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Abstract. 
The problem of robust 
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 dynamic output feedback control design with pole placement constraints is studied for a linear parameter-varying model of a floating wind turbine. A nonlinear model is obtained and linearized using the FAST software developed for wind turbines. The main contributions of this paper are threefold. Firstly, a family of linear models are represented based on an affine parameter-varying model structure for a wind turbine system. Secondly, the bounded parameter-varying parameters are removed using upper bounded inequalities in the control design process. Thirdly, the control problem is formulated in terms of linear matrix inequalities (LMIs). The simulation results show a comparison between controller design based on a constant linear model and a controller design for the linear parameter-varying model. The results show the effectiveness of our proposed design technique.


1. Introduction
Wind energy is nowadays one of the fastest growing renewable industries. As a consequence of the oil crises in the early 1970s and a general interest of renewable energy, the wind energy sector has had a tremendous growth over the last decades. With Europe leading the global market, the turbine capacity has had an annual growth rate of up to 30% [1].
Wind turbines are complex mechanical systems, and they are highly nonlinear due to the conversion of wind energy to mechanical torque. This makes the wind turbine a challenging task both to model and control. In literature, linear and nonlinear controllers have been extensively used for power regulation through the control of blade pitch angle (see, for instance, [2–14] and the references therein). More recently, the problem of gain scheduling and output feedback 
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 control design for an offshore floating wind turbine was studied in [15, 16]. Furthermore, a mixed 
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 control design was proposed for an offshore floating wind turbine system investigated in [17]. However, the performance of these controllers is limited by the highly nonlinear characteristics of the wind turbine. These controllers are designed on the basis of one operating condition and therefor can only guarantee performance and stability at this point. By designing the controller on the basis of a linear-parameter-varying (LPV) model, it is possible to overcome these limitations. So, in order to sustain the growth in the wind industry sector, design of advanced control methodologies is one research area where such improvements can be achieved. In recent years, several advanced wind turbine simulation softwares have emerged, such as HAWC2 [18], FAST [19], and Cp-Lambda [20]. In this paper we will use FAST interfaced with MATLAB for all the simulations. The operation region of a wind turbine is often divided into four regions (Figure 1).


	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
	
		
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
	
	
		
		
	
	
		
		
		
	
	
		
		
	


	
		
	
		
	
		

Figure 1: Operating region of a typical wind turbine.


In region I (
	
		
			
				𝑣
				<
				𝑣
			

			
				c
				u
				t
				-
				i
				n
			

		
	
) the wind speed is lower than the cut-in wind speed and no power can be produced. In region II (
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) the pitch is usually kept constant while the generator torque is the controlling variable. In region III (
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) the main concern is to keep the rated power and to limit loads on critical parts of the structure by pitching the blades. In region IV (
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) the wind speed is too high, and the turbine is shut down. In this paper we will focus on the above rated wind speed scenario, that is, region III. 
This paper makes three specific contributions. First, it suggests a family of linear models for a wind turbine system based on an affine parameter-varying model structure. Second, robust stabilization and disturbance attenuation of such parameter-varying models are investigated using 
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 method such that the bounded parameter-varying parameters are removed using upper bounded inequalities in the control design procedure. Third, the control problem is formulated in terms of linear matrix inequalities (LMIs) and a dynamic output feedback controller is computed. Finally, the simulation results show that the obtained controller can achieve the robust stability and disturbance attenuation, simultaneously.
This paper is organized as follows. Section 2 describes the model under consideration and how to include the parameter-varying terms in the closed loop system. Section 3 is devoted to the control design technique. Simulation results are presented in Section 4. Finally, concluding remarks and suggestions to future works are discussed in Section 5.
The notations used throughout the paper are fairly standard. 
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.
2. Wind Turbine Model
 The wind turbine model is obtained from the wind turbine simulation software FAST [19]. The simulation model is an upscaled version of Statoil’s Hywind 2.3 (MW) turbine, which is located off the Norwegian west coast. This upscaled version is also a floating turbine and has the capacity 5 (MW). For specifications, see [21].
FAST provides a fully nonlinear wind turbine model with up to 24 degrees of freedom (DOF). For the controller design, we need a linear model and we want the linear model to be as simple as possible. All the DOFs available cannot be included, so we choose the ones we think will represent the most important dynamics. Linearization routines are available in the FAST package. The model is now linearized at each desired azimuth angle. We find this angle in the plane of rotor rotation. One linear model at each 10th angle is obtained, that is, the total amount of 36 models are obtained. The models is of the following standard state space form:
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				̇
				𝑥
				=
				𝐴
			

			

				𝑖
			

			
				𝑥
				+
				𝐵
			

			

				𝑖
			

			
				𝑢
				,
				𝑦
				=
				𝐶
			

			

				𝑖
			

			
				𝑥
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				3
				6
				,
			

		
	

					where 
	
		
			

				𝑥
			

		
	
 is the state vector with dimensions 
	
		
			

				ℛ
			

			
				𝑛
				×
				1
			

		
	
, 
	
		
			

				𝑢
			

		
	
 is the control signal with dimensions 
	
		
			

				ℛ
			

			
				𝑝
				×
				1
			

		
	
, 
	
		
			

				𝑦
			

		
	
 is the model outputs with dimensions 
	
		
			

				ℛ
			

			
				𝑚
				×
				1
			

		
	
, and 
	
		
			

				𝐴
			

		
	
, 
	
		
			

				𝐵
			

		
	
, 
	
		
			

				𝐶
			

		
	
 are the system matrices with dimensions 
	
		
			

				ℛ
			

			
				𝑛
				×
				𝑛
			

		
	
, 
	
		
			

				ℛ
			

			
				𝑛
				×
				𝑝
			

		
	
, 
	
		
			

				ℛ
			

			
				𝑚
				×
				𝑛
			

		
	
, and 
	
		
			

				ℛ
			

			
				𝑚
				×
				𝑝
			

		
	
, respectively. The states in this linear model are tower fore-aft displacement (
	
		
			

				𝑥
			

			

				1
			

		
	
), generator position (
	
		
			

				𝑥
			

			

				2
			

		
	
), rotor position (
	
		
			

				𝑥
			

			

				3
			

		
	
), and the last three states are the first derivative of 
	
		
			

				𝑥
			

			
				1
				−
				3
			

		
	
. The model input 
	
		
			

				𝑢
			

		
	
, which will eventually be calculated by the controller, is the blade pitch angle. The model outputs in 
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 are tower fore-aft displacement, generator speed, and rotor speed. 
A common way to simplify these models is to take the average of all the 36 models and use this as basis for the controller design. By doing this simplification, important information is easily lost. This is why in this paper we will try to do the controller design based on a model representation which tries to include as much as possible of the information in the 36 models. The matrices 
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 are behaving in a periodic way, and the matrix values depend on the rotor azimuth angle. Several things are the cause of this periodic behavior, that is, aerodynamic loads, tower shadow, gravitational loads, and deflections of the tower due to thrust loading. The matrix associated with the output 
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3. Control Design
 The purpose of 
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 control is to minimize the effect of disturbances on the controlled output. The control design is formulated in terms of LMIs. After manipulating the linear model obtained from FAST, we end up with a state space system with parameter-varying 
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 matrices. This model is more accurate than if we just took the average of all the 36 models. By using a LPV model of the system we are able to catch some of the dynamics that are lost under the linearization. The challenge is now to incorporate these additional terms into the control design.
These robust control designs mostly deal with frequency domain aspects of the closed loop system, but it is well known that the location of the closed loop poles play a large role in the transient behavior of the controlled system. By adding pole placement to the list of constraints we can prevent large poles and end up with a system which can respond in a realistic way. The controller we are searching for will try to keep the generator speed at its rated value while mitigating oscillations in the drive train and in the tower.
The LMIs for the control design are solved using YALMIP [22] interfaced with MATLAB, and we are using the solver SeDuMi. This solver is searching for two positive definite matrices 
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 which stabilizes the system. If these matrices exist, we can calculate the controller. The next sections present how to obtain the LMIs for the controller design and also how to incorporate the parameter-varying part of the state space system. 
3.1. System Representation
Figure 2 shows the output feedback control scheme, where 
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Figure 2: Output feedback block diagram.
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Because of the parameter-varying state space system we now get an additional term to the standard Bounded Real Lemma (BRL). This additional term is the second part of the summation in constraint (3.5). We want to make sure that the closed loop 
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3.3. Change of Variables
 Obviously, the 
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 constraint (3.5) is not an LMI because of the nonlinear terms which occur when we close the loop. In order to transform these nonlinear terms into proper LMIs we need to do two things. First, we need to linearize them with the use of change of variables. Second, we need to remove the parameter-varying terms. The linearization part is not as straight forward as for the state feedback case, additional information about this can be found in [23].
The new Lyapunov matrix is partitioned in the following form:
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				⎥
				⎦
				,
				𝒳
			

			
				−
				1
			

			
				=
				⎡
				⎢
				⎢
				⎣
				𝑀
				𝑋
				𝑀
			

			

				𝑇
			

			
				#
				⎤
				⎥
				⎥
				⎦
				,
			

		
	

							where 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑌
			

		
	
 are symmetric matrices of dimension 
	
		
			
				𝑛
				×
				𝑛
			

		
	
. It is not necessary to know the matrices noted as 
	
		
			

				#
			

		
	
.
In addition, we define the following two matrices:
								
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			

				Π
			

			

				1
			

			
				=
				⎡
				⎢
				⎢
				⎣
				𝑀
				𝑋
				𝐼
			

			

				𝑇
			

			
				0
				⎤
				⎥
				⎥
				⎦
				,
				Π
			

			

				2
			

			
				=
				⎡
				⎢
				⎢
				⎣
				𝐼
				𝑌
				0
				𝑁
			

			

				𝑇
			

			
				⎤
				⎥
				⎥
				⎦
				,
			

		
	

							that, as can be inferred from the identity 
	
		
			
				𝒳
				𝒳
			

			
				−
				1
			

			
				=
				𝐼
			

		
	
, satisfy
								
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				𝒳
				Π
			

			

				1
			

			
				=
				Π
			

			

				2
			

			

				.
			

		
	

							Then, the following change of controller variables are defined: 
								
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				
				𝐴
				=
				𝑁
				𝐴
			

			

				𝑘
			

			

				𝑀
			

			

				𝑇
			

			
				+
				𝑁
				𝐵
			

			

				𝑘
			

			

				𝐶
			

			

				2
			

			
				𝑋
				+
				𝑌
				𝐵
			

			
				2
				𝑛
			

			

				𝐶
			

			

				𝑘
			

			

				𝑀
			

			

				𝑇
			

			
				
				𝐴
				+
				𝑌
			

			

				𝑛
			

			
				+
				𝐵
			

			
				2
				𝑛
			

			

				𝐷
			

			

				𝑘
			

			

				𝐶
			

			

				2
			

			
				
				
				𝑋
				,
				𝐵
				=
				𝑁
				𝐵
			

			

				𝑘
			

			
				+
				𝑌
				𝐵
			

			
				2
				𝑛
			

			

				𝐷
			

			

				𝑘
			

			
				,
				
				𝐶
				=
				𝐶
			

			

				𝑘
			

			

				𝑀
			

			

				𝑇
			

			
				+
				𝐷
			

			

				𝑘
			

			

				𝐶
			

			

				2
			

			
				
				𝑋
				,
				𝐷
				=
				𝐷
			

			

				𝑘
			

			

				.
			

		
	


					Now we are ready to convert our nonlinear matrix inequalities into LMIs. By performing congruence transformation with 
	
		
			
				d
				i
				a
				g
				(
				Π
			

			

				1
			

			
				,
				𝐼
				,
				𝐼
				)
			

		
	
 on the obtained inequality (3.5), we end up with following matrix inequality: 
								
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				Σ
			

			

				1
			

			

				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				1
			

			

				Δ
			

			

				1
			

			
				(
				𝑧
				)
				𝐻
			

			

				1
			

			
				
				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				2
			

			

				Δ
			

			

				1
			

			
				(
				𝑧
				)
				𝐻
			

			

				1
			

			
				
				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				1
			

			

				Δ
			

			

				1
			

			
				(
				𝑧
				)
				𝐻
			

			

				2
			

			
				
				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				2
			

			

				Δ
			

			

				1
			

			
				(
				𝑧
				)
				𝐻
			

			

				2
			

			
				
				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				3
			

			

				Δ
			

			

				2
			

			
				(
				𝑧
				)
				𝐻
			

			

				3
			

			
				
				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				4
			

			

				Δ
			

			

				2
			

			
				(
				𝑧
				)
				𝐻
			

			

				3
			

			
				
				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				3
			

			

				Δ
			

			

				2
			

			
				(
				𝑧
				)
				𝐻
			

			

				4
			

			
				
				+
			

			
				s
				y
				m
			

			
				
				𝐺
			

			

				4
			

			

				Δ
			

			

				2
			

			
				(
				𝑧
				)
				𝐻
			

			

				4
			

			
				
				<
				0
				,
			

		
	

							where the matrix 
	
		
			

				Σ
			

			

				1
			

		
	
 and the vectors 
	
		
			

				𝐺
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝐻
			

			

				𝑖
			

		
	
 are defined in the appendix. 
Lemma 3.1 (see [24]).  Given 
	
		
			
				Σ
				=
				Σ
			

			

				𝑇
			

		
	
, 
	
		
			

				𝐺
			

		
	
, 
	
		
			

				Δ
			

		
	
, and 
	
		
			

				𝐻
			

		
	
 of appropriate dimensions with 
	
		
			

				Δ
			

			

				𝑇
			

			
				Δ
				≤
				𝐼
			

		
	
, then the matrix inequality
									
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				Σ
				+
				(
				𝐺
				Δ
				𝐻
				)
				<
				0
			

		
	

								holds for all 
	
		
			

				Σ
			

		
	
 if and only if there exists a scalar 
	
		
			
				𝜖
				>
				0
			

		
	
 such that
									
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				Σ
				+
				𝜖
				𝐺
				𝐺
			

			

				𝑇
			

			
				+
				𝜖
			

			
				−
				1
			

			

				𝐻
			

			

				𝑇
			

			
				𝐻
				<
				0
				.
			

		
	

By using Lemma 3.1 we are able to remove the parameter-varying parts 
	
		
			

				Δ
			

			

				𝑖
			

			
				(
				𝑧
				)
			

		
	
 in the matrix inequality (3.10). We end up with a new LMI which contains the constants 
	
		
			

				𝜖
			

			

				1
			

		
	
 and 
	
		
			

				𝜖
			

			

				2
			

		
	
:
								
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			

				Σ
			

			

				1
			

			
				+
				2
				𝜖
			

			

				1
			

			

				𝐺
			

			

				1
			

			

				𝐺
			

			
				𝑇
				1
			

			
				+
				2
				𝜖
			

			
				1
				−
				1
			

			

				𝐻
			

			
				𝑇
				1
			

			

				𝐻
			

			

				1
			

			
				+
				2
				𝜖
			

			

				1
			

			

				𝐺
			

			

				2
			

			

				𝐺
			

			
				𝑇
				2
			

			
				+
				2
				𝜖
			

			
				1
				−
				1
			

			

				𝐻
			

			
				𝑇
				2
			

			

				𝐻
			

			

				2
			

			
				+
				2
				𝜖
			

			

				2
			

			

				𝐺
			

			

				3
			

			

				𝐺
			

			
				𝑇
				3
			

			
				+
				2
				𝜖
			

			
				2
				−
				1
			

			

				𝐻
			

			
				𝑇
				3
			

			

				𝐻
			

			

				3
			

			
				+
				2
				𝜖
			

			

				2
			

			

				𝐺
			

			

				2
			

			

				𝐺
			

			
				𝑇
				4
			

			
				+
				2
				𝜖
			

			
				2
				−
				1
			

			

				𝐻
			

			
				𝑇
				4
			

			

				𝐻
			

			

				4
			

			
				<
				0
				.
			

		
	

							By using the Schur complement we can convert (3.13) into the following LMIs:
								
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎝
				Σ
			

			

				1
			

			

				Σ
			

			

				2
			

			
				∗
				Σ
			

			

				3
			

			
				⎞
				⎟
				⎟
				⎠
				⎛
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎠
				<
				0
				,
				𝑋
				𝐼
				𝐼
				𝑌
				>
				0
				,
			

		
	

							where
								
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			

				Σ
			

			

				2
			

			
				=
				
				𝐺
			

			

				1
			

			

				𝐻
			

			
				𝑇
				1
			

			

				𝐺
			

			

				2
			

			

				𝐻
			

			
				𝑇
				2
			

			

				𝐺
			

			

				3
			

			

				𝐻
			

			
				𝑇
				3
			

			

				𝐺
			

			

				4
			

			

				𝐻
			

			
				𝑇
				4
			

			
				
				Σ
			

			

				3
			

			
				
				−
				1
				=
				d
				i
				a
				g
			

			
				
			
			
				2
				𝜖
			

			
				1
				−
				1
			

			
				1
				,
				−
			

			
				
			
			
				2
				𝜖
			

			

				1
			

			
				1
				,
				−
			

			
				
			
			
				2
				𝜖
			

			
				1
				−
				1
			

			
				1
				,
				−
			

			
				
			
			
				2
				𝜖
			

			

				1
			

			
				,
				−
				1
			

			
				
			
			
				2
				𝜖
			

			
				2
				−
				1
			

			
				1
				,
				−
			

			
				
			
			
				2
				𝜖
			

			

				2
			

			
				1
				,
				−
			

			
				
			
			
				2
				𝜖
			

			
				2
				−
				1
			

			
				1
				,
				−
			

			
				
			
			
				2
				𝜖
			

			

				2
			

			
				
				.
			

		
	

3.4. LMI Region
 An LMI region is any convex subset 
	
		
			

				𝒟
			

		
	
 of the complex plane that can be characterized as an LMI in 
	
		
			

				𝑧
			

		
	
 and 
	
		
			
				
			
			

				𝑧
			

		
	
 [25] as follows:
								
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝐷
				=
				𝑧
				∈
				𝐶
				∶
			

			
				
			
			
				𝐿
				+
			

			
				
			
			
				𝑀
				𝑧
				+
			

			
				
			
			

				𝑀
			

			

				𝑇
			

			
				
			
			
				
				,
				𝑧
				<
				0
			

		
	

							for some fixed real matrices 
	
		
			
				
			
			

				𝑀
			

		
	
 and 
	
		
			
				
			
			
				𝐿
				=
			

			
				
			
			

				𝐿
			

			

				𝑇
			

		
	
, where 
	
		
			
				
			
			

				𝑧
			

		
	
 is a complex number. This class of regions encompasses half planes, strips, conic sectors, disks, ellipses, and any intersection of the above. From [25], we find that all eigenvalues of the matrix 
	
		
			

				𝐴
			

		
	
 are in the LMI region 
	
		
			
				{
				𝑧
				∈
				𝐶
				∶
				[
			

			
				
			
			

				𝑙
			

			
				𝑖
				𝑗
			

			

				+
			

			
				
			
			

				𝑚
			

			
				𝑖
				𝑗
			

			
				𝑧
				+
			

			
				
			
			

				𝑚
			

			
				𝑗
				𝑖
			

			
				
			
			
				𝑧
				]
			

			
				𝑖
				,
				𝑗
			

			
				<
				0
				}
			

		
	
 if and only if there exists a symmetric matrix 
	
		
			

				𝑋
			

		
	
 such that
								
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				𝑙
			

			
				𝑖
				𝑗
			

			
				𝑋
				+
			

			
				
			
			

				𝑚
			

			
				𝑖
				𝑗
			

			

				𝐴
			

			

				𝑇
			

			
				𝑋
				+
			

			
				
			
			

				𝑚
			

			
				𝑗
				𝑖
			

			
				
				𝑋
				𝐴
			

			
				𝑖
				,
				𝑗
			

			
				<
				0
				,
				𝑋
				>
				0
				.
			

		
	


					Also, here we need to include the change of variables and remove the parameter-varying terms, this is done in (3.19). The LMI is obtained in a manner similar to the one that was used for the 
	
		
			

				ℋ
			

			

				∞
			

		
	
 constraint:
								
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎝
				Σ
			

			

				4
			

			

				Σ
			

			

				5
			

			
				∗
				Σ
			

			

				3
			

			
				⎞
				⎟
				⎟
				⎠
				<
				0
				,
			

		
	

							where
								
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			

				Σ
			

			

				5
			

			
				=
				
				𝜖
			

			

				1
			

			

				𝑃
			

			

				1
			

			

				𝑁
			

			
				𝑇
				1
			

			

				𝜖
			

			

				1
			

			

				𝑃
			

			

				2
			

			

				𝑁
			

			
				𝑇
				2
			

			

				𝜖
			

			

				2
			

			

				𝑃
			

			

				3
			

			

				𝑁
			

			
				𝑇
				3
			

			

				𝜖
			

			

				2
			

			

				𝑃
			

			

				4
			

			

				𝑁
			

			
				𝑇
				4
			

			

				
			

		
	

							and 
	
		
			

				Σ
			

			

				4
			

		
	
 and the other terms in 
	
		
			

				Σ
			

			

				5
			

		
	
 are defined in the appendix.
Remark 3.2. It is observed that the inequalities (3.14), (3.15), and (3.19) are linear in 
	
		
			
				
				
				
				
				(
				𝑋
				,
				𝑌
				,
				𝐴
				,
				𝐵
				,
				𝐶
				,
				𝐷
				)
			

		
	
 and thus the standard LMI techniques can be exploited to find the LMI solutions. It is also seen from the above results that there exists much freedom contained in the design of control law, such as the choices of appropriate 
	
		
			

				𝜖
			

			

				1
			

		
	
 and 
	
		
			

				𝜖
			

			

				2
			

		
	
. This design freedom can be exploited to achieve other desired closed loop properties.The desired region 
	
		
			

				𝒟
			

		
	
 is a disk (Figure 3), with center located along the 
	
		
			

				𝑥
			

		
	
-axis (distance 
	
		
			

				𝑞
			

		
	
 from the origin) and radius 
	
		
			

				𝑟
			

		
	
. This determines the region
									
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎝
				𝒟
				=
				−
				𝑟
				𝑞
				+
				𝑧
				𝑞
				+
			

			
				
			
			
				⎞
				⎟
				⎟
				⎠
				.
				𝑧
				−
				𝑟
			

		
	



	
		
		
		
			
				
			
			
				
			
			
				
					
				
			
		
	







	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
	


	
	

Figure 3: LMI region 
	
		
			

				𝒟
			

		
	
.



					From this we can find the matrices 
	
		
			
				
			
			

				𝐿
			

		
	
 and 
	
		
			
				
			
			

				𝑀
			

		
	
, which are the two matrices that determine the LMI region.
All constraints in (3.14), (3.15), and (3.19) are now subjected to the minimization of the objective function, which is the 
	
		
			

				ℋ
			

			

				∞
			

		
	
 norm. They need to be solved in terms of 
	
		
			
				
				
				
				
				(
				𝑋
				,
				𝑌
				,
				𝐴
				,
				𝐵
				,
				𝐶
				,
				𝐷
				)
			

		
	
.
Once all these matrices are obtained, the controller matrices are computed in the following way. First we obtain 
	
		
			

				𝑀
			

		
	
 and 
	
		
			

				𝑁
			

		
	
 from the factorization problem
								
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				𝑀
				𝑁
			

			

				𝑇
			

			
				=
				𝐼
				−
				𝑋
				𝑌
				.
			

		
	


					Second, the controller matrices are computed from the following relationship: 
								
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑘
			

			
				=
				
				𝐶
				𝐷
				,
			

			

				𝑘
			

			
				=
				
				
				𝐶
				−
				𝐷
			

			

				𝑘
			

			

				𝐶
			

			

				2
			

			
				𝑋
				
				
				𝑀
			

			

				𝑇
			

			

				
			

			
				−
				1
			

			
				,
				𝐵
			

			

				𝑘
			

			
				=
				𝑁
			

			
				−
				1
			

			
				
				
				𝐵
				−
				𝑌
				𝐵
			

			
				2
				𝑛
			

			

				𝐷
			

			

				𝑘
			

			
				
				,
				𝐴
			

			

				𝑘
			

			
				=
				𝑁
			

			
				−
				1
			

			
				
				
				𝐴
				−
				𝑁
				𝐵
			

			

				𝑘
			

			

				𝐶
			

			

				2
			

			
				𝑋
				−
				𝑌
				𝐵
			

			
				2
				𝑛
			

			

				𝐶
			

			

				𝑘
			

			

				𝑀
			

			

				𝑇
			

			
				
				𝐴
				−
				𝑌
			

			

				𝑛
			

			
				+
				𝐵
			

			
				2
				𝑛
			

			

				𝐷
			

			

				𝑘
			

			

				𝐶
			

			

				2
			

			
				
				𝑋
				
				
				𝑀
			

			

				𝑇
			

			

				
			

			
				−
				1
			

			

				.
			

		
	

4. Simulation Results
 The simulations are carried out with FAST software interfaced with MATLAB/Simulink. The controllers are tested on the fully nonlinear system with 22 out of 24 DOFs enabled. Yaw and platform surge-motion are left out. The wind turbine system is subjected to extreme wind conditions. The wind profile is a 
	
	