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We are concerned with the Cauchy problem connected with the Helmholtz equation. We propose a numerical method, which is
based on theHelmholtz representation, for obtaining an approximate solution to the problem, and then we analyze the convergence
and stability with a suitable choice of regularization method. Numerical experiments are also presented to show the effectiveness
of our method.

1. Introduction

The Cauchy problem for the Helmholtz equation arises in
many areas of science, such as wave propagation, vibration,
and electromagnetic scattering [1–4]. It is well known that
the Cauchy problem is unstable. The solution is unique
in some proper solution spaces, but it does not depend
continuously on the Cauchy data. For the stability of this
problem, we can refer to [5–7]. There are many authors in
the literature to investigate this problem, andmany numerical
methods are proposed. In [8], Sun et al. investigate a potential
function method for this method based on the Tikhonov
regularization. In [4, 9], Marin et al. investigate the boundary
elementmethod via alternating iterative and conjugate gradi-
ent method. The boundary knot method can be found by Jin
and Zheng [10, 11]. For the method of fundamental solutions,
we can refer toMarin and Lesnic [12] andWei et al. [13]. Study
on themomentmethod andboundary particlemethod can be
found in Wei et al. [14] and Chen and Fu [15].

The main purpose of this paper is to provide a numerical
method for solving the Cauchy problem connected with the
Helmholtz equation. The main idea is to formulate integral
equations to the Cauchy problem by Green’s representation
theorem for the solution of the Helmholtz equation. This
method was used to reconstruct the shape for the Laplace
equation, we refer to Cakoni et al. [16, 17], and to solve a
Cauchy problem by Chapko and Johansson [18]. In [19], the

authors gave a numerical method of the Cauchy problem for
the Laplace equation by using single-layer potential function
and jump relations and discussed the decay rate for singular
values of Laplacian via singular value decomposition.

The outline of this paper is as follows. In Section 2, we
present the formulation of integral equations to the Cauchy
problem. In Section 3, we solve the integral equations by the
Tikhonov regularization method with the Morozov princi-
ple and analyze the convergence and stability. Finally, two
numerical examples are included to show the effectiveness of
our method.

2. Formulation of Integral Equations

Let 𝐷 ⊂ R2 be a bounded and simply connected domain
with a regular boundary 𝜕𝐷 ∈ C2 and let 𝜕𝐷 consist of two
nonintersecting parts Γ and Σ, Σ∪ Γ = 𝜕𝐷, where Γ and Σ are
nonempty. In general, we assume that Γ is an open-connected
subset of 𝜕𝐷. Consider the following Cauchy problem. Given
Cauchy data 𝑓

𝐷
and 𝑓

𝑁
on Γ, we find 𝑢, such that 𝑢 satisfies

Δ𝑢 + 𝑘
2
𝑢 = 0, in 𝐷, (1)

𝑢 = 𝑓
𝐷
, on Γ,

𝜕𝑢

𝜕𝑛
= 𝑓
𝑁
, on Γ,

(2)
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where 𝑛 is the unit normal to the boundary 𝜕𝐷 directed into
the exterior of 𝐷 and the wave number 𝑘 > 0. Without loss
of generality, we make the assumption on the measured data
that𝑓

𝐷
∈ 𝐻
1
(Γ) and𝑓

𝑁
∈ 𝐿
2
(Γ) and suppose that the Cauchy

problem has a unique solution 𝑢 in𝐻3/2(𝐷) [14, 20].
From Green’s representation theorem for the solutions of

the Helmholtz equation [21], we know that the solution 𝑢 of
(1) has the following form:

𝑢 (𝑥) = ∫
𝜕𝐷

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) ,

𝑥 ∈ 𝐷.

(3)

Here, Φ(𝑥, 𝑦) = (𝑖/4)𝐻(1)
0
(𝑘|𝑥 − 𝑦|).

From the jump relations, we have

1

2
𝑢 (𝑥) = ∫

𝜕𝐷

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) ,

𝑥 ∈ 𝜕𝐷.

(4)

Then, we have the following integral equations:

∫
Σ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦)

=
1

2
𝑢 (𝑥) − ∫

Γ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) ,

𝑥 ∈ Γ,

∫
Σ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) −

1

2
𝑢 (𝑥)

= −∫
Γ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) ,

𝑥 ∈ Σ.

(5)

Theorem 1. Integral equation (5) has at most one solution.

Proof. It is sufficient to prove that the homogeneous problem
has a unique solution (𝑢|

Σ
, (𝜕𝑢/𝜕])|

Σ
) = (0, 0), which means

that the following equations:

∫
Σ

{
𝜕𝑢

𝜕]
(𝑦) Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) = 0, 𝑥 ∈ Γ,

(6)

∫
Σ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) −

1

2
𝑢 (𝑥) = 0,

𝑥 ∈ Σ,

(7)

have a unique solution (𝑢|
Σ
, (𝜕𝑢/𝜕])|

Σ
) = (0, 0). Let

𝜔 (𝑥) = ∫
Σ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) ,

𝑥 ∈ 𝑅
2
\ 𝜕𝐷.

(8)

By (6), we know that 𝜔(𝑥)|
Γ

= 0. From the properties
of single-double layer and the jump relations [22–24], we
deduce

lim
𝑥→Σ

+

𝜔 (𝑥) = ∫
Σ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦)

−
1

2
𝑢 (𝑥) .

(9)

By (7), we know that

lim
𝑥→Σ

+

𝜔 (𝑥) = 0, (10)

from the radiation at infinite and the uniqueness of the
exterior boundary value problem for the Helmholtz equation
yields that 𝜔 vanishes in the exterior of𝐷. So 𝜔 = 0 in 𝑅2 \𝐷.
Thus, we can easily get

𝜔 = 0, 𝑥 ∈ Γ,

𝜕𝜔

𝜕𝑛
= 0, 𝑥 ∈ Γ.

(11)

𝜕𝐷 ∈ C2 yields the uniqueness of the Cauchy problem [7],
and we conclude that 𝜔 = 0 in 𝑅

2
/𝜕𝐷. From the jump

relations [25], we have

𝑢|Σ = 𝑢|Σ− − 𝑢|Σ+ = 0,
𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ

=
𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ+
−
𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ−
= 0.

(12)

This completes the proof.

For simplicity, we define some operators and symbols as
follows:

(𝐴
1
𝜑) (𝑥) = ∫

Σ

𝜑 (𝑦)Φ (𝑥, 𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ Γ,

(𝐵
1
𝜑) (𝑥) = −∫

Σ

𝜑 (𝑦)
Φ (𝑥, 𝑦)

𝜕] (𝑦)
𝑑𝑠 (𝑦) , 𝑥 ∈ Γ,

(𝐴
2
𝜑) (𝑥) = ∫

Σ

𝜑 (𝑦)Φ (𝑥, 𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ Σ,

(𝐵
2
𝜑) (𝑥) = −∫

Σ

𝜑 (𝑦)
Φ (𝑥, 𝑦)

𝜕] (𝑦)
𝑑𝑠 (𝑦) , 𝑥 ∈ Σ,
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Table 1: Regularization parameter 𝛼 and errors for Example 1 of Case 1 with 𝑘 = 3.

Noise 𝛼 ‖𝑈
𝛿

𝛼(𝛿)
− 𝑢‖
𝐿
2
(∑)

‖𝑉
𝛿

𝛼(𝛿)
− 𝜕
𝑛
𝑢‖
𝐿
2
(∑)
/‖𝜕
𝑛
𝑢‖
𝐿
2
(∑)

0 7.78 × 10
−15

8.29 × 10
−4

3.6 × 10
−3

0.001 2.53 × 10
−6

2.20 × 10
−2

5.62 × 10
−2

0.01 2.08 × 10
−4

6.58 × 10
−2

1.21 × 10
−1

0.03 7.75 × 10
−4

8.53 × 10
−2

1.33 × 10
−1

Table 2: Regularization parameter 𝛼 and errors for Example 1 of Case 1 with 𝑘 = 8.

Noise 𝛼 ‖𝑈
𝛿

𝛼(𝛿)
− 𝑢‖
𝐿
2
(∑)

‖𝑉
𝛿

𝛼(𝛿)
− 𝜕
𝑛
𝑢‖
𝐿
2
(∑)
/‖𝜕
𝑛
𝑢‖
𝐿
2
(∑)

0 3.36 × 10
−16

9 × 10
−3

4.25 × 10
−2

0.001 1.16 × 10
−6

3.56 × 10
−2

8.07 × 10
−2

0.01 3.14 × 10
−5

5.13 × 10
−2

1.07 × 10
−1

0.03 2.85 × 10
−4

5.24 × 10
−2

1.19 × 10
−1

𝑓 (𝑥) =
1

2
𝑢 (𝑥)

− ∫
Γ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦) − 𝑢 (𝑦)

Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) ,

𝑥 ∈ Γ,

𝑔 (𝑥) = −∫
Γ

{
𝜕𝑢

𝜕]
(𝑦)Φ (𝑥, 𝑦)

−𝑢 (𝑦)
Φ (𝑥, 𝑦)

𝜕] (𝑦)
} 𝑑𝑠 (𝑦) ,

𝑥 ∈ Σ,

𝑈 (𝑥) = 𝑢 (𝑥)|
Σ
, 𝑉 (𝑥) =

𝜕𝑢

𝜕]
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ

.

(13)

By the above definitions, we have the following simple equa-
tions:

(𝐴
1
𝑉) (𝑥) + (𝐵

1
𝑈) (𝑥) = 𝑓 (𝑥) , 𝑥 ∈ Γ,

(𝐴
2
𝑉) (𝑥) + ((𝐵

2
−
1

2
𝐼)𝑈) (𝑥) = 𝑔 (𝑥) , 𝑥 ∈ Σ.

(14)

Supposing that the endpoints of Γ are 𝐴 and 𝐵, we can find
that V satisfies the Helmholtz equation and satisfies V(𝐴) =
𝑢(𝐴), V(𝐵) = 𝑢(𝐵); let 𝜔(𝑥) = 𝑢(𝑥) − V(𝑥); then 𝜔(𝑥) is a
solution of the Helmholtz equation and 𝜔(𝐴) = 𝜔(𝐵) = 0, so
we can fix 𝑓

𝐷
(𝐴) = 𝑓

𝐷
(𝐵) = 0 and define

(𝐴
󸀠

2
𝜓) (𝑥) = ∫

𝜕𝐷

𝜓 (𝑦)Φ (𝑥, 𝑦) 𝑑𝑠 (𝑦) , 𝑥 ∈ Σ, (15)

where

𝜓 (𝑦) = {
𝜑 (𝑦) , 𝑦 ∈ Σ,

0, 𝑦 ∈ Γ.
(16)

Remark 2. For the construction of the function V, we can give
a simple example. Supposing that 𝐴 = (0, 0) and 𝐵 = (1, 0),
𝑢
𝐴
= 𝑎,𝑢

𝐵
= 𝑏, 𝑎 ̸= 𝑏, we can fix V(𝑥) = 𝑎(1−𝑥

1
)𝑒
𝑖𝑘𝑥
2+𝑏𝑥
2
𝑒
𝑖𝑘𝑥
2 .

From zero extension, we will get the following lemma.

Lemma 3. The operator 𝐴
󸀠

2
is compact from 𝐿

2
(𝜕𝐷) to

𝐻
1
(𝜕𝐷) [21, Theorem 3.6]; thus, the operators 𝐴

2
and 𝐵

2
are

compact from 𝐿
2
(Σ) to 𝐿2(Σ) and𝐴

1
and 𝐵

1
are compact from

𝐿
2
(Σ) to 𝐿2(Γ).

From Theorem 1, we know that the Cauchy problem has
a unique solution without the restriction on 𝑘2, and thus the
homogeneous problem has only trivial solution. With the aid
of the jump relations, it can be seen that 𝐵

2
− (1/2)𝐼 has

a trivial null space (for details see [26, Chapter 3.4]). From
the Rizes-Fredholm theorem, we can easily get the following
theorem.

Theorem 4. The operator 𝐵
2
− (1/2)𝐼 is bounded invertible.

By the above conclusion, we can get following equations:

[𝐴
1
− 𝐵
1
(𝐵
2
−
𝐼

2
)

−1

𝐴
2
]𝑉 = 𝑓 − 𝐵

1
(𝐵
2
−
𝐼

2
)

−1

𝑔, 𝑥 ∈ Γ,

𝑈 = (𝐵
2
−
𝐼

2
)

−1

(𝑔 − 𝐴
2
𝑉) , 𝑥 ∈ Σ.

(17)

To this end, we define the operatorN : 𝐿
2
(Σ) → 𝐿

2
(Γ) by

N𝜑 (𝑥) = [𝐴
1
− 𝐵
1
(𝐵
2
−
𝐼

2
)

−1

𝐴
2
] 𝜑 (𝑥) . (18)

Then, the following property of the operatorN holds.

Theorem 5. The operatorN : 𝐿
2
(Σ) → 𝐿

2
(Γ) is compact and

injective.
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Table 3: Regularization parameter 𝛼 and errors for Example 2 with 𝑘 = 5, 1% noise.

Θ 𝛼 ‖𝑈
𝛿

𝛼(𝛿)
− 𝑢‖
𝐿
2
(∑)

‖𝑉
𝛿

𝛼(𝛿)
− 𝜕
𝑛
𝑢‖
𝐿
2
(∑)
/‖𝜕
𝑛
𝑢‖
𝐿
2
(∑)

𝜋/2 2.02 × 10
−2

1.79 × 10
−1

2.94 × 10
−1

𝜋 1.03 × 10
−4

5.99 × 10
−2

9.43 × 10
−2

3𝜋/2 3.81 × 10
−5

4.90 × 10
−3

1.96 × 10
−2

Table 4: Regularization parameter 𝛼 and errors for Example 2 with 𝑘 = 5, 3% noise.

Θ 𝛼 ‖𝑈
𝛿

𝛼(𝛿)
− 𝑢‖
𝐿
2
(∑)

‖𝑉
𝛿

𝛼(𝛿)
− 𝜕
𝑛
𝑢‖
𝐿
2
(∑)
/‖𝜕
𝑛
𝑢‖
𝐿
2
(∑)

𝜋/2 4.04 × 10
−2

2.32 × 10
−1

3.13 × 10
−1

𝜋 3.13 × 10
−4

7.37 × 10
−2

1.19 × 10
−1

3𝜋/2 1.54 × 10
−4

1.83 × 10
−2

5.79 × 10
−2

Proof. By Lemma 3, we know the operatorN is compact. By
Theorems 1 and 4, we deduce that the operatorN is injective.

Now, we turn to introducing our numerical algorithm.
First, function 𝜙 is achieved by solving the following integral
equation:

N𝑉 = ℎ (𝑥) , 𝑥 ∈ Γ, (19)

where

ℎ (𝑥) = 𝑓 − 𝐵
1
(𝐵
2
−
𝐼

2
)

−1

𝑔, 𝑥 ∈ Γ. (20)

Remark 6. In general, (19) is not solvable since we cannot
assume that the Cauchy data ℎ, especially the measured noisy
data ℎ𝛿, are in the range N(𝐿

2
(Γ)) of N. Therefore, we will

solve (19) by some regularizationmethods in the next section
and then give the error estimates.

3. Tikhonov Regularization and
Morozov Discrepancy Principle

In this section, we will use the Tikhonov regularization
method and the Morozov discrepancy principle to solve the
integral system (19) and then give the error estimates and
convergence results. In general, we give the noise data 𝑓𝛿1

𝐷
,

𝑓
𝛿
1

𝑁
, and then we should consider the following equations:

N𝑉
𝛿
= ℎ
𝛿
. (21)

Here ℎ𝛿 ∈ 𝐿2(Γ) are measured noisy data satisfying
󵄩󵄩󵄩󵄩󵄩
ℎ − ℎ
𝛿󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

≤ 𝛿, (22)

and it is obvious that 𝛿 = O(𝛿
1
).

The Tikhonov regularization of integral system (21) is to
solve the following equation:

𝛼𝑉
𝛿

𝛼
+N
∗
N𝑉
𝛿

𝛼
= N
∗
ℎ
𝛿
. (23)

By introducing the regularization operators

𝑅
𝛼
:= (𝛼𝐼 +N

∗
N)
−1

N
∗
, for 𝛼 > 0, (24)

we can achieve the regularized solution 𝑉𝛿
𝛼
= 𝑅
𝛼
ℎ
𝛿 of (21).

We choose the regularization parameter 𝛼 by the Morozov
discrepancy principle, and then we have the following result.

Theorem 7. Let 𝛿 be sufficiently small positive constant
and 𝛿 < ‖ℎ

𝛿
‖
𝐿
2
(Γ)
. Let the Tikhonov solution 𝑉

𝛿

𝛼(𝛿)
satisfy

‖N𝑉
𝛿

𝛼(𝛿)
− ℎ
𝛿
‖
𝐿
2
(Γ)

= 𝛿 for all 𝛿 ∈ (0, 𝛿
0
) and let 𝑉 = N∗𝑧 ∈

N∗(𝐿2(Γ)) with ‖𝑧‖
𝐿
2
(Γ)
≤ 𝐸. Then

󵄩󵄩󵄩󵄩󵄩
𝑉
𝛿

𝛼(𝛿)
− 𝑉

󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)
≤ 2√𝛿𝐸. (25)

Here 𝑉 ∈ 𝐿
2
(Σ) is the exact solution which satisfies (19).

Proof. The statement follows directly from Theorem 2.17 in
[25].

Consider the following Neumann boundary value prob-
lem:

Δ𝑢
𝛿

𝛼(𝛿)
+ 𝑘
2
𝑢
𝛿

𝛼(𝛿)
= 0, in 𝐷,

𝜕𝑢
𝛿

𝛼(𝛿)

𝜕𝑛
= 𝑓
𝛿
1

𝑁
, on Γ,

𝜕𝑢
𝛿

𝛼(𝛿)

𝜕𝑛
= 𝑉
𝛿

𝛼
, on Σ,

(26)

where 𝛿
1
= O(𝛿), we know that there is a unique weak

solution in𝐻1(𝐷) [14].
Then we have the following main result in this paper.

Theorem 8. Let the assumptions in Theorem 7 hold. Then

󵄩󵄩󵄩󵄩󵄩
𝑢
𝛿

𝛼(𝛿)
− 𝑢

󵄩󵄩󵄩󵄩󵄩𝐻1(𝐷)
≤ 𝐶
1
𝛿
1/2
. (27)

Moreover, the following estimate on boundary Σ holds:

󵄩󵄩󵄩󵄩󵄩
𝑢
𝛿

𝛼(𝛿)
− 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢
𝛿

𝛼(𝛿)

𝜕𝑛
−
𝜕𝑢

𝜕𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)

≤ 𝐶𝛿
1/2
. (28)

The positive constant 𝐶 depends only on 𝑘,𝐷, and 𝐸.
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Figure 1: Example 1: the exact solution and the numerical solution on Σ with 𝑘 = 3 for Case 1.
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Figure 2: Example 1: the exact solution and the numerical solution on Σ with 𝑘 = 8 for Case 1.

Proof. From triangle inequality andTheorem 7, we get

󵄩󵄩󵄩󵄩󵄩
𝑢
𝛿

𝛼(𝛿)
− 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢
𝛿

𝛼(𝛿)

𝜕𝑛
−
𝜕𝑢

𝜕𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐵
2
−
𝐼

2
)

−1

[(𝑔
𝛿
− 𝐴
1
𝑉
𝛿

𝛼(𝛿)
) − (𝑔 − 𝐴

1
𝑉)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)

+
󵄩󵄩󵄩󵄩󵄩
𝑉
𝛿

𝛼(𝛿)
− 𝑉

󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)

≤ 𝐶
3

󵄩󵄩󵄩󵄩󵄩
𝑔
𝛿
− 𝑔

󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)
+ 𝐶
4

󵄩󵄩󵄩󵄩󵄩
𝑉
𝛿

𝛼(𝛿)
− 𝑉

󵄩󵄩󵄩󵄩󵄩𝐿2(Σ)
≤ 𝐶𝛿
1/2
.

(29)

The inequalities imply the estimate (28).

From the assumption, we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝛿

𝛼(𝛿)
− 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢
𝛿

𝛼(𝛿)

𝜕𝑛
−
𝜕𝑢

𝜕𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

≤ 2𝛿
1
≤ 𝐶
󸀠
𝛿
1/2
. (30)

Then, we get

󵄩󵄩󵄩󵄩󵄩
𝑢
𝛿

𝛼(𝛿)
− 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕𝐷)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢
𝛿

𝛼(𝛿)

𝜕𝑛
−
𝜕𝑢

𝜕𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕𝐷)

≤ 𝐶
󸀠󸀠
𝛿
1/2
. (31)

The trace theorem and the triangle inequality yield the esti-
mate (27).
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Figure 3: Example 1: the exact solution and the numerical solution on Σ with 𝑘 = 1 for Case 2.
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Figure 4: Example 1: the exact solution and the numerical solution on Σ with 𝑘 = 3 for Case 2.

4. Numerical Examples

In this section, we report two examples of R2 to test the
effectiveness of our method. In the figures, we denote by 𝑓
and 𝑑 the function values and the normal derivative values,
respectively. For the discrete of the integral equations, we use
the Nyström method, see [23, Chapter 3.5].

Example 1. To test our code, consider the case in which the
exact solution to the Cauchy problem is 𝑢(𝑥) = 𝑒

𝑖𝑘𝑥⋅𝑑. Let
𝐷 = {(𝑥

1
, 𝑥
2
) | 𝑥
2

1
+ 𝑥
2

2
< 0.5
2
}, let Γ = {(𝑥

1
, 𝑥
2
) | 𝑥
2

1
+ 𝑥
2

2
=

0.5
2
, 𝑥
2
≥ 0}, and let Σ = 𝜕𝐷 \ Γ. In this example, we observe

the effect of noise on the numerical solution on Σ.

Case 1. We choose 𝑑 = (0, 1).

Case 2. We choose 𝑑 = (√2/2,√2/2).

The regularization parameters 𝛼 chosen by the Morozov
discrepancy principle and the errors are given in Tables 1 and
2.

Figures 1, 2, 3, and 4 show the real part of the numerical
solutions for different wave numbers with different levels of
noise of Cases 1 and 2, respectively.

From the figures and tables, it can be seen that the num-
erical solutions are stable approximations of the exact
solution, and it should be noted that the numerical solution
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Figure 5: Example 2: the exact solution and the numerical solution on Σ with different noises, 𝑘 = 5.
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Figure 6: Example 2: the exact solution and the numerical solution on Σ with 𝑘 = 5, 1% noise.

converges to the exact solution as the level of noise decreas-
es.

Example 2. Consider the unit disc 𝐷 = {(𝑥
1
, 𝑥
2
) | 𝑥
2

1
+ 𝑥
2

2
<

1}. Let Γ = {𝑥 ∈ 𝜕𝐷 | 0 < 𝜃(𝑥) < Θ} and let Σ = 𝜕𝐷\Γ = {𝑥 ∈
𝜕𝐷 | Θ < 𝜃(𝑥) < 2𝜋}, where 𝜃(𝑥) is the polar angle of 𝑥 and
Θ is a specified angle. In this example, we observe the effect of
Θ on the numerical solution. Choose 𝑢(𝑥) = 𝐽

1
(𝑘𝑟)𝑒
𝑖𝜃 as the

exact solution, where 𝐽
1
is the Bessel function of order one.

Tables 3 and 4 give the regularization parameters and
present the corresponding 𝐿2 errors and relative 𝐿2 errors for
the approximation of 𝑢 and 𝜕𝑢/𝜕𝑛 on boundary Σ.

Figure 5 shows the real part of the numerical solution
with different levels of noise on Θ = 𝜋.

In order to investigate the effect ofΘ, Figures 6 and 7 show
the real part of the numerical solutionswith differentΘ. It can
be seen that large Θ will improve the results.

5. Conclusions

In this paper, we study the application of an integral equations
method to solve the Cauchy problem connected with the
Helmholtz equation. We give the uniqueness of this problem
in Theorem 1, in Section 2, and this cannot be obtained
directly since the restriction on 𝑘2.Thenwe use the Tikhonov
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Figure 7: Example 2: the exact solution and the numerical solution on Σ with 𝑘 = 5, 3% noise.

regularization method with the Morozov discrepancy prin-
ciple for solving this ill-posed problem. Convergence and
stability of the method are then given with two examples.
From the examples, we can see that the proposed method is
more stable withmoreCauchy data, and the numerical results
are sensitive about the wavenumber.
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