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Abstract. 
This paper discusses
					mathematical results for a variational formulation dedicated to heat transfer
					with phase changes. Practical finite element experiences show that the studied
					formulation can lead to difficulties for the numerical resolution at each time
					step. The aim of the paper is to show that such numerical pathologies do not
					come from the basic variational formulation by showing existence and uniqueness
					of the solution.


1. Introduction
Finite element analysis
				of heat transfer involving phase changes in solids is a numerical problem which has
				been extensively studied in the past years. The most classical example of the type
				of phenomena considered is the one of diffusion of heat in the presence of one or
				several phase transformations (fusion, solidification, metallurgical transformations
				of steels, etc.). A large body of literature has been devoted to this type of
				problems. Among the various approaches which have been proposed, three groups can
				roughly be distinguished: apparent heat capacity methods, fictitious heat source
					methods, and enthalpic methods [1].
 Apparent
					heat capacity methods consist of artificially enhancing the heat capacity
				(derivative of the enthalpy with respect to the temperature) over the range of
				temperatures corresponding to the change of phase. This has been done for instance
				by Comini et al. [2], Morgan et al. [3], Lewis
				and Roberts [4], and Çetinel et al. [5],
				among many others. The application of the technique is straightforward when the
				phase change is spread over some relatively wide range of temperatures. Isothermal
				phase changes raise more problems since one may easily numerically miss the very
				high (virtually infinite) peak of heat capacity, thus failing to respect exact
				conservation of energy. One simple but costly remedy proposed by Rolph and Bathe [6] just consisted of using very small time-steps. Pham's [7] more elaborate proposal consisted of defining some
				“temperature correction” allowing to use relatively large time-steps
				while respecting strict conservation of energy. Pham's [8]
				comparison of various methods evidenced the high efficiency of this
					proposal.
 Fictitious heat source methods consist of considering
				the heat absorbed or generated by the phase change as an internal heat source equal
				to the product of the latent heat of transformation and the transformation rate.
				This has been done by many authors, notably Hömberg [9],
				Murthy et al. [10], Han et al. [11], and
				Serajzadeh [12]. Again, the application of this technique is
				simpler when the phase change occurs over a range of temperatures, but it can also
				deal with transformations occurring at constant temperature provided some
				precautions are taken. Voller [13] thus showed that the abrupt
				change of enthalpy resulting from the phase change can be accounted for accurately
				through explicit time-stepping or, with some appropriate linearization of the
				enthalpy over some arbitrarily narrow temperature range, implicit time-stepping.
				Another possibility proposed by Fachinotti et al. [14] consisted
				of accounting for the discontinuity of the enthalpy by identifying those elements
				where such a discontinuity occurs and performing exact, analytic integrations over
				them.
As explained by Feulvarch et al. [1], one trap with
				all this methods pertains to conservation of energy. In the most usual case, the
				temperature is a monotone function of time, so that the state of the phase change
				may be considered as a well-defined, single-valued function of temperature. In such
				a case, the apparent heat capacity and fictitious heat source methods are basically
				equivalent. Nevertheless, as noted by Pham [8], these methods are
				not equivalent for recalescence, which implies a non-monotone evolution of the
				temperature in time because the heating or the cooling is stopped. This phenomenon
				can only occur in the presence of some transformation kinetics; instantaneous
				transformations can only slow down but not stop the heating or the cooling. The
				equivalent heat capacity technique can be adapted to deal with such a case (see,
				e.g., Comini et al. [2] and Dalhuijsen and Segal [15]). However the fictitious heat source technique does the job in a more
				natural way since the only requirement is to know some appropriate expression of the
				transformation rate. The simulation of recalescence using this method started more
				than 20 years ago (see the review paper of Rappaz [16] and the
				works cited therein) and has become commonplace in the materials community since. It
				is generally based on explicit time-stepping, which prohibits the use of large
				time-steps.
Enthalpic methods consist of using the specific enthalpy
				instead of the temperature as principal nodal unknown. The heat flux is then
				expressed using the gradient of the enthalpy rather than that of the temperature,
				the temperature being considered as a function of the enthalpy. This technique dates
				back to Eyres et al. [17] and has been used since by Mundim and
				Fortes [18], Droux [19], Gremaud [20], and Pham [8], among others. It is
				particularly appropriate in the case of recalescence. Indeed, what makes the use of
				other methods cumbersome (though not impossible) in such a case is that the enthalpy
				becomes a multi-valued function of temperature, so that evaluating it from the
				temperature becomes a somewhat awkward task. On the other hand, use of the enthalpic
				technique raises no special difficulty since the temperature is always a
				well-defined, single-valued function of the enthalpy, so that deducing it from the
				enthalpy remains a straightforward task. One disadvantage of this technique,
				however, is that it implies a smooth spatial distribution of the enthalpy, which is
				unrealistic for transformations occurring at constant temperature. In materials with
				a sharp freezing point, for instance, a real, physical discontinuity exists on the
				freezing front. The enthalpic technique artificially spreads this discontinuity over
				one element length. A variant of the enthalpic method using  both the enthalpy
					and the temperature as principal variables was proposed by Nedjar [21].
Although each method has shortcomings, many
				successful proposals have been made to numerically simulate heat diffusion with
				phase changes, even in the presence of recalescence with implicit time-stepping. To
				overcome this difficulty, a new method has been introduced by Feulvarch and Bergheau
					[22]. The proposed formulation is based on the classical heat
				equation coupled with a function providing the temperature in terms of enthalpy.
				This enthalpy-temperature relation characterizes the kinetic of phase transformation
				and includes the latent heat. This approach has been extended to diffusion and
				precipitation of chemical elements by Feulvarch et al. [1] on the
				basis of mathematical results given by Leblond [23]. This new
				implicit finite element technique rises sometimes some difficulties and a numerical
				solution can not always be found. The objective of this paper is to show that the
				basic variational formulation is well posed and leads to the existence and the
				uniqueness of a solution. Having established this result, one can conclude that the
				encountered difficulties are related to the numerical aspects.
2.
				Problem Formulations
2.1. Strong Formulation
The problem
				studied in this paper is based on the following strong formulation.
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2.2. Weak Formulation
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The weak formulation in space is obtained by multiplying (1a) by a weighting function 
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Considering the above results, (3)
				can be rewritten in the following way.
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3. Existence and Uniqueness of the
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Figure 1: Typical evolution of the function 
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						 with recalescence.


Proposition 1. The
						problem (9) is a particular case of the following model
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										∈
										𝐸
										,
										𝑘
										(
										𝑣
										,
										𝑞
										)
										=
										0
										)
										⇒
										(
										𝑞
										=
										0
										)
										.
									

								
							
						 Under those conditions,
						one get the estimation-inequality: 
							
								
									

									
										
										𝐸
									

									

										𝐼
									

									

										
									

								
							
						
							
								
									
										∀
										𝑓
										∈
										𝐹
									

									

										
									

									
										,
										‖
										𝑢
										‖
									

									

										𝐸
									

									
										⩽
										1
									

									
										
									
									
										𝛼
										‖
										𝑓
										‖
									

									

										𝐹
									

									

										′
									

									

										.
									

								
							
						
Proof.
						(see [28]).
According to our
				particular case, the Nečas theorem can be expressed as follows.
Corollary 3.
						 Let 
							
								
									

										𝑉
									

								
							
						 and 
							
								
									

										𝑊
									

								
							
						 two Hilbert spaces, 
							
								
									
										𝑎
										∈
										ℒ
										(
										𝑉
										×
										𝑉
										;
										ℝ
										)
									

								
							
						, and 
							
								
									
										𝑏
										∈
										ℒ
										(
										𝑉
										×
										𝑊
										;
										ℝ
										)
									

								
							
						 two bilinear forms. Let 
							
								
									
										K
										e
										r
										(
										𝐵
										)
										=
										{
										𝑣
										∈
										𝑉
										;
										∀
										𝑞
										∈
										𝑊
										,
										𝑏
										(
										𝑣
										,
										𝑞
										)
										=
										0
										}
									

								
							
						. The problem (9) is well-posed in the sense of Hadamard if and only if the two
						conditions below are satisfied: 
							
								
									
									

										(
									
									
										C
										o
										n
										d
									
									
										2
										)
									
								
							
						
							
								
									
										⎧
										⎪
										⎨
										⎪
										⎩
										∃
										𝛼
										>
										0
										,
										i
										n
										f
									

									
										𝑢
										∈
										K
										e
										r
										(
										𝐵
										)
									

									
										s
										u
										p
									

									
										𝑣
										∈
										K
										e
										r
										(
										𝐵
										)
									

									
										𝑎
										(
										𝑢
										,
										𝑣
										)
									

									
										
									
									
										‖
										𝑢
										‖
									

									

										𝑉
									

									
										‖
										𝑣
										‖
									

									

										𝑉
									

									
										⩾
										𝛼
										,
										∀
										𝑣
										∈
										K
										e
										r
										(
										𝐵
										)
										,
										(
										∀
										𝑢
										∈
										K
										e
										r
										(
										𝐵
										)
										,
										𝑎
										(
										𝑢
										,
										𝑣
										)
										=
										0
										)
										⇒
										(
										𝑣
										=
										0
										)
										,
										∃
										𝛽
										>
										0
										,
										i
										n
										f
									

									
										𝑞
										∈
										𝑊
									

									
										s
										u
										p
									

									
										𝑣
										∈
										𝑉
									

									
										𝑏
										(
										𝑣
										,
										𝑞
										)
									

									
										
									
									
										‖
										𝑣
										‖
									

									

										𝑉
									

									
										‖
										𝑞
										‖
									

									

										𝑊
									

									
										⩾
										𝛽
										.
									

								
							
						
Proof.
						 Introducing the Banach operators associated to forms 
						
							
								

									𝑎
								

							
						
					 and 
						
							
								

									𝑏
								

							
						
					, the problem (9) is equivalent to: 
							
								
									

									
										(
										𝑃
										)
									

								
							
						
							
								
									
										ﬁ
										n
										d
										(
										𝑢
										,
										𝑝
										)
										∈
										𝑉
										×
										𝑊
										s
										u
										c
										h
										t
										h
										a
										t
										𝐴
										𝑢
										+
										𝐵
									

									

										𝑡
									

									
										𝑝
										=
										𝑙
										,
										𝐵
										𝑢
										=
										𝑚
										,
									

								
							
						 and problem 
								
									
										
											(
											𝑃
											)
										

									
								
							 is well-posed if the conditions of the following
					theorem are verified [28].  Theorem
					4  (see [28]). 
								
									
										
											(
											𝑃
											)
										

									
								
							  is well-posed if and only if: (1)
									
										
											
												𝜅
												𝐴
												∶
												𝐾
												𝑒
												𝑟
												(
												𝐵
												)
												→
												𝐾
												𝑒
												𝑟
												(
												𝐵
												)
											

											

												
											

										
									
								  is an isomorphism; (2)
									
										
											
												𝐵
												∶
												𝑉
												→
												𝑊
											

										
									
								  is
						surjective,where 
						
							
								
									𝐾
									𝑒
									𝑟
									(
									𝐵
									)
								

							
						
					  is the kernel of 
						
							
								

									𝐵
								

							
						
					   and 
						
							
								
									𝜅
									𝐴
								

							
						
					   is an operator such that 
						
							
								
									⟨
									𝜅
									𝐴
									𝑢
									,
									𝑣
									⟩
									=
									⟨
									𝐴
									𝑢
									,
									𝑣
									⟩
								

							
						
					  for all 
						
							
								

									𝑢
								

							
						
					  and 
						
							
								
									𝑣
									∈
									𝐾
									𝑒
									𝑟
									(
									𝐵
									)
								

							
						
					. According to the lemma (see, e.g., [29] or [30]).
					Lemma 5.  A Banach operator 
						
							
								
									𝐴
									∈
									ℒ
									(
									𝑉
									,
									𝑉
									)
								

							
						
					  is bijective if and only if: (i)
									
										
											
												∃
												𝛼
												>
												0
											

										
									
								, 
									
										
											
												∀
												𝑣
												∈
												𝑉
											

										
									
								, 
									
										
											
												‖
												𝐴
												𝑣
												‖
											

											

												𝑉
											

											
												⩾
												𝛼
												‖
												𝑣
												‖
											

											

												𝑉
											

										
									
								,   and(ii)
									
										
											
												∀
												𝑣
											

											

												
											

											
												∈
												𝑉
											

											

												
											

										
									
								, 
									
										
											
												(
												𝐴
											

											

												𝑡
											

											

												𝑣
											

											

												
											

											
												=
												0
												)
												⇒
												(
												𝑣
											

											

												
											

											
												=
												0
												)
											

										
									
								. And like
						
						
							
								
									K
									e
									r
									(
									𝐵
									)
								

							
						
					 is reflexive, the two conditons (i) and (ii), that is the condition
						
								
									
										
											(
											C
											o
											n
											d
											1
											)
										

									
								
							 are equivalent to say that 
						
							
								
									𝜅
									𝐴
								

							
						
					 is an isomorphism.Furthermore, considering
					the following lemma [29, 30]. Lemma 6.  Let 
						
							
								
									𝐵
									∈
									ℒ
									(
									𝑉
									,
									𝑊
									)
								

							
						
					. Then 
						
							
								

									𝐵
								

							
						
					   is  surjective if and only if 
						
						
							
								
									∃
									𝛽
									>
									0
								

							
						
					   such that  
						
							
								
									∀
									𝑞
								

								

									
								

								
									∈
									𝑊
								

								

									
								

							
						
					, 
						
							
								
									‖
									𝐵
								

								

									𝑡
								

								

									𝑞
								

								

									
								

								

									‖
								

								

									𝑉
								

								

									′
								

								
									⩾
									𝛽
									‖
									𝑞
								

								

									
								

								

									‖
								

								

									𝑊
								

								

									′
								

							
						
					.  And taking into account that 
						
							
								

									𝑊
								

							
						
					 is reflexive, 
								
									
										
											(
											C
											o
											n
											d
											2
											)
										

									
								
							 is equivalent to state that 
						
							
								

									𝐵
								

							
						
					 is surjective.
Moreover, one can easily demonstrate that
				the bilinear form 
					
						
							

								𝑎
							

						
					
				 on 
					
						
							

								𝑉
							

						
					
				 is coercive (it is a direct consequence of the Poincaré inequality).
				In such a case, conditons 
							
								
									
										
										𝑁
									

									

										1
									

									

										
									

								
							
						 and 
							
								
									
										
										𝑁
									

									

										2
									

									

										
									

								
							
						 of the Nečas theorem for the bilinear form 
					
						
							

								𝑐
							

						
					
				 can be more simply formulated as follows.
Theorem 7. We postulate
						that the bilinear form 
							
								
									

										𝑎
									

								
							
						 is coercive. Then, the problem (9) is well-posed if and only if the bilinear form
							
							
								
									

										𝑏
									

								
							
						 satisfies the previous 
									
										
											
												(
												C
												o
												n
												d
												2
												)
											

										
									
								 condition: 
							
								
									
										(
										1
										1
										)
									
								
							
						
							
								
									
										∃
										𝛽
										>
										0
										,
										i
										n
										f
									

									
										𝑞
										∈
										𝑊
									

									
										s
										u
										p
									

									
										𝑣
										∈
										𝑉
									

									
										𝑏
										(
										𝑣
										,
										𝑞
										)
									

									
										
									
									
										‖
										𝑣
										‖
									

									

										𝑉
									

									
										‖
										𝑞
										‖
									

									

										𝑊
									

									
										⩾
										𝛽
										.
									

								
							
						
Proof.
						
						
							
								

									𝑉
								

							
						
					 is a reflexive Banach space, and 
						
							
								

									𝑎
								

							
						
					 is coercive on 
						
							
								

									𝑉
								

							
						
					 (on 
						
							
								
									K
									e
									r
									(
									𝐵
									)
								

							
						
					).Thus, the self-adjoint Banach operator
						
						
							
								

									𝐴
								

							
						
					 associated to 
						
							
								

									𝑎
								

							
						
					 is bijective, and then condition 
								
									
										
											(
											C
											o
											n
											d
											1
											)
										

									
								
							 (which means 
						
							
								

									𝐴
								

							
						
					 surjective and 
						
							
								

									𝐴
								

								

									𝑡
								

							
						
					 injective) is verified. 
Referring to the previous
				results, we can conclude with the following.
Theorem 8. The previously stated
						problem (9) is well-posed, and admits a unique
						solution.
 Proof.
						Since the bilinear form 
						
							
								
									𝑎
									(
									𝑢
									,
									𝑣
									)
								

							
						
					 is coercive, and like the near form 
						
							
								
									𝑏
									(
									𝑣
									,
									𝑞
									)
								

							
						
					 defines a norm in 
						
							
								
									𝑊
									=
									𝐿
								

								

									2
								

								
									(
									Ω
									)
								

							
						
					, the Banach operator 
						
							
								

									𝐵
								

							
						
					 is clearly at least surjective, and 
						
							
								

									𝑏
								

							
						
					 satisfies 
								
									
										
											(
											C
											o
											n
											d
											2
											)
										

									
								
							 in Theorem 7. 
3.2. Existence and Uniqueness of 
					
						
							

								ℎ
							

						
					
				 for 
					
						
							
								(
								𝑢
								,
								𝑝
								)
							

						
					
				 Fixed
Considering 
					
						
							
								(
								𝑢
								,
								𝑝
								)
							

						
					
				 fixed, the following can be established. 
Proposition 9. 
							
								
									

										ℎ
									

								
							
						 exists and is unique.
Proof.
						According to Theorem 8, 
						
							
								

									𝑝
								

							
						
					 exists and is unique. From (1c) and (2), it can be easily stated that 
						
							
								

									ℎ
								

							
						
					 exists and is the unique solution of the temporal ordinary
					differential equation: 
							
								
									
										(
										1
										2
										)
									
								
							
						
							
								
									
										𝑝
										=
										𝜕
										ℎ
									

									
										
									
									
										𝜕
										𝑡
										w
										i
										t
										h
										i
										n
										i
										t
										i
										a
										l
										c
										o
										n
										d
										i
										t
										i
										o
										n
										ℎ
										(
										𝑡
										=
										0
										)
										=
										ℎ
									

									

										0
									

									

										,
									

								
							
						 where the only independent variable is time 
						
							
								

									𝑡
								

							
						
					. 
3.3. Existence and Uniqueness of the
				Solution 
					
						
							
								(
								𝑢
								,
								𝑝
								,
								ℎ
								)
							

						
					
				 in Space and Time
Under Hypothesis 1, we
				showed in Section 3.1 that for 
					
						
							

								ℎ
							

						
					
				 fixed, we obtain a unique solution 
					
						
							

								𝑝
							

						
					
				 which is the time derivative of 
					
						
							

								ℎ
							

						
					
				 at any point 
					
						
							

								𝑥
							

						
					
				 of the domain 
					
						
							

								Ω
							

						
					
				, independently of time 
					
						
							

								𝑡
							

						
					
				 (cf. Theorem 8).
Thus, at any point
					
					
						
							
								𝑥
								∈
								Ω
							

						
					
				, 
					
						
							

								ℎ
							

						
					
				 is the unique solution of the Cauchy problem (12) of
				Section 3.2 at each time 
					
						
							

								𝑡
							

						
					
				 and according to the initial condition 
					
						
							

								ℎ
							

							

								0
							

							
								=
								ℎ
								(
								𝑥
								,
								𝑡
								=
								0
								)
							

						
					
				.
All these considerations allow us to state the following result to
				conclude this part. 
Theorem 10. The previously stated problem (5) and (6) admits a unique solution
							
							
								
									
										(
										𝑢
										,
										𝑝
										,
										ℎ
										)
									

								
							
						 in space and time, once function 
							
								
									

										𝑔
									

								
							
						 in form 
							
								
									
										∫
										𝑚
										(
										ℎ
										,
										𝑞
										)
										=
									

									

										Ω
									

									
										𝑔
										(
										ℎ
										)
										𝑞
										d
										𝑉
									

								
							
						 is a continuous mapping from 
							
								
									

										ℝ
									

								
							
						 to 
							
								
									

										ℝ
									

								
							
						.
4. Conclusion
Mathematical
				results have been discussed for a variational formulation which is based on the heat
				equation coupled with a function providing the temperature in terms of enthalpy.
				Existence and uniqueness of the solution are established for this formulation which
				allows to model physical problems which cannot be easily computed with implicit time
				integration techniques. Therefore, we can conclude that computational difficulties
				encountered at each time step for the finite element method do not come from the
				basic variational formulation. In addition, all results are independent of the shape
				of the function 
					
						
							

								𝑔
							

						
					
				 which may be nonlinear or not, since it is sufficient that 
					
						
							

								𝑔
							

						
					
				 is a continuous mapping from 
					
						
							

								ℝ
							

						
					
				 to  
					
						
							

								ℝ
							

						
					
				.
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