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Abstract. 
Estimating power spectrum density (PSD) is essential in signal processing. This short paper gives a theorem to represent a smoothed PSD estimate with the Cauchy integral. It may be used for the approximation of the smoothed PSD estimate.


1. Introduction
Estimating power spectrum density (PSD) of signals plays a role in signal processing. It has applications to many issues in engineering [1–21]. Examples include those in biomedical signal processing, see, for example, [1–3, 6, 12, 13]. Smoothing an estimate of PSD is commonly utilized for the purpose of reducing the estimate variance, see, for example, [22–29]. By smoothing a PSD estimate, one means that a smoothed estimate of PSD of a signal is the PSD estimate convoluted by a smoother function [30, 31]. This short paper aims at providing a representation of a smoothed PSD estimate based on the Cauchy’s integral. 
2. Cauchy Representation of Smoothed PSD Estimate
Let 
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 is frequency. Then, by using the Fourier transform, 
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					In practical terms, if 
	
		
			𝑥
			(
			𝑡
			)
		

	
 is a random signal, 
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			𝑥
		

		
			(
			𝜔
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 may never be achieved exactly because a PSD is digitally computed only in a finite interval, say, (
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 Denote by 
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					In the discrete case, one has the following for a discrete signal 
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 [21–23]:
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Because
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			𝑥
			𝑥
		

		
			(
			𝜔
			)
		

	
 is usually a random variable. One way of reducing the variance of 
	
		

			
		

		

			𝑆
		

		
			𝑥
			𝑥
		

		
			(
			𝜔
			)
		

	
 is to smooth 
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			𝑥
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			(
			𝜔
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 by a smoother function denoted by 
	
		
			𝐺
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. Denote by 
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 the smoothed PSD estimate. Let 
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 imply the operation of convolution. Then, 
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Assume that 
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			𝑆
		

		
			𝑥
			𝑥
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 is differentiable any time for 
	
		
			−
			∞
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			∞
		

	
. Then, by using the Taylor series at 
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			=
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			𝑥
		

		
			(
			𝜔
			)
		

	
 is expressed by
						
	
 		
			(
			2
			.
			7
			)
		
 	

	
		

			
		

		

			𝑆
		

		
			𝑥
			𝑥
		

		

			(
		

		

			𝜔
		

		

			)
		

		

			=
		

		

			∞
		

		

			
		

		
			𝑙
			=
			0
		

		

			
		

		

			𝑆
		

		
			(
			𝑙
			)
		

		
			𝑥
			𝑥
		

		

			
		

		

			𝜔
		

		

			0
		

		

			
		

		
			
		
		
			𝑙
			!
		

		

			
		

		
			𝜔
			−
			𝜔
		

		

			0
		

		

			
		

		

			𝑛
		

		

			.
		

	

					Therefore, 
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					Thus, we have a theorem to represent 
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 based on the Cauchy integral.
Theorem 2.1.  Suppose 
	
		

			
		

		

			𝑆
		

		
			𝑥
			𝑥
		

		
			(
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 is differentiable any time at 
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Proof. The Cauchy integral in terms of 
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						That may be taken as the convolution between 
	
		

			𝜔
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			1
		

		
			/
			𝑙
			!
		

	
 and 
	
		
			𝐺
			(
			𝜔
		

		

			1
		

		
			+
			𝜔
		

		

			0
		

		

			)
		

	
. Thus, 
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			.
			1
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			=
		

		

			
		

		

			𝜔
		

		

			1
		

		

			0
		

		

			
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			0
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			𝜔
		

		

			𝜏
		

		

			.
		

	

						Therefore, (2.10) holds. This completes the proof.
The present theorem is a theoretic representation of a smoothed PSD estimate. It may yet be a method to be used in the approximation of a smoothed PSD estimate. As a matter of fact, we may approximate 
	
		

			
		

		

			𝑆
		

		
			𝑥
			𝑥
		

		
			(
			𝜔
			)
		

	
 by a finite series given by 
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			1
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			)
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			𝑆
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			𝜔
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			.
		

	

					From the above theorem, we have the following corollary.
Corollary 2.2.  Suppose 
	
		

			
		

		

			𝑆
		

		
			𝑥
			𝑥
		

		
			(
			𝜔
			)
		

	
 is differentiable any time at 
	
		
			𝜔
			=
			0
		

	
. Then, 
	
		

			
		

		

			𝑆
		

		
			𝑥
			𝑥
		

		
			(
			𝜔
			)
		

	
 may be expressed by
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			1
			4
			)
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			𝑆
		

		
			𝑥
			𝑥
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			=
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			𝑙
			=
			0
		

		

			
		

		

			𝑆
		

		
			(
			𝑙
			)
		

		
			𝑥
			𝑥
		

		

			(
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			)
		

		
			
		
		
			𝑙
			!
		

		

			𝜔
		

		

			𝑙
		

		
			∗
			𝐺
		

		

			(
		

		

			𝜔
		

		

			)
		

		

			=
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			
		

		
			𝑙
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			𝑆
		

		
			(
			𝑙
			)
		

		
			𝑥
			𝑥
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			
		

		

			𝜔
		

		

			0
		

		

			
		

		
			𝜔
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			𝜏
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			𝑙
		

		
			
		
		
			𝑙
			!
		

		

			𝐺
		

		

			
		

		

			𝜔
		

		

			𝜏
		

		

			
		

		
			𝑑
			𝜔
		

		

			𝜏
		

		

			.
		

	

						The proof is omitted since it is straightforward when one takes into account the proof of theorem.
3. Conclusions
We have presented a theorem with respect to a representation of a smoothed PSD estimate of signals based on the Cauchy integral. The theorem constructively implies that the design of a smoother function 
	
		
			𝐺
			(
			𝜔
			)
		

	
 may consider the approximation described by the Cauchy integral with the finite Taylor series (2.13). In addition, the smoother function 
	
		
			𝐺
			(
			𝜔
			)
		

	
 can also be taken as a solution to the integral equation (2.14), which is worth being investigated in the future.
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