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For hybrid positioning systems (HPSs), the estimator design is a crucial and important problem. In this paper, a finite-element-
method- (FEM-) based state estimation approach is proposed to HPS. As the weak solution of hybrid stochastic differential model
is denoted by the Kolmogorov’s forward equation, this paper constructs its interpolating point through the classical fourth-order
Runge-Kutta method.Then, it approaches the solution with biquadratic interpolation function to obtain a prior probability density
function of the state. A posterior probability density function is gained through Bayesian formula finally. In theory, the proposed
scheme has more advantages in the performance of complexity and convergence for low-dimensional systems. By taking an
illustrative example, numerical experiment results show that the new state estimator is feasible and has good performance than
PF and UKF.

1. Introduction

In recent years, a new concept called hybrid positioning
systems (HPSs) is more and more popular in navigation
and location-based services research community [1]. HPSs
are systems for finding the location of a mobile device by
using several different positioning technologies in indoor
environments. Mostly, GPS is one major component of such
systems, aided by others such as tower signals, wireless
internet signals, IndoorMessaging System (IMES), bluetooth
sensors, or other local positioning systems [1, 2]. So far
many different hybrid positioning systems are being explored
and gradually applied in services from Google Maps for
Mobile, Combain Mobile, SkyHook, openBmap, Navizon,
PlaceEngine, Xtify, and so forth.

Obviously, HPS will be well developed in urban location-
based service areas because of the huge commercial market.
So studies are rapidly increasing and more practically viable
than ever [1, 3–6]. But in these literatures, researchers paid
more attention to the architecture of HPS, or how to choose
and integrate different sensors or signals reliably [1, 5, 6].
Actually, for getting reasonable accuracy and precision,
position estimator is one of the key factors in the hybrid

positioning systems, which will directly affect the quality of
system performance. As we all know, for an HPS use in real
environments, there is hardly enoughmeasuring information
for a unique position because of the reflection conditions
of the environment, which will influence the WLAN or the
other radio signals. On the other hand, the measurement
functions are nonlinear functions of the motion state, so we
have to think about the estimation accuracy the variations
because the sensors’ signalsmay significantly change depend-
ing on themotion of vehicle (or person) and slight differences
of the positions at which the signals are measured [7]. For
example, due to the influence of the transmission distance,
WLAN or other mobile phone signals with the nonlinearity
can have a significant effect on the estimation errors thanGPS
measurements.

Since state estimation of a stochastic dynamic system
from noisy observations is a crucial and important problem
in hybrid positioning applications, the motivation for this
paper is what we can do with the performance of position
estimator. In [8] three Kalman Filter Extensions in hybrid
navigation are evaluated, respectively. It is not difficult to find
that the estimates tend to become biased and inconsistent
when the linearization errors are coming large. Subsequently,
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a robust Extended Kalman Filtering modeled in [9] shows
that it outperforms EKF and EKF2 in cases where there is
blunder measurement or considerable linearization errors
present only in simulation cases. Although EKF is popular
in many navigation applications [10–15], it must satisfy three
assumptions for using EKF and its variants. (1)Thedeviations
of the reference state trajectory should be small. (2) The
mathematical description for state and observation of the
dynamics system should be accurate. (3) The conditional
density function of the state should be Gaussian. Otherwise,
the performance of EKF will become unstable and poorly.
Therefore, this is not a recommended approach for HPS
estimating problems.

Particle Filter (PF) is another popular estimating algo-
rithm in HPS [1, 6], which is also known as a sophisticated
technique based on Sequential Monte Carlo (SMC) method,
started by Gordon et al. in 1993 [16]. Roughly speaking,
the power of PF is that it can approximate the posterior
probability density of a complex system by using a kind
of stochastic sampling particles with different weights and
update the posterior by involving the new observations
according to the Bayesian principle. In the past twenty years,
a lot of work has been done to develop the performance of
particle filters. Especially like Auxiliary Particle Filter [17],
Unscented Particle Filter [18], and Gaussian Particle Filtering
[19] et al. improve the importance sampling effectively. In
[20], a so-called Rao-Blackwellised Particle Filtering can
exploit the structure of the dynamic Bayesian networks to
increase the efficiency of particle filtering. For preventing the
sample impoverishment problem, some heuristic algorithms
like genetic algorithm (GA) are incorporated into a particle
filter to overcome this drawback of the filter innovatively [21].
With the development of computing technology, PF is now in
a golden age as it could deal with nonlinear, non-Gaussian,
non-steady-state recursive estimation problem. However, in
fact, it still has some disadvantages in practice, such as
the fast growing computational complexity and the sample
impoverishment.

Theoretically speaking, a typical hybrid positioning sys-
tem should be described by a partial differential equation
(Kolmogorov’s forward equation) and a difference equation
separately, while the former reflects how the conditional
density of a dynamic system evolves, and the latter means
how it is works by the new measuring information [22]. For
solving the problem, finite element method (FEM), a classic
procedure for approximating solutions of partial differential
equations (PDEs), is introduced in this paper. FEM assumes
that the exact solution to a PDE could be expandedwith a sum
of local basis functions. Inspired by [23–26], an approximate
solution is found by combining interpolation points and
shape function. Essentially, FEM has more advantages than
PF or other classic filters like EKF and UKF. It outperforms
others in case ofmodelmismatches, large state variations, and
arbitrary initial conditions.

This paper is organized as follows. The next section con-
sists of the abstractive description of the hybrid positioning
problem in a Bayesian framework. The measurement model
and the state model are described as continuous nonlinear
dynamics and discrete nonlinear observations separately.

Section 3 gives the procedure of FEM and shows how make
it works to solve estimating problems. In Sections 4 and
5, we analyze the algorithm performance of convergence
and computational complexity mathematically. Then, an
illustrative example and its simulation results are given in
Section 6. Finally, we conclude this paper in Section 7.

2. Problem Description and Preliminaries

Actually, most hybrid positioning systems that we have in
real applications may be reasonably described in continuous
dynamics and discrete measurements. So an abstractive
model denoted by a partial differential equation and a
difference equation separately as

𝑑𝑥
𝑡
= 𝑓 (𝑥

𝑡
, 𝑡) 𝑑𝑡 + 𝑔 (𝑥

𝑡
, 𝑡) 𝑑𝛽

𝑡
, 𝑡 ≥ 𝑡

0
,

𝑧
𝑘
= ℎ (𝑥

𝑡𝑘
, 𝑡
𝑘
) + 𝑒
𝑘

(1)

is considered, where 𝑥
𝑡
∈ R𝑛 is a state vector and 𝑧

𝑘
∈ R𝑚 is

an output vector.𝑓(𝑥
𝑡
, 𝑡) : R𝑛×R → R𝑛 and ℎ(𝑥

𝑡𝑘
, 𝑡
𝑘
) : R𝑛×

R → R𝑚 denote system and measurement equations, while
𝑔(𝑥
𝑡
, 𝑡) : R𝑛 × R → R𝑛×𝑑 is diffusion coefficient. Here 𝛽

𝑡
is

𝑑-dimensional Brownian motion vector with the covariance
matrix 𝐸[𝑑𝛽

𝑡
𝑑𝛽𝑇
𝑡
] = 𝑄(𝑡)𝑑𝑡, and 𝑒

𝑘
is an 𝑚-dimensional

white Gaussian variable independent of 𝑑𝛽
𝑡
with covariance

matrix 𝑅(𝑘), 𝑘 ≥ 1, where 𝐸[𝑒𝑇
𝑘
𝑒
𝑘
] = 𝑅(𝑘), 𝑅(𝑘) ∈ R𝑚×𝑚.

Let 𝑍
𝑘

= {𝑧
𝑘
, 𝑡
𝑘

≤ 𝑡} denote the observations set
accumulated up to 𝑘, so the problem is evolved into how
to seek for the conditional density 𝑝(𝑥, 𝑡 | 𝑧

𝑡
). Because

the statistical information of the system is contained in the
measurements 𝑧

𝑘
and the initial condition 𝑝(𝑥

0
, 𝑡
0
| 𝑧
0
),

the conditional mean and variance can be computed from
𝑝(𝑥, 𝑡 | 𝑧

𝑡
), which generally depend on all of the higher

order moments for any nonlinear system. Theoretically, with
the observations between time 𝑡

𝑘
and 𝑡
𝑘+1

, the conditional
density 𝑝 ≜ 𝑝(𝑥, 𝑡 | 𝑧

𝑡
) diffuses according to Kolmogorov’s

forward equation

𝜕𝑝

𝜕𝑡
=
1

2
⋅
𝜕2 (𝜎2 (𝑦, 𝑡) 𝑝)

𝜕𝑦2
−
𝜕 (𝜇 (𝑦, 𝑡) 𝑝)

𝜕𝑦
. (2)

Usually, a weak solution of stochastic differential equation
could be decided by transferring function, so the conditional
probability density 𝑝(𝑥, 𝑡 | 𝑧

𝑡
) of system will satisfy Kolm-

ogorov’s forward equation

𝐿 (𝑝) = �̇�

=
1

2

𝑛

∑
𝑟,𝑠=1

𝜕2 (𝑔 (𝑥, 𝑡) 𝑄 (𝑡) 𝑔
𝑇
(𝑥, 𝑡) ⋅ 𝑝)

𝜕𝑥
𝑟
𝜕𝑥
𝑠

−

𝑛

∑
𝑟=1

𝜕 (𝑓 (𝑥, 𝑡) ⋅ 𝑝)

𝜕𝑥
𝑟

,

(3)

where 𝑝 ≜ 𝑝(𝑥, 𝑡 | 𝑧
𝑡
) is called the weak solution of the

stochastic differential model. Consider

𝑝 (𝑥
0
, 𝑡
0
| 𝑧
0
) = 𝑝
0
. (4)



Mathematical Problems in Engineering 3

Thus, Kolmogorov’s forward equation (2) and its initial
boundary conditions (3) have been differential equations
boundary value problems, where Ω is smooth boundaries
area in R𝑛, and 𝑃 : Ω → R is solution of boundary value
problem.

3. An Estimator Design Based on
Finite Element Method

In fact, with the recursive Bayesian estimation framework,
Particle Filter is a method that piecewise approximates
probability density function of a state in function space, while
finite element method (FEM) approximates for state distri-
bution function in the state space. When we approximate
the solution of Kolmogorov’s forward equation by FEM, it
could be conducted into a problem to solve the ordinary
differential equations with coefficients in piecewise function.
In this section, firstly, we use FEM to simplify formula (2)
from a function of space and time to a function of time only,
and a linear ordinary differential equation is obtained, which
is easy to solve numerically. Certainly, FEM is a powerful tool
to solve Partial Differential Equations (PDEs) problem,which
is discussed inmost textbooks; therefore, an estimator design
flowchart based on FEM is shown in Figure 1, reference to the
literature [24–26].
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So the coefficients can be obtained by solving these shape
function equations.

In Figure 2(b), the subunit coordinates of any quadrilat-
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Figure 1: Flowchart of an estimator based on finite element method.

their probability density values are 𝑝
1
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8
, so we can

get the values of any subunit 𝑝, 𝑥, and 𝑦 as follows:
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Contrastwith the traditional generalized coordinate finite
element models, the biquadratic interpolation algorithm is
more simple and effective. None else by seeking for the value
of the interpolation points, it can build arbitrary quadrilateral
element interpolation function with the coordinate system of
rectangular unit type. It not only avoids the matrix inverse
calculation, the integral of the cell matrix can also be used

in a standardized manner in the specification domain in a
Bayesian formula.

3.2. Construction of Interpolation Points. Suppose that a Kol-
mogorov’s forward equation is defined as follows:
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Figure 2: (a) A parent element of FEM. (b) Subunits of FEM.
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independent of 𝑡 as well. When 𝑛 = 2, assume that a
two-dimensional vector is defined as 𝑥 = (𝑥

1
, 𝑥
2
), and the

following equation can hold:

∫
𝑡𝑘+1

𝑡𝑘

𝐿 (𝑝 (𝑥))

= ∫
𝑡𝑘+1

𝑡𝑘

𝜕𝑝

𝜕𝑡
𝑑𝑡

= ∫
𝑡𝑘+1

𝑡𝑘

(Δ
1
𝑝 + Δ

2

2

∑
𝑖=1

𝜕𝑝

𝜕𝑥
𝑖

+ Δ
3

2

∑
𝑖,𝑗=1

𝜕2 (𝑝)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)𝑑𝑡,

(19)

where (𝑡
𝑘+1

− 𝑡
𝑘
) ≜ Δ𝑡, Δ

1
𝑝 + Δ

2
∑
2

𝑖=1
(𝜕𝑝/𝜕𝑥

𝑖
) + Δ

3
∑
2

𝑖,𝑗=1

(𝜕2(𝑝)/𝜕𝑥
𝑖
𝜕𝑥
𝑗
) ≜ 𝐹(𝑝, 𝑡).

By using the Runge-Kuttamethod, the probability density
can be calculated as

𝑝
𝑡𝑘+1 (𝑥) = 𝑝

𝑡𝑘 (𝑥) +
Δ𝑡

6
⋅ (𝐾
1
+ 2𝐾
2
+ 2𝐾
3
+ 𝐾
4
) , (20)

where

𝐾
1
= 𝐹 (𝑝, 𝑡

𝑘
) ,

𝐾
2
= 𝐹 (𝑝, 𝑡

𝑘
) +

Δ𝑡

2
⋅ 𝐾
1
,

𝐾
3
= 𝐹 (𝑝, 𝑡

𝑘
) +

Δ𝑡

2
⋅ 𝐾
2
,

𝐾
4
= 𝐹 (𝑝, 𝑡

𝑘
) + Δ𝑡 ⋅ 𝐾

3
.

(21)
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Thus, by substituting 𝐾
𝑖
into (20), we can get the probability

density of unit point𝑝
𝑖𝑖

𝑡𝑘+1(𝑋
𝑖𝑗
) at time 𝑡

𝑘+1
in any rectangular

area.

3.3. Bayesian Estimation. Suppose that 𝑝𝑡𝑘+1 ≜ 𝑝𝑘+1
𝑖

, so the
probability density of subunit area can be formulated as

𝑝
𝑖𝑗
=

8

∑
𝑘=1

𝑁
𝑘
⋅ 𝑝
𝑘

𝑖𝑗
, (22)

where 𝑝𝑘
𝑖𝑗
represents the probability density value of node 𝑘 at

time 𝑡
𝑘+1

in a rectangular area.
So the prior probability density expression 𝑝(𝑥, 𝑡) can be

obtained by using formula (22) as

𝑝 (𝑥, 𝑡) =

𝑛2

∑
𝑗=1

𝑛1

∑
𝑗=2

𝑝
𝑖𝑗
. (23)

Due to the Bayesian formula

𝑝(𝑥,
𝑡
𝑘+1

𝑧
𝑘+1

) =
𝑝 (𝑧
𝑘+1

/𝑥) 𝑝 (𝑥, 𝑡−
𝑘+1

/𝑧
𝑘
)

∬
Ω
𝑝 (𝑧
𝑘+1

/𝑥) 𝑝 (𝑥, 𝑡−
𝑘+1

/𝑧
𝑘
) 𝑑𝑥 𝑑𝑦

, (24)

the likelihood probability density is defined as

𝑝(
𝑧
𝑘+1

𝑥
)

=
exp {− (1/2) (𝑧

𝑘
− ℎ (𝑥, 𝑡

𝑘
))
𝑇

𝑅−1
𝑘
(𝑧
𝑘
− ℎ (𝑥, 𝑡

𝑘
))}

√(2𝜋)
𝑚 det𝑅

𝑘

,

(25)

where ℎ(𝑥, 𝑡
𝑘
) is a two-dimensional measurement function,

𝑧
𝑘
represents the measurement in a two-dimensional space,

and 𝑅
𝑘
= (

Var(𝑥1) Cov(𝑥1 ,𝑥2)
Cov(𝑥2 ,𝑥1) Var(𝑥2) ) is a covariance matrix of the

posterior probability density.
By substituting the prior probability density into Bayesian

formula, the posterior probability density can hold as

𝑝
𝑖𝑗
(𝑥,

𝑡
𝑘+1

𝑧
𝑘+1

)

=
𝑝 (𝑧
𝑘+1

/𝑥) 𝑝 (𝑥, 𝑡)

∬
Ω
𝑝 (𝑧
𝑘+1

/𝑥) 𝑝 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑦
, 𝑥 ∈ [𝑥

𝑖−1
, 𝑥
𝑖
] ,

𝑦 ∈ [𝑦
𝑗−1

, 𝑦
𝑗
] (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

1
, 𝑗 = 1, 2, . . . , 𝑛

2
) ,

(26)

where 𝑝(𝑥, 𝑡
𝑘+1

/𝑧
𝑘+1

) is a piecewise function as well.
According to the posterior probability density, the condi-

tional mean Ε(𝑥/𝑧
𝑘+1

) ≜ Ε
𝑘+1

and the variance 𝜎(𝑥/𝑧
𝑘+1

) ≜

𝜎
𝑘+1

of a system can be obtained by the following equations

Ε(
𝑥

𝑧
𝑘+1

) = ∫∫
Ω

𝑝(𝑥,
𝑡
𝑘+1

𝑧
𝑘+1

)𝑑𝑥
1
𝑑𝑥
2
,

𝜎 (
𝑥

𝑧
𝑘+1

) = ∬
Ω

(𝑥 − Ε(
𝑥

𝑧
𝑘+1

))

2

𝑝(𝑥,
𝑡
𝑘+1

𝑧
𝑘+1

)𝑑𝑥
1
𝑑𝑥
2
.

(27)

4. Convergence Analysis

In this section, we will give the analysis of the proposed
estimating method based on FEM. To make the convergence
arguments transparent, some special notations are intro-
duced in the process. Assume that Ω = {(𝑥

1
, 𝑥
2
) | 𝑎 ≤ 𝑥 ≤

𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑} is a closed and bounded subset of 𝑅2, and
𝑃(𝑥, 𝑡) represents any continuous functions in Ω. Suppose
that the prior probability density function in each subunit
is continuous. For any two adjacent subintervals {(𝑥

1
, 𝑥
2
) |

𝑎
𝑖−1

< 𝑥
1
< 𝑎
𝑖
, 𝑏
𝑖−1

< 𝑥
2
< 𝑏
𝑖
}, {(𝑥
1
, 𝑥
2
) | 𝑎
𝑖
< 𝑥
1
< 𝑎
𝑖+1
, 𝑏
𝑗
<

𝑥
2
< 𝑏
𝑗+1

}, in the first unit {(𝑥
1
, 𝑥
2
) | 𝑎
𝑖−1

< 𝑥
1
< 𝑎
𝑖
, 𝑏
𝑗−1

<

𝑥
2
< 𝑏
𝑗
}, the left limit of the interpolation point (𝑎

𝑖
, 𝑏
𝑗
)will be

expressed as

lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝 (𝑥, 𝑡) = lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

8

∑
𝑗=1

𝑁
𝑗
⋅ 𝑝
𝑘

𝑖𝑗
. (28)

From the shape function described by formula (8), we
can get that interpolation point (𝑎

𝑖
, 𝑏
𝑖
) corresponds to a shape

function 𝑁
𝑘
. Obviously, the value of shape function is one,

while the remaining values are zero, so

lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝 (𝑥, 𝑡) = 𝑁
𝑘
lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝
𝑘

𝑖𝑗
= lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝
𝑘

𝑖𝑗
. (29)

By being calculatedwith (19) and (20), the interpolation point
𝑝𝑘
𝑖𝑗
at 𝑡
𝑘+1

can be obtained as

𝑝
𝑡𝑘+1 (𝑥) = 𝑝

𝑡𝑘 (𝑥) +
Δ𝑡

6
⋅ (𝐾
1
+ 2𝐾
2
+ 2𝐾
3
+ 𝐾
4
)

= 𝑝
𝑡𝑘 (𝑥) + 𝐹(Δ𝑡 +

(Δ𝑡)
2

3
+
(Δ𝑡)
3

6
+
(Δ𝑡)
4

24
) .

(30)

Then,

𝑝
𝑡𝑘+1 (𝑥) = 𝑝

𝑡𝑘 (𝑥) +
Δ𝑡

6
⋅ (𝐾
1
+ 2𝐾
2
+ 2𝐾
3
+ 𝐾
4
)

= 𝑝
𝑡𝑘 (𝑥) + 𝐹(Δ𝑡 +

(Δ𝑡)
2

3
+
(Δ𝑡)
3

6
+
(Δ𝑡)
4

24
)

= 𝑝
𝑡𝑘 (𝑥)

+ (Δ
1
𝑝 + Δ

2

2

∑
𝑖=1

𝜕𝑝

𝜕𝑥
𝑖

+ Δ
3

2

∑
𝑖,𝑗=1

𝜕2 (𝑝)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

× (Δ𝑡 +
(Δ𝑡)
2

3
+
(Δ𝑡)
3

6
+
(Δ𝑡)
4

24
) ,

(31)

where Δ
1
, Δ
2
, Δ
3
are only relative to the interpolation point

in 𝐹 and independent with the shape function. Thus, for all
(𝑥
1
, 𝑥
2
) ∈ Ω, there exists

lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝
𝑘

𝑖𝑗
= 𝑝
𝑘

𝑖𝑗
. (32)
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Therefore,

lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝 (𝑥, 𝑡) = 𝑝
𝑘

𝑖𝑗
. (33)

In the sameway, by choosing the subunit {(𝑥
1
, 𝑥
2
) | 𝑎
𝑖−1

<

𝑥
1
< 𝑎
𝑖
, 𝑏
𝑗−1

< 𝑥
2
< 𝑏
𝑗
}, we can get

lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝 (𝑥, 𝑡) = 𝑝
𝑘

𝑖𝑗
.

(34)

By taking (33) and (34), then

lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝 (𝑥, 𝑡) = lim
𝑥1→𝑎𝑖

𝑥2→𝑏𝑗

𝑝 (𝑥, 𝑡) = 𝑝
𝑘

𝑖𝑗
.

(35)

Clearly, 𝑝(𝑥, 𝑡) is continuous inΩ.
To analyze the convergence of FEM, we shall give the

following proof. Suppose that 𝑃(𝑥, 𝑡) represents all of contin-
uous functions in Ω, for all 𝑝

1
(𝑥, 𝑡), 𝑝

2
(𝑥, 𝑡) ∈ 𝑃(𝑥, 𝑡), and it

holds that
𝑑 (𝑝
1
, 𝑝
2
) = max
𝑎≤𝑥1≤𝑏

𝑐≤𝑥2≤𝑑

𝑝1 (𝑥, 𝑡) − 𝑝2 (𝑥, 𝑡)
 . (36)

Therefore,

(i) for all 𝑝
1
(𝑥, 𝑡), 𝑝

2
(𝑥, 𝑡) ∈ 𝑃(𝑥, 𝑡), 𝑑(𝑝

1
, 𝑝
2
) =

max
𝑎≤𝑥1≤𝑏, 𝑐≤𝑥2≤𝑑

|𝑝
1
(𝑥, 𝑡) − 𝑝

2
(𝑥, 𝑡)| ≥ 0, if and only

if 𝑝
1
= 𝑝
2
, 𝑑(𝑝
1
, 𝑝
2
) = 0;

(ii) 𝑑(𝑝
1
, 𝑝
2
) = max

𝑎≤𝑥1≤𝑏, 𝑐≤𝑥2≤𝑑
|𝑝
1
(𝑥, 𝑡) − 𝑝

2
(𝑥, 𝑡)| =

max
𝑎≤𝑥1≤𝑏, 𝑐≤𝑥2≤𝑑

|𝑝
2
(𝑥, 𝑡) − 𝑝

1
(𝑥, 𝑡)| = 𝑑(𝑝

2
, 𝑝
1
);

(iii) for all 𝑝
1
(𝑥, 𝑡), 𝑝

2
(𝑥, 𝑡), 𝑝

3
(𝑥, 𝑡) ∈ 𝑃(𝑥, 𝑡),

𝑑 (𝑝
1
, 𝑝
2
) = max
𝑎≤𝑥1≤𝑏

𝑐≤𝑥2≤𝑑

𝑝1 (𝑥, 𝑡) − 𝑝2 (𝑥, 𝑡)


≤ max
𝑎≤𝑥1≤𝑏

𝑐≤𝑥3≤𝑑

𝑝1 (𝑥, 𝑡) − 𝑝3 (𝑥, 𝑡)


+ max
𝑎≤𝑥3≤𝑏

𝑐≤𝑥2≤𝑑

𝑝3 (𝑥, 𝑡) − 𝑝2 (𝑥, 𝑡)


= 𝑑 (𝑝
1
, 𝑝
3
) + 𝑑 (𝑝

3
, 𝑝
2
) .

(37)

So (𝑃, 𝑑) is in the metric spaces.
Assume that 𝑝

𝑛
∈ 𝑃, 𝑛 = 1, 2, . . ., is a Cauchy sequence in

𝑃; for all 𝜀 > 0, ∃𝑁 is positive integers, and s.t. for all 𝑚, 𝑛 >
𝑁, there exists

max
𝑎≤𝑥1≤𝑏

𝑐≤𝑥2≤𝑑

𝑝𝑚 (𝑥, 𝑡) − 𝑝𝑛 (𝑥, 𝑡)
 = 𝑑 (𝑝

𝑚
, 𝑝
𝑛
) < 𝜀.

(38)

So for all {(𝑥
1
, 𝑥
2
) | 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑}, one has |𝑝

𝑚
(𝑥, 𝑡) −

𝑝
𝑛
(𝑥, 𝑡)| < 𝜀, when 𝑡 is a constant, and 𝑝

𝑛
(𝑥, 𝑡), 𝑛 = 1, 2, . . ., is

a Cauchy sequence. Thus, ∃𝑝(𝑥, 𝑡), 𝑝
𝑛
(𝑥, 𝑡) → 𝑝(𝑥, 𝑡), 𝑛 →

∞. By taking the formula (38), when 𝑛 → ∞, 𝑚 > 𝑁, we
can get

max
𝑎≤𝑥1≤𝑏

𝑐≤𝑥2≤𝑑

𝑝𝑚 (𝑥, 𝑡) − 𝑝 (𝑥, 𝑡)
 ≤ 𝜀.

(39)

Above all, for any time 𝑡, 𝑝
𝑚
(𝑥, 𝑡) is convergent with

𝑝(𝑥, 𝑡) uniformly for that 𝑝(𝑥, 𝑡) is continuous. For all
𝑝(𝑥, 𝑡) ∈ 𝑃, 𝑃 is completeness, so that (𝑃, 𝑑) is a complete
function space, and the prior probability density is conver-
gent.

5. Computational Complexity Analysis

According to Section 2, we can draw conclusions that for any
given areaΩ ∈ R2 in a two-dimensional space, the number of
the rectangular area can be calculated as 𝑛

1
×𝑛
2
. Consider that

by taking the probability density of subunit area described in
(34), it holds that

𝑝
𝑖𝑗
=

8

∑
𝑘=1

𝑁
𝑘
⋅ 𝑝
𝑘

𝑖𝑗
{(𝑥, 𝑦) | 𝑥

𝑖−1
< 𝑥 < 𝑥

𝑖
, 𝑦
𝑗−1

< 𝑦 < 𝑦
𝑗
}

(40)

So the computational complexity of the current interpolation
point is

𝑂 (6𝑛
1
× 𝑛
2
+ (𝑛
1
+ 1) × (𝑛

2
+ 1) + 5 (𝑛

1
+ 1) × (𝑛

2
+ 1)) .

(41)

Thus, the computational complexity of 𝑝𝑘
𝑖𝑗
is 𝑂(𝑛

1
×

𝑛
2
). Because the bi-quadratic interpolation method does not

involve matrix inversion, finally, in a Bayesian process, the
computational complexity of Posterior probability density is
𝑂(𝑛
1
×𝑛
2
) as well.Therefore, the computational complexity of

proposed estimatingmethod based on FEM is still𝑂(𝑛
1
×𝑛
2
).

In addition, we can find that the computational complex-
ity will be growing with a linear speed by the quantity of
grid 𝑛

1
× 𝑛
2
. Compared with Particle Filters, assuming that

the number of particles is defined as𝑁 in a two-dimensional
state space and the recursive call was adopted in the process
of particle resampling, so the computational complexity is
calculated as 𝑂(𝑁!). The more number of samples required,
the higher computational complexity does PF. Therefore, the
computational complexity of the new method based on FEM
is simpler than PF.

6. Illustrative Example and Simulations

In this section, consider a reference system in a two-dime-
nsional state space given by [27], which is described as
follows:

𝑑𝑥 = [
−𝑥
2

0.2 (𝑥2
1
− 1) 𝑥

2
+ 𝑥
1

] + 𝑑𝛽,

𝑧
𝑡𝑘
= (

√𝑥2
1
+ 𝑥2
2

arctan(𝑥1
𝑥
2

)
) + 𝑒

𝑡𝑘
,

(42)

where the covariance of 𝑑𝛽 is diag(10, 0.1), and the covari-
ance ofmeasurement noise 𝑒

𝑡𝑘
is diag(0.1, 1). For any time 𝑒

𝑡𝑘
,

it is a two-dimensional whiteGaussian sequence independent
of 𝑑𝛽.
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Figure 3: (a) Approximate density function and the true state at the measurement updates at 1 second. (b) Approximate density function and
true state after the measurement updates at 12 seconds. (c) Approximate density function and true state after the measurement updates at 28
seconds.

Here, for FEM, the interval of time is chosen as 1 s,
the quantity of grid is chosen as 20, and the initial state is
[−0.6 −1]. For PF, the number of particles is chosen as 200.

The performance output of FEM is shown in Figures 3(a),
3(b), and 3(c). The conditional density functions are plotted
with discrete times. After a few measurements, the predicted
density function is bimodal with modes approximately cen-
tered at plus and minus the absolute value of the actual
state, which is what we expect. Numerical experiment results
show that the feasibility of the proposed stochastic estimating
method based on FEM is confirmed.

The true state trajectory and the conditional means of
the trajectories executed by FEM, UKF, and PF are given
in Figures 4(a) and 4(b). Obviously, for a nonlinear non-
Gaussian system, UKF estimating output will lose stableness
after a few measurement updates. Because the measurement
function of UKF should be linearized with the current mean
estimate at each measuring step and the second moment
of probability distribution of system state also has to be

obtained, but the real distribution of probability may not
be normal distribution, the actual state is outside of the
region where the linearization is valid. The result is that
the UKF estimate jumps outside of the region of attraction.
Meanwhile, the FEM performs reasonably well by giving the
limited information available from the measurements and
does not fail because of the nonlinearities in the system and
measurement characteristics.

As the real point in these experiments is generated by
the random number, every simulation result will be different,
therefore; the estimation precision will be measured by using
the root mean square error (RMSE) and standard deviation
of state, which is defined as follows:

𝑅 =
∑
𝑆𝑇

𝑖=1
√(∑
𝑡

𝑘=1
(𝑆
𝑘
− 𝑌
𝑘
)
2

) /𝑡

𝑆𝑇
,

𝜎 =
∑
𝑆𝑇

𝑘=1
∑
𝑡

𝑖=1
√Ε(𝑌

𝑖
− Ε𝑌
𝑖
)
2

𝑡 ⋅ 𝑆𝑇
,

(43)
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Figure 4: (a) Real state and estimated state trajectories by FEM, PF and UKF. (b) The estimated standard deviation of east components by
FEM, UKF, and PF.

Table 1: The root-mean-square error and standard deviation of the
state.

Algorithm 𝑅
𝑥

𝑅
𝑦

𝜎
𝑥

𝜎
𝑦

FE 0.1817 0.2250 0.0956 0.1194
PF 0.2177 0.2444 0.1296 0.1586
UKF 0.5366 0.4965 0.2857 0.3223

where𝑅, 𝜎 are the rootmean square error and standard devi-
ation, and 𝑆

𝑘
, 𝑌
𝑘
are the real position and estimated position.

The experiments will be executed 20 times repeatedly.
Clearly, we can see that the performance of FEM is better

than PF and UKF shown in Table 1.

7. Conclusion

AnFEM-based state estimation approach to nonlinear hybrid
positioning systems has been investigated in this paper. It was
shown that the new filter can be converged to the true density
function in a two-dimensional state space. Furthermore, a
detailed demonstration for how to use the FEM efficiently
is demonstrated, and with a simple example, we can find
that FEM outperforms the UKF and the PF reasonably. It
is envisioned that the filter could be used to process data
from sensors with severely nonlinear output characteristics,
and how to implement FEM algorithm in parallel, especially
for solving high dimension problem. These considerations
should be further extended in our future work.
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