Research Article

Robust Reliable Control of Uncertain Discrete Impulsive Switched Systems with State Delays

Xia Li, Hamid Reza Karimi, and Zhengrong Xiang

1 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
2 Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Correspondence should be addressed to Zhengrong Xiang; xiangzr@mail.njust.edu.cn

Received 10 December 2012; Revised 5 January 2013; Accepted 19 January 2013

Academic Editor: Ligang Wu

Copyright © 2013 Xia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the problem of robust reliable control for a class of uncertain discrete impulsive switched systems with state delays, where the actuators are subjected to failures. The parameter uncertainties are assumed to be norm-bounded, and the average dwell time approach is utilized for the stability analysis and controller design. Firstly, an exponential stability criterion is established in terms of linear matrix inequalities (LMIs). Then, a state feedback controller is constructed for the underlying system such that the resulting closed-loop system is exponentially stable. A numerical example is given to illustrate the effectiveness of the proposed method.

1. Introduction

Switched systems are a class of dynamical systems comprised of several continuous-time or discrete-time subsystems and a rule that orchestrates the switching among different subsystems. These systems have attracted considerable attention because of their applicability and significance in various areas, such as power electronics, embedded systems, chemical processes, and computer-controlled systems [1, 2]. Many works in the field of stability analysis and control synthesis for switched systems have appeared (see [3–11] and references cited therein). However, in the real world, they may not cover all the practical cases. People found that many systems are affected not only by switching among different subsystems, but also impulsive jumps at the switching instants. This kind of systems is named after impulsive switched systems, which have numerous applications in many fields, such as mechanical systems, automotive industry, aircraft, air traffic control, networked control, chaotic-based secure communication, quality of service in the internet, and video coding [12].

Impulsive switched systems have received a considerable research attention for more than one decade. The problems of stability, controllability, and observability for impulsive switched systems have been successfully investigated, and a rich body of the literature has been available [13–17]. In [13], the authors established the necessary and sufficient conditions for controllability and controlled observability with respect to a given switching time sequence. Some results on the stability analysis and stabilization were developed in [14–17]. Because time-delay exists widely in practical environment and often causes undesirable performance, it is necessary and significant to study time delayed systems. Recently, such systems have stirred a great deal of research attention [18–22]. So far, many stability conditions of impulsive switched systems with state delays have been obtained in [23–26].

On the other hand, it is inevitable that the actuators will be subjected to failures in a real environment. A control system is said to be reliable if it retains certain properties when there exist failures. When failure occurs, the conventional controller will become conservative and may not satisfy certain control performance indexes. In this case, reliable control is a kind of effective control approach to improve system reliability. Recently, several approaches for designing reliable controllers have been proposed, and some of them have been used to research the problem of reliable control for switched systems [27–33]. In [27], a design methodology of the robust
This page contains a discussion on the topic of reliable control for switched nonlinear systems with time delays. The section begins with a review of previous work and introduces the problem formulation, preliminary definitions, and lemmas.

2. Problem Formulation and Preliminaries

Consider the following uncertain discrete impulsive switched systems with state delays:

\begin{align}
 x(k+1) &= \tilde{A}_i x(k) + \tilde{A}_i x(k-d) + B_i u_i(k), \quad k \neq k_0 - 1, \ b \in \mathbb{Z}^+, \tag{1} \\
 x(k+1) &= E_{\sigma(k)j} x(k), \quad k = k_0 - 1, \ b \in \mathbb{Z}^+, \tag{2} \\
 x(k+1) &= \phi(\theta), \quad \theta = [-d, 0], \tag{3}
\end{align}

where $x(k) \in \mathbb{R}^n$ is the state vector, $u_i(k) \in \mathbb{R}^p$ is the control input of actuator fault, $\phi(\theta)$ is a discrete vector-valued initial function, d is discrete time delay, $\sigma(k)$ is a switching signal which takes its values in the finite set $\mathbb{N} := \{1, \ldots, N\}$, corresponding to it is the switching sequence $\Theta = \{(k_0, \sigma(k_0)), (k_1, \sigma(k_1)), \ldots, (k_b, \sigma(k_b)), \ldots\}$, where k_0 is the initial time and k_b ($b \in \mathbb{Z}^+$) denotes the bth switching instant. Moreover, $\sigma(k) = i \in \mathbb{N}$ means that the ith subsystem is activated. $\sigma(k-1) = j$ and $\sigma(k) = i (i \neq j)$ indicate that k is a switching instant at which the system is switched from the jth subsystem to the ith subsystem. N denotes the number of subsystems. Note that there exists an impulsive jump described by (2) at the switching instant k_b ($b \in \mathbb{Z}^+$).

Remark 1. The impulsive jump at the switching instant k_b is represented by $E_{\sigma(k_b)j} x(k-1)$. The matrix E_{ij} ($i, j \in \mathbb{N}$) is also used in [34]. Moreover, E_{ij} is a certain real-valued matrix with appropriate dimension and means that the impulse is only determined by the subsystems activated before and after the specific switching instant k_b.

For each $i \in \mathbb{N}$, \tilde{A}_i, \tilde{A}_i are uncertain real-valued matrices with appropriate dimensions and satisfy

\[
 \begin{bmatrix}
 \tilde{A}_i & A_i \\
 A_i & \tilde{A}_i
 \end{bmatrix} = \begin{bmatrix}
 A_i & D_i \\
 D_i & A_i
 \end{bmatrix} + H F_i(k) \begin{bmatrix}
 M_{i1} & M_{i2}
 \end{bmatrix}, \tag{4}
\]

where $A_i, \tilde{A}_i, D_i, H_i, M_{i1}$, and M_{i2} ($i \in \mathbb{N}$) are known real constant matrices with approximate dimensions. $F_i(k)$ is unknown and possibly time-varying matrices with Lebesgue measurable elements and satisfy

\[
 F_i^T(k) F_i(k) \leq I. \tag{5}
\]

The control input of actuator fault $u_i(k)$ can be described as

\[
 u_i(k) = \Omega_{\sigma(k)} u(k), \tag{6}
\]

where $u(k) = K_{\sigma(k)} x(k)$ is the control input to be designed, Ω_i ($i \in \mathbb{N}$) are the actuator fault matrices with the following form:

\[
 \Omega_i = \begin{bmatrix}
 \omega_{i1} & \omega_{i2} \\
 \omega_{i2} & \omega_{i3}
 \end{bmatrix}, \tag{7}
\]

where $0 \leq \omega_{ijk} \leq \omega_{iik} \leq \omega_{iik} \leq 1$.

For simplicity, we define

\[
 \Omega_0 = \begin{bmatrix}
 \bar{\omega}_{i1} & \bar{\omega}_{i2} \\
 \bar{\omega}_{i2} & \bar{\omega}_{i3}
 \end{bmatrix}, \tag{8}
\]

where $\bar{\omega}_{ii} = \frac{1}{2} (\omega_{ii} + \omega_{iik})$, $\xi_{iik} = \frac{\omega_{iik} - \omega_{ijk}}{\omega_{iik} + \omega_{ijk}}$, and $\Omega_i = \begin{bmatrix}
 \Theta_{i1} & \Theta_{i2} & \ldots & \Theta_{ip}
 \end{bmatrix}$,

\[
 \Theta_{ik} = \frac{\omega_{iik} - \omega_{ijk}}{\omega_{iik}}, \tag{9}
\]

Thus, we have

\[
 \Omega_i = \Omega_0(I + \Theta_i), \quad |\Theta_i| \leq \xi_{iik}^2 \leq I,
\]

where $|\Theta_i| = \begin{bmatrix}
 |\Theta_{i1}|, |\Theta_{i2}|, \ldots, |\Theta_{ip}|
 \end{bmatrix}$.

Before ending this section, we introduce the following definitions and lemmas.
Definition 2 (see [34]). Let \(N_\sigma(k_0, k) \) denote the switching number of \(\sigma(k) \) during the interval \([k_0, k]\). If there exist \(N_0 \geq 0 \) and \(\tau_a \geq 0 \) such that
\[
N_\sigma(k_0, k) \leq N_0 + \frac{k - k_0}{\tau_a}, \quad \forall k \geq k_0,
\]
then \(\tau_a \) and \(N_0 \) are called the average dwell time and the chatter bound, respectively.

Remark 3. In this paper, the average dwell time method is used to restrict the switching number during a time interval such that the stability of system (1), (2), and (3) can be guaranteed.

Definition 4 (see [35]). The system (1), (2), and (3) is said to be exponentially stable if its solution satisfies
\[
\|x(k)\| \leq \eta \|x(k_0)\| \rho^{-(k-k_0)}, \quad \forall k \geq k_0,
\]
for any initial condition \(x(k_0 + \theta), \theta = [-d, 0] \), where \(\eta > 0 \) and \(\rho > 1 \) is the decay rate, \(\|x(k_0)\| = \max_{k_0 \leq k < k_0 + d} \{x(k)\} \).

Lemma 5 (see [35]). For a given matrix \(S = [S_{11} S_{12}; S_{21} S_{22}] \), where \(S_{11}, S_{22} \) are square matrices, then the following conditions are equivalent:

(i) \(S < 0 \),
(ii) \(S_{11} < 0, S_{22} - S_{12}^T S_{11}^{-1} S_{12} < 0 \),
(iii) \(S_{22} < 0, S_{11} - S_{12} S_{22}^{-1} S_{12}^T < 0 \).

Lemma 6 (see [36]). Let \(U, V, W, \) and \(X \) be real matrices of appropriate dimensions with \(X \) satisfying \(X = X^T \), then for all \(V^T V \leq I, X + UVW + W^T V^T U^T < 0 \), if and only if there exists a scalar \(\varepsilon \) such that \(X + \varepsilon U U^T + \varepsilon^{-1} W^T W < 0 \).

Lemma 7 (see [37]). For matrices \(Q_1, Q_2 \) with appropriate dimensions, there exists a positive scalar \(\varepsilon \) such that
\[
Q_1 \Sigma Q_2 + Q_2^T \Sigma^T Q_1^T \leq \varepsilon Q_1 U Q_1^T + \varepsilon^{-1} Q_2^T U Q_2
\]
holds, where \(\Sigma \) is a diagonal matrix and \(U \) is a known real-value matrix satisfying \(|\Sigma| \leq U \).

3. Main Results

3.1. Stability Analysis. In this subsection, we consider the exponential stability of the following uncertain discrete impulse switched systems with state delays:
\[
x(k + 1) = \tilde{A}_{\sigma(k)} x(k) + \tilde{A}_{\sigma_0(k)} x(k - d),
\]
\[
k \neq k_h - 1, b \in Z^+,
\]
\[
x(k + 1) = E_{\sigma(k+1)} \sigma(k) x(k), \quad k = k_h - 1, b \in Z^+,
\]
\[
x(k + 1) = \phi(\theta), \quad \theta = [-d, 0].
\]

Theorem 8. Consider system (13), (14), and (15), for given positive scalars \(d, 0 < \alpha < 1 \), if there exist positive definite symmetric matrices \(X_i, N_i \) (\(i \in \mathbb{N} \)) with appropriate dimensions and positive scalars \(\varepsilon_i \) such that
\[
\begin{bmatrix}
-\alpha X_i & 0 & X_i A_i^T & X_i & X_i M_i^T \\
0 & -\alpha^d N_i & N_i A_i^T & 0 & N_i M_i^T \\
0 & 0 & -X_i + \varepsilon_i H_i H_i^T & 0 & 0 \\
0 & 0 & 0 & -N_i & 0 \\
0 & 0 & 0 & 0 & -\varepsilon_i I
\end{bmatrix} < 0.
\]

Then, under the following average dwell time scheme:
\[
\tau_a > \tau_a^* = \frac{\ln \mu}{\ln \alpha} + 1,
\]
the system is exponentially stable, where \(\mu \geq 1 \) satisfies
\[
\begin{bmatrix}
-\mu X_i & X_i F_{ii} & X_i \\
* & -X_j & 0 \\
* & * & -N_j
\end{bmatrix} < 0,
\]

where
\[
\alpha N_i \leq \mu N_j, \quad \forall i, j \in \mathbb{N}, i \neq j.
\]

Proof. Choose the following piecewise Lyapunov function candidate for system (13), (14), and (15):
\[
V(k) = V_{\sigma(k)}(k),
\]
and the form of each \(V_{\sigma(k)}(k) \) is given by
\[
V_{\sigma(k)}(k) = V_{1\sigma(k)}(k) + V_{2\sigma(k)}(k),
\]
where
\[
V_{1\sigma(k)}(k) = x^T(k) P_{\sigma(k)} x(k),
\]
\[
V_{2\sigma(k)}(k) = \sum_{r=k-d}^{k-1} x^T(r) R_{\sigma(k)} x(r) \alpha^{k-r-1}.
\]

Let \(k_1, \ldots, k_b \) denote the switching instants during the interval \([k_0, k]\). Without loss of generality, assume that the \(i \)th subsystem is activated at the switching instant \(k_{h-1} \), and the \(j \)th subsystem is activated at the switching instant \(k_{b} \). When \(k \in [k_{h-1}, k_{b}) \), \(\sigma(k) = \sigma(k + 1) = i \) (\(i \in \mathbb{N} \)), along the trajectory of system (13), (14), and (15), we have
\[
V_j(x(k + 1)) - \alpha V_j(x(k)) = x^T(k + 1) P_j x(k + 1)
\]
\[
+ \sum_{r=k-1-d}^{k} x^T(r) R_j x(r) \alpha^{k-r} - \alpha x^T(k) P_j x(k)
\]
\[
- \sum_{r=k-d}^{k-1} x^T(r) R_j x(r) \alpha^{k-r}.
\]
Thus,

\[V_i(x(k+1)) - \alpha V_i(x(k)) = X^T(k) \varphi_i X(k), \quad (23) \]

where

\[
\varphi_i = \begin{pmatrix}
R_i - \alpha P_i & 0 \\
0 & -\alpha^d R_i
\end{pmatrix} + \begin{pmatrix}
\tilde{A}^T_i \\
\tilde{A}^T_{di}
\end{pmatrix} P_i \begin{pmatrix}
\tilde{A}_i & \tilde{A}_{di}
\end{pmatrix},
\]

\[X(k) = \begin{bmatrix} x^T(k) & x^T(k - d) \end{bmatrix}^T. \quad (24) \]

Thus, if the following inequality holds:

\[
\begin{pmatrix}
R_i - \alpha P_i & 0 \\
0 & -\alpha^d R_i
\end{pmatrix} + \begin{pmatrix}
\tilde{A}^T_i \\
\tilde{A}^T_{di}
\end{pmatrix} P_i \begin{pmatrix}
\tilde{A}_i & \tilde{A}_{di}
\end{pmatrix} < 0, \quad (25)
\]

then we have

\[V_i(x(k+1)) < \alpha V_i(x(k)). \quad (26) \]

Using diag\([P_i^{-1}, R_i^{-1}]\) to pre- and postmultiply the left term of (25) and applying Lemma 5, we can obtain that (25) is equivalent to the following inequality:

\[
\begin{pmatrix}
-\alpha P_i^{-1} & 0 & P_i^{-1} \tilde{A}_i \\
* & -\alpha^d R_i^{-1} & R_i^{-1} \tilde{A}_{di}^T \\
* & * & -P_i^{-1} \\
* & * & -R_i^{-1}
\end{pmatrix} < 0. \quad (27)
\]

Denote that \(X_i = P_i^{-1}, N_i = R_i^{-1} \), then substituting (4) into (27) and applying Lemma 6, we can obtain that (16) and (27) are equivalent.

When \(k = k_b - 1 \), \(\sigma(k+1) = \sigma(k_b) = j \), \(\sigma(k) = \sigma(k_b - 1) = i, i \neq j \), along the trajectory of system (13), (14), and (15), we have

\[
V_j(x(k_b)) = x^T(k_b) P_j x(k_b) + \sum_{r=k_b-d}^{k_b-1} x^T(r) R_j x(r) \alpha^{k_r-r-1},
\]

\[
V_i(x(k_b)) = x^T(k_b - 1) P_i x(k_b - 1) + \sum_{r=k_b-d}^{k_b-2} x^T(r) R_i x(r) \alpha^{k_r-r-2},
\]

\[
V_j(x(k_b)) - \mu V_i(x(k_b - 1)) = x^T(k_b - 1) (E_{ji}^T P_j E_{ji} - \mu P_i) x(k_b - 1)
\]

\[
+ \sum_{r=k_b-d}^{k_b-1} x^T(r) R_j x(r) \alpha^{k_r-r-1}
\]

\[
- \mu \sum_{r=k_b-1}^{k_b-2} x^T(r) R_i x(r) \alpha^{k_r-r-2}
\]

\[
= x^T(k_b - 1) (E_{ji}^T P_j E_{ji} - \mu P_i + R_j) x(k_b - 1)
\]

\[
- \mu x^T(k_b - 1 - d) R_j x(k_b - 1 - d) \alpha^{d-2}
\]

\[
+ \sum_{r=k_b+1-d}^{k_b-2} \alpha^{k_r-r-2} x^T(r) (\alpha R_j - \mu R_i) x(r). \quad (28)
\]

From (18), we can get the following inequalities for all \(i, j \in N, i \neq j \):

\[
E_{ji}^T P_j E_{ji} - \mu P_i + R_j < 0,
\]

\[
\alpha R_j - \mu R_i \leq 0. \quad (29)
\]

Then, it is not difficult to get

\[V_j(x(k_b)) < \mu V_i(x(k_b - 1)), \quad i \neq j. \quad (30) \]

Thus, for \(k \in [k_b, k_{b+1}) \), we have

\[
V_{\sigma(k)}(x(k)) < \alpha^{k-k_b} V_{\sigma(k_b)}(x(k_b))
\]

\[
< \mu \alpha^{k-k_b} V_{\sigma(k_{b+1})}(x(k_{b+1})). \quad (31)
\]

Repeating the above manipulation, one has that

\[
V_{\sigma(k)}(x(k))
\]

\[
< \alpha^{k-k_b} V_{\sigma(k_b)}(x(k_b))
\]

\[
< \mu \alpha^{k-k_b} V_{\sigma(k_{b+1})}(x(k_{b+1}))
\]

\[
\leq \mu \alpha^{k-k_{b+1}} V_{\sigma(k_{b+1})}(x(k_{b+1}))
\]

\[
= \mu \alpha^{k-k_{b+1}} V_{\sigma(k_{b+1})}(x(k_{b+1}))
\]

\[
< \mu^2 \alpha^{k-k_{b+1}} V_{\sigma(k_{b+1})}(x(k_{b+1}))
\]

\[
< \cdots
\]

\[
< \mu^b \alpha^{k-k_{b+1}} V_{\sigma(k_{b+1})}(x(k_{b+1})). \]
From Definition 2, we know that $b = N_o(k_0, k)$, then
$$b \leq N_0 + \frac{k - k_0}{\tau_a}. \quad (33)$$

It follows that
$$V_{\sigma(k)}(x(k)) = \mu \beta e^{-\beta(k-k_0)}V_{\sigma(k_0)}(x(k_0)) \leq \left(\mu \alpha^{-1}\right)^{N_o} e^{((k-k_0)/\tau_a)} \beta^{(k-k_0)} \alpha^\alpha V_{\sigma(k_0)}(x(k_0)), \quad (34)$$

that is,
$$\|x(k)\| < \eta \|x(k_0)\| \alpha^{-\alpha(k-k_0)}, \quad \forall k \geq k_0, \quad (35)$$

where
$$\eta = \sqrt{\frac{\max_{\lambda \in \mathbb{N}} \lambda \max \left(X^{-1}\right) + d \max \left(N^{-1}_i\right)}{\min_{\lambda \in \mathbb{N}} \lambda \min \left(X^{-1}\right)}}, \quad \rho = e^{-(\ln \mu - \ln \alpha)/\tau_a} \alpha^{\alpha/2}, \quad \|x(k_0)\| = \max_{k_0 \leq k \leq k_0} \|x(k)\|. \quad (36)$$

Then under the average dwell time scheme (17), it is easy to get that $\rho > 1$, which implies that the system (13), (14), and (15) is exponentially stable.

This completes the proof. \qed

Remark 9. When $\mu = 1$, conditions (18) can be reduced to the following inequalities:
$$\begin{bmatrix} -X_i & X_i E_j^T & X_j & * & -X_j & 0 & * & * & -N_j \end{bmatrix} < 0, \quad (37)$$

then $\tau_{a}^{*} = 1$.

Remark 10. It should be noted that some stability results of discrete delayed systems with and without impulsive jumps have been obtained by using standard Lyapunov-Krasovskii function approach (see [5, 7, 38]). In this paper, these stability criteria are extended to discrete impulsive switched delayed system (1), (2), and (3). However, due to the fact that there exist impulsive jumps described by (2) at the switching instants, the criterion in Theorem 8 is different from the existing ones. The result is essential for designing the reliable controller for system (1), (2), and (3).

3.2. Robust Reliable Control

In this subsection, we are interested in designing a state feedback controller such that the resulting closed-loop system is exponentially stable.

For system (1), (2), and (3), under switching controller $u(k) = K_o(k)x(k)$, the corresponding closed-loop system is given by
$$x(k + 1) = \left(A_o(k) + B_o(k)\Omega_{\sigma(k)}K_o(k)\right)x(k) + \tilde{A}_{o\sigma(k)}x(k - d), \quad k \neq k_b - 1, \ b \in \mathbb{Z}^+, \quad (38)$$
$$x(k + 1) = E_{\sigma(k + 1)\sigma(k)}x(k), \quad k = k_b - 1, \ b \in \mathbb{Z}^+, \quad (39)$$
$$x(k_0 + \theta) = \phi(\theta), \quad \theta = [-d, 0]. \quad (40)$$

Theorem 11. Consider the system (1), (2), and (3), for given positive scalars d and $\alpha < 1$; suppose there exist positive definite symmetric matrices X_i, N_i, any matrices W_i with appropriate dimensions, and positive scalars $\epsilon_i, \gamma_i, i \in \mathbb{N}$, such that

$$\begin{bmatrix} -\alpha X_i & X_i A_j^T & W_j^T A_j^T & X_i & X_i M_i^T & W_i^T \end{bmatrix} \left(\begin{array}{cccc} -\alpha^d X_i & 0 & N_i & 0 \ A_j^T 0 & 0 & 0 \ 0 & 0 & 0 \ \gamma_i 0 & 0 & 0 \ \gamma_i 0 & 0 & 0 \ \gamma_i 0 & 0 & 0 \ \end{array} \right) < 0. \quad (41)$$

Then, under the reliable controller

$$u(k) = K_o(k)x(k), \quad K_i = W_i X_i^{-1} \quad (i \in \mathbb{N}), \quad (42)$$

and the average dwell time scheme (17) with μ satisfying (18), the corresponding closed-loop system (38), (39), and (40) is exponentially stable.

Proof. From Theorem 8, we know that system (38), (39), and (40) is exponentially stable if (18) and the following inequality hold:

$$\begin{bmatrix} -\alpha X_i & X_i \tilde{A}_j^T & X_i & X_i M_i^T \end{bmatrix} \left(\begin{array}{cccc} -\alpha^d X_i & 0 & N_i & 0 \ A_j^T 0 & 0 & 0 \ 0 & 0 & 0 \ \gamma_i 0 & 0 & 0 \ \gamma_i 0 & 0 & 0 \ \gamma_i 0 & 0 & 0 \ \end{array} \right) < 0, \quad (43)$$
where $\bar{A}_i = A_i + B_i \Omega_i K_i$, $\Omega_i = \Omega_{i0} (I + \Theta_i)$, and $|\Theta_i| \leq \Xi_i$; it can be obtained that (43) can be rewritten as the following inequality:

$$\begin{pmatrix}
-\alpha X_i & 0 & X_i A_i^T + (K_i X_i)^T \pi_{x_i}^T B_i X_i & X_i M_i^T \\
* & -\alpha d N_i & N_i A_i^{T_{di}} & 0 & N_i M_i^{T_{di}} \\
* & * & -X_i + \epsilon H_i R_i^T & 0 & 0 \\
* & * & * & -N_i & 0 \\
* & * & * & * & -\epsilon J
\end{pmatrix} + \left(\begin{array}{c}
0 \\
\Theta_i \left(\begin{array}{c}K_i X_i \\
0 \\
0 \\
0 \\
0\end{array}\right) + \left(\begin{array}{c}
k_i X_i \\
0 \\
0 \\
0 \\
0\end{array}\right) \Theta_i^T \left(\begin{array}{c}0 \\
8.0_\alpha \\
0 \\
0 \\
0\end{array}\right) \right)^T < 0.
$$

(44)

Denote that $W_i = K_i X_i$, then according to Lemmas 5 and 7, we can easily get that (44) holds if (41) is satisfied, that is to say, (41) guarantees that (43) is tenable. This completes the proof.

Remark 12. In Theorem II, a reliable controller design method is proposed for discrete impulsive switched delayed system (1), (2), and (3) with actuator fault. It is noted that a kind of matrix $\Omega_i (i \in N)$, which is successfully adopted in [27, 28], is introduced to describe all the situations that may be encountered in the actuator.

Remark 13. It should be noted that α plays a key role in obtaining the infimum of the average dwell time τ_a. From Theorem II, it is easy to see that a larger α will be favorable to the solvability of inequality (41), which leads to a larger value for the average dwell time τ_a. Considering these, we can first select a larger α to guarantee the feasible solution of inequality (41) and then decrease α to obtain the suitable infimum of the average dwell time τ_a.

The detailed procedure of controller design can be given in the following algorithm.

Algorithm 14. We have the following.

Step 1. Given the system matrices and positive constants ϵ_i, γ_i and $0 < \alpha < 1$, by solving the LMI (41), we can get the solutions of the matrices W_i, X_i, and N_i. Then the controller gain matrices can be obtained by (42).

Step 2. Substitute matrices X_i and N_i into (18), then solving (18), we can find the infimum of μ.

Step 3. Then the average dwell time τ_a can be obtained by (17).

4. Numerical Example

In this section, we present an example to illustrate the effectiveness of the proposed approach. Consider system (1), (2), and (3) with parameters as follows:

$$A_1 = \begin{bmatrix} 2 & -5 \\ 1 & -1.5 \end{bmatrix}, \quad A_{d1} = \begin{bmatrix} -0.4 & 0 \\ -0.1 & -0.1 \end{bmatrix},$$

$$B_1 = \begin{bmatrix} -0.4 & 0 \\ -0.1 & -0.1 \end{bmatrix}, \quad H_1 = \begin{bmatrix} 0.1 & 0 \\ 0.1 & 0.1 \end{bmatrix}.$$

Then we can obtain

$$M_1 = \begin{bmatrix} 0.2 & -0.3 \\ 0 & -0.2 \end{bmatrix}, \quad M_{21} = \begin{bmatrix} 0.1 & 0 \\ 0.1 & 0.22 \end{bmatrix},$$

$$F_1 = \begin{bmatrix} \sin(0.5 \pi k) & 0 \\ 0 & \sin(0.2 \pi k) \end{bmatrix},$$

$$A_2 = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}, \quad A_{d2} = \begin{bmatrix} -0.2 & 0 \\ -0.4 & 0.3 \end{bmatrix},$$

$$B_2 = \begin{bmatrix} -0.2 & 0 \\ -0.4 & 0.3 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 0.2 & 0.1 \\ 0.1 & 0.3 \end{bmatrix},$$

$$M_{12} = \begin{bmatrix} 0.2 & 0 \\ 0.2 & 0.1 \end{bmatrix}, \quad M_{22} = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix},$$

$$F_2 = \begin{bmatrix} \sin(0.5 \pi k) & 0 \\ 0 & \sin(0.2 \pi k) \end{bmatrix},$$

$$E_{12} = \begin{bmatrix} 3.5 & 0 \\ 0 & 3.6 \end{bmatrix}, \quad E_{21} = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}.$$

(45)

The fault matrices $\Omega_i = \text{diag}[\omega_{i1}, \omega_{i2}]$ $(i = 1, 2)$, where

$$0.4 \leq \omega_{i1} \leq 0.5, \quad 0.5 \leq \omega_{i2} \leq 0.6, \quad 0.5 \leq \omega_{i2} \leq 0.6, \quad 0.4 \leq \omega_{i2} \leq 0.5.$$

(46)

Given $\alpha = 0.7, \epsilon_1 = \epsilon_2 = 0.1, \gamma_1 = 0.3, \gamma_2 = 0.3$, then solving the matrix inequality (41) in Theorem II, we get

$$X_1 = \begin{bmatrix} 0.0095 & 0.0046 \\ 0.0046 & 0.0058 \end{bmatrix},$$

$$N_1 = \begin{bmatrix} 0.0203 & 0.0116 \\ 0.0116 & 0.0573 \end{bmatrix},$$

$$W_1 = \begin{bmatrix} -0.0192 & -0.0902 \\ 0.0657 & 0.0170 \end{bmatrix},$$

$$X_2 = \begin{bmatrix} 0.0106 & 0.0098 \\ 0.0098 & 0.0445 \end{bmatrix},$$

$$N_2 = \begin{bmatrix} 0.0528 & 0.0383 \\ 0.0383 & 0.1505 \end{bmatrix},$$

$$W_2 = \begin{bmatrix} 0.1124 & 0.0990 \\ -0.0113 & 0.1886 \end{bmatrix}.$$

(48)
Then from (42), the controller gain matrices can be obtained

\[
K_1 = \begin{bmatrix}
8.9155 & -22.5632 \\
8.9651 & -4.1574
\end{bmatrix},
\]

\[
K_2 = \begin{bmatrix}
10.6963 & -0.1343 \\
-6.2374 & 5.6124
\end{bmatrix}.
\]

(49)

According to conditions (18), we can get \(\mu = 11.5633 \). From (17), it can be obtained that \(\tau_a^* = 7.863 \). Choosing \(\tau_\alpha = 8 \), the simulation results are shown in Figures 1 and 2, where the initial value \(x(0) = [3 \ 4]^T \), \(x(\theta) = 0 \), and \(\theta \in [-d, 0) \). Figure 1 depicts the switching signal, and the state trajectories of the closed-loop system are shown in Figure 2.

From Figures 1 and 2, it can be observed that the designed controller can guarantee the asymptotic stability of the closed-loop system. This demonstrates the effectiveness of the proposed method.

5. Conclusions

This paper has investigated the problem of robust reliable control for a class of uncertain discrete impulsive switched systems with state delays. By employing the average dwell time approach, an exponential stability criterion has been proposed in terms of a set of LMIs. On the basis of the obtained stability criterion, the robust reliable controller has been designed. An illustrative example has also been given to illustrate the applicability of the proposed approach.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant Nos. 60974027 and 61273120.

References

Submit your manuscripts at http://www.hindawi.com