5 show that there’s
no obvious difference along y-axis.

Figure 6 shows that the methods under robust neural networks control and PD control
can make force convergence desired value. But the effort of the two methods has great
difference. The oscillation is severe, and convergence speed is slow under PD control method.
The oscillation and convergence speed are improved under RAN NN control method. The
stability and transient performance are greatly superior to the effect under PD control.
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Figure 4: Tracking the location along y-axis under robust neural networks control and PD control.
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Figure 5: Tracking the location’s error along y-axis under robust neural networks control and PD control.

From the simulation results, we know that the improved RBF neural network robust
control method can decrease the dramatic oscillation and improve the convergence speed.
The stability and transient performance of the system are much better than the PD control,
and therefore it is an effective control method.
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Figure 6: The force under robust neural networks control and PD control.

5. Conclusion

An improved RAN NN controller has been designed in this paper for robot. In case of
difficulty measureing an external disturbance, the upper bound of uncertainty cannot be
obtained. The controller can make the system’s uncertainty significantly reduced without
obtaining the upper bound of uncertainty. It is found that the system can obtain good
transient performance and strong adaptability. For the force and position control, it has good
robustness and tracking ability. For future study, a simulation platform is constructed in the
paper to intuitively demonstrate the control process.
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