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Modified function projective lag synchronization (MFPLS) of uncertain hyperchaotic dynamical systems with the same or different
dimensions and structures is studied. Based on Lyapunov stability theory, a general theorem for controller designing, parameter
update rule designing, and control gain strength adapt law designing is introduced by using adaptive control method. Furthermore,
the scheme is applied to four typical examples: MFPLS between two five-dimensional hyperchaotic systems with the same struc-
tures, MFPLS between two four-dimensional hyperchaotic systems with different structures, MFPLS between a four-dimensional
hyperchaotic system and a three-dimensional chaotic system and MFPLS between a novel three-dimensional chaotic system, and
a five-dimensional hyperchaotic system. And the system parameters are all uncertain. Corresponding numerical simulations are
performed to verify and illustrate the analytical results.

1. Introduction

During the past three decades, chaos synchronization has
been a hot topic in nonlinear science due to its various appli-
cations [1–3]. A variety of synchronization approaches have
been revealed, such as complete synchronization (CS) [4],
antisynchronization (AS) [5], phase synchronization [6], lag
synchronization (LS) [7], projective synchronization (PS) [8],
function projective synchronization (FPS) [9–11], and others
[12, 13]. Recently, modified function projective synchroniza-
tion (MFPS) is proposed, in which the drive system and the
response system could be synchronized up to a scaling func-
tion matrix [14]. MFPS can enhance the security of commu-
nication, because the unpredictability of the scaling functions
increases the complexity of the systems. So,MFPS attracts the
interests of researchers in many fields [15–20].

In the past, many theoretical results focused on the sys-
tems as identical, similar. But in a great many practical situa-
tions, the parameters of systems cannot be known or certain
entirely, and sometimes the synchronization is carried out
even though the drive system and the response system have

different dimensions, especially the systems in biological sci-
ence and social science. Recently, some researchers carried
out works related to this.

Sun et al. [21] proposed theMFPS of uncertain hypercha-
otic systems with identical or nonidentical structures, gave a
general formula for designing the controllers and parameter
update rules, and applied the theoretical results to three
typical cases. Zheng [22] investigated the MFPS between two
different dimensional chaotic systems with fully unknown or
partially unknown parameters via increased order method,
designed a unified adaptive controller and parameter update
laws, and the control strength of the controller can adaptively
be identified. Reference [23] studied theMFPS between four-
dimensional Lorenz and Chen hyperchaotic dynamical sys-
temswith fully unknown parameters; scaling functionmatrix
had the form of Mℎ(𝑡), M is a constant diagonal matrix and
ℎ(𝑡) is a continuous differentiable function with ℎ(𝑡) ̸= 0,
and the scaling function matrix is more flexible and variable
through choosing differentM and ℎ(𝑡). So, it has broad appli-
cation prospects in practical situations [24].
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Time delay is frequently encountered in the controlling
process of many nonlinear systems, the existence of which
makes the controller design and analysis much more com-
plex. Some existing papers consider the influence of time
delay on MFPS of chaotic systems. Du et al. [25] introduced
modified function projective lag synchronization (MFPLS)
and investigated a general method of MFPLS based on
Lyapunov stability theory. But in the analysis, they suppose
that the system parameters were known and the dimensions
of the drive system and response systemwere equal. Recently,
Cai et al. [26] studied the modified function lag projective
synchronization of a financial hyperchaotic system, when
the parameters are known and unknown, respectively. And
their work aimed for MFPLS of the concrete system and
could not give the general method. More recently, Liu et
al. [27] analyzed the MFPLS between two nonidentical
multiscroll chaotic systems with unknown disturbances. Du
[28] researched the MFPS of complex dynamical networks
with different nodes through adaptive open-plus-closed-loop
control method and investigated MFPS in drive-response
dynamical networks with time-varying coupling delay.

Inspired by the previous discussion, in this paper, we
study the modified function projective lag synchronization
(MFPLS) of hyperchaotic systems; the parameters of the sys-
tems are all uncertain, dimensions and structures of the drive
system and the response system are the same or different.
Based on the Lyapunov stability theory and adaptive control
technique, an adaptive controller and corresponding param-
eter update rule are constructed. By applying the method,
MFPLS between a five-dimensional hyperchaotic system
and itself with uncertain parameters, a four-dimensional
hyperchaotic system and another four-dimensional hyper-
chaotic systemwith unknownparameters and different struc-
tures, a four-dimensional hyperchaotic system and a three-
dimensional chaotic system with uncertain parameters, and
a three-dimensional chaotic system and a five-dimensional
hyperchaotic system with unknown parameters is achieved.
Corresponding simulation results show the effectiveness of
the proposed scheme.

The outline of the paper is as follows. In Section 2, the
definition of MFPLS is introduced. In Section 3, a general
method for MFPLS between two uncertain hyperchaotic
systems with the same or different dimension and structure
is given. Based on the Lyapunov stability theory and adaptive
control technique, an adaptive controller, corresponding
parameter update rule, and control gain strength adapt law
are designed. In Section 4, we give four typical examples to
verify the effectiveness of the proposed scheme by numerical
simulation. Finally, the conclusions are drawn in Section 5.

2. The Definition of MFPLS

Consider the drive (master) chaotic system and the response
(slave) chaotic system given in the following form:

ẋ (𝑡) = 𝑓 (x (𝑡)) , (1)

ẏ (𝑡) = 𝑔 (y (𝑡)) + U (𝑡) , (2)

where x(𝑡), y(𝑡) are the state vectors of systems (1) and (2),
respectively; 𝑓, 𝑔 are two continuous vector functions, and
U is a controller to be designed for synchronization between
systems (1) and (2). The error dynamical system is defined as
follows:

e (𝑡) = y (𝑡) −Mℎ (𝑡) x (𝑡 − 𝜏) , (3)

where M is a constant diagonal matrix, ℎ(𝑡) is a nonzero
continuous differentiable function, and the time delay vector
is 𝜏.

Definition 1. If there exists a constant diagonal matrix M
and function ℎ(𝑡), such that lim

𝑡→∞
‖e(𝑡)‖ = 0, then the

synchronization between the system (1) and system (2) is
modified function projective lag synchronization (MFPLS).

Remark 2. If ℎ(𝑡) = 1 and 𝜏 = 0, MFPLS becomes modified
projective synchronization. If M = 1 and 𝜏 = 0, MFPLS
turns out to be the function projective synchronization. If
𝜏 = 0, MFPLS is MFPS. If M = 1 and ℎ(𝑡) = 1, then lag
synchronization appears.

3. The Modified Function Projective Lag
Synchronization Scheme

Suppose that the parameters in the drive and response system
are uncertain. Rewrite them as follows:

ẋ (𝑡) = 𝑓
1
(x (𝑡))A + 𝑓

2
(x (𝑡)) , (4)

ẏ (𝑡) = 𝑔
1
(y (𝑡))B + 𝑔

2
(y (𝑡)) + U (𝑡) , (5)

where x(𝑡) = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)
T

∈ 𝑅
𝑚, y(𝑡) = (𝑦

1
, 𝑦
2
, . . . ,

𝑦
𝑛
)
T
∈ 𝑅
𝑛 are the state vectors of systems (4) and (5), respec-

tively; 𝑓 : 𝑅
𝑚

→ 𝑅
𝑚, 𝑔 : 𝑅

𝑛
→ 𝑅
𝑛 are two continuous vec-

tor functions;A, B are the uncertain parameter vectors of the
drive and response system, respectively; U is a controller to
be designed for synchronization between systems (4) and (5).
The error system is defined as (3).

The dimension of the drive system is 𝑚 and the order of
the response system is 𝑛; they are not mostly the same. So, in
the following, we discuss three cases: 𝑚 = 𝑛, 𝑚 > 𝑛, and
𝑛 > 𝑚 and give a general scheme for the synchronization
controller design and parameter update rule design.

Case 1 (𝑚 = 𝑛). At this time, the drive and response systems
are of the same order.

Theorem 3. For the given diagonal matrixM = diag{𝑚
1
, 𝑚
2
,

. . . , 𝑚
𝑛
} ∈ 𝑅

𝑛×𝑛, nonzero continuous differentiable function
h(𝑡), and time delay vector 𝜏 = (𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑛
)
T, the modified

function projective lag synchronization (MFPLS) between sys-
tem (4) and system (5) is achieved by the following controller
(6), the control gain matrix K = diag(𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
), (𝑘
𝑖
is
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the control gain strength) (7), the parameter update laws (8)
and (9) as below:

U (𝑡) = −𝑔
1
(y (𝑡)) B̂ − 𝑔

2
(y (𝑡)) +Mℎ̇ (𝑡) x (𝑡 − 𝜏)

+Mℎ (𝑡) (𝑓
1
(x (𝑡)) Â + 𝑓

2
(x (𝑡))) − Ke,

(6)

�̇�
𝑖
= 𝜀
𝑖
𝑒
2

𝑖
, 𝜀
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, (7)

ė
𝐴
(𝑡) = −𝑓

T
1
(x (𝑡)) ℎT (𝑡)Me (𝑡) , (8)

ė
𝐵
(𝑡) = 𝑔

1
(y (𝑡)) e (𝑡) , (9)

where e
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑚

𝑖
ℎ(𝑡)𝑥
𝑖
(𝑡 − 𝜏
𝑖
); Â, B̂ are the estimated

values of unknown parameters A and B, respectively; e
𝐴
(𝑡) =

Â − A and e
𝐵
(𝑡) = B̂ − B are parameter error vector matrices.

Proof. According to the definition ofMFPLS, the error vector
has the following form: e(𝑡) = y(𝑡) −Mℎ(𝑡)x(𝑡 − 𝜏). And the
error dynamical system is

ė (𝑡) = ẏ (𝑡) −Mℎ̇ (𝑡) x (𝑡 − 𝜏) −Mℎ (𝑡) ẋ (𝑡 − 𝜏)

= 𝑔
1
(y (𝑡))B + 𝑔

2
(y (𝑡)) + U (𝑡) −Mℎ̇ (𝑡) x (𝑡 − 𝜏)

−Mℎ (𝑡) (𝑓
1
(x (𝑡))A + 𝑓

2
(x (𝑡))) .

(10)

By substituting (6) into (10), one can obtain the following:

ė (𝑡) = 𝑔
1
(y (𝑡)) (B − B̂) +Mℎ (𝑡) 𝑓

1
(x (𝑡)) (Â − A) − Ke

= −𝑔
1
(y (𝑡)) e

𝐵
(𝑡) +Mℎ (𝑡) 𝑓

1
(x (𝑡)) e

𝐴
(𝑡) − Ke.

(11)

The Lyapunov function is chosen as

𝑉 (𝑡) =
1

2
(eT (𝑡) e (𝑡) + eT

𝐴
(𝑡) e
𝐴
(𝑡) + eT

𝐵
(𝑡) e
𝐵
(𝑡))

+
1

2

𝑛

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

,

(12)

where 𝑘 > 0 is a positive constant.
Then the time derivation of the Lyapunov function along

the trajectory of error systems (10) is

�̇� (𝑡) = eT (𝑡) ė (𝑡) + eT
𝐴
(𝑡) ė
𝐴
(𝑡) + eT

𝐵
(𝑡) ė
𝐵
(𝑡)

+ �̇�
𝑖

𝑛

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

.

(13)

Constituting (7), (8), and (9) into (13), we get the following:

�̇� (𝑡) = eT (𝑡) ė (𝑡) + eT
𝐴
(𝑡) ė
𝐴
(𝑡) + eT

𝐵
(𝑡) ė
𝐵
(𝑡)

+ �̇�
𝑖

𝑛

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

= −eT (𝑡) 𝑔
1
(y (𝑡)) e

𝐵
(𝑡)+eT (𝑡)Mℎ (𝑡) 𝑓

1
(x (𝑡)) e

𝐴
(𝑡)

− eT (𝑡)Ke +
𝑛

∑

𝑖=1

(𝑘
𝑖
− 𝑘)
2

𝑒
2

𝑖

= −𝑘eT (𝑡) e < 0.

(14)

𝑉(𝑡) is positive definite and �̇�(𝑡) < 0; thus, according
to Barbalat’s Lemma, MFPLS between the drive system (4)
and the response system (5) is achieved. However, we cannot
conclude that the unknown parameters can be estimated to
their true values.

Linear Independence Condition. To achieve synchronization-
based parameter identification, the nonlinear vector func-
tions −𝑓

T
1
(x(𝑡))ℎT(𝑡)M and 𝑔

T
1
(y(𝑡)) must be linearly inde-

pendent of the synchronization manifold, and then the
unknown parameters can be identified [29, 30].

Remark 4. Suppose that the parameter A in the drive system
(4) are known in priori, then the controller and parameter
update rule can be designed as follows:

U (𝑡) = −𝑔
1
(y (𝑡)) B̂ − 𝑔

2
(y (𝑡)) +Mℎ̇ (𝑡) x (𝑡 − 𝜏)

+Mℎ (𝑡) (𝑓
1
(x (𝑡)) 𝐴 + 𝑓

2
(x (𝑡))) − Ke,

ė
𝐵
(𝑡) = 𝑔

1
(y (𝑡)) e (𝑡) .

(15)

Control gain strength adapt rule is as (7).

Remark 5. Suppose that the parameter B in the response sys-
tem (5) is known in priori, then the controller and parameter
update rule can be modified as follows:

U (𝑡) = −𝑔
1
(y (𝑡))B − 𝑔

2
(y (𝑡)) +Mℎ̇ (𝑡) x (𝑡 − 𝜏)

+Mℎ (𝑡) (𝑓
1
(x (𝑡)) Â + 𝑓

2
(x (𝑡))) − Ke,

ė
𝐴
(𝑡) = −𝑓

T
1
(x (𝑡)) ℎT (𝑡)Me (𝑡) .

(16)

Control gain strength adapt law is as (7).

Remark 6. If the drive and response system have the identical
structures, then the controller and parameter update rule is as
follows:

U (𝑡) = (−𝑓
1
(y (𝑡)) +Mℎ (𝑡) 𝑓

1
(x (𝑡))) Â

+ (−𝑓
2
(y (𝑡)) +Mℎ (𝑡) 𝑓

2
(x (𝑡)))

+Mℎ̇ (𝑡) x (𝑡 − 𝜏) − Ke,

ė
𝐴
(𝑡) = −𝑓

T
1
(x (𝑡)) ℎT (𝑡)Me (𝑡) .

(17)

Control gain strength adapt rule is as (7). When the drive
system and the response system have the concrete structure,
the controller can be largely simplified.

Remark 7. In many references [25–28], the control gain
strength is fixed, and sometimes it may be the maximal; thus,
it can give a kind of energy waste. The method of our paper



4 Mathematical Problems in Engineering

is different from them. The control gain strength 𝑘
𝑖
can be

automatically adapted to a suitable value depending on the
initial values.

Case 2 (𝑚 > 𝑛). The dimension of the drive system is higher
than that of the response system. And we can achieveMFPLS
through adding extra-auxiliary states to the response system,
so that the dimensions of the drive and response system are
equal.

Denote the auxiliary states as 𝑦 ∈ 𝑅
𝑚−𝑛, and the auxiliary

vector is as follow:

̇𝑦

= (𝜙
1
(y) , 𝜙

2
(y) , . . . , 𝜙

𝑚−𝑛
(y)) + 𝑈


(𝑡)

= 𝑔


1
(y (𝑡))B + 𝑔



2
(y (𝑡)) + 𝑈


(𝑡) .

(18)

Then, the response system is modified as follows:

̇̃y (𝑡) = 𝑔
1
(ỹ (𝑡))B + 𝑔

2
(ỹ (𝑡)) + Ũ (𝑡) , (19)

where ỹ = (
y
y ), 𝑔1(ỹ(𝑡)) = (

𝑔
1
(y(𝑡))
𝑔


1
(y(𝑡)) ), 𝑔2(ỹ(𝑡)) = (

𝑔
2
(y(𝑡))
𝑔


2
(y(𝑡)) ),

Ũ(𝑡) = (
U(𝑡)
U(𝑡) ).

Thus the controller, parameter update law, and control
gain strength adapt rule are designed as follows:

Ũ (𝑡) = −𝑔
1
(ỹ (𝑡)) B̂ − 𝑔

2
(ỹ (𝑡)) +Mℎ̇ (𝑡) x (𝑡 − 𝜏)

+Mℎ (𝑡) (𝑓
1
(x (𝑡)) Â + 𝑓

2
(x (𝑡))) − Ke,

�̇�
𝑖
= 𝜀
𝑖
𝑒
2

𝑖
, 𝜀
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑚,

ė
𝐴
(𝑡) = −𝑓

T
1
(x (𝑡)) ℎT (𝑡)Me (𝑡) ,

ė
𝐵
(𝑡) = 𝑔

1
(ỹ (𝑡)) e (𝑡) .

(20)

The proof is similar to Case 1 and is omitted here.

Case 3 (𝑛 > 𝑚). The dimension of the drive system is lower
than that of the response system. We can achieve the MFPLS
in increased order method. This time, we add some auxiliary
stateswhich is the function of drive state x to the drive system,
and in the final, the order of the drive system is equal to that
of the response system.

Denote the auxiliary states as x ∈ 𝑅
𝑛−𝑚, and the auxiliary

function vector is

ẋ = 𝜑 (x) = (𝜑
1
(x) , 𝜑

2
(x) , . . . , 𝜑

𝑛−𝑚
(x))

= 𝑓


1
(x (𝑡))A + 𝑓



2
(x (𝑡)) ∈ 𝑅

𝑛−𝑚
.

(21)

Then, the drive system is composed as

x̃ (𝑡) = 𝑓
1
(x̃ (𝑡))A + 𝑓

2
(x̃ (𝑡)) , (22)

where x̃ = (
x
x ), 𝑓1(x̃(𝑡)) = (

𝑓
1
(x(𝑡))
𝑓


1
(x(𝑡)) ), 𝑓2(x̃(𝑡)) = (

𝑓
2
(x(𝑡))
𝑓


2
(x(𝑡)) ).

The controller, parameter update law, and control gain
strength adapt rule are illustrated as follows:

U (𝑡) = −𝑔
1
(y (𝑡)) B̂ − 𝑔

2
(y (𝑡)) +Mℎ̇ (𝑡) x (𝑡 − 𝜏)

+Mℎ (𝑡) (𝑓
1
(x̃ (𝑡)) 𝐴 + 𝑓

2
(x̃ (𝑡))) − Ke,

�̇�
𝑖
= 𝜀
𝑖
𝑒
2

𝑖
, 𝜀
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛,

ė
𝐴
(𝑡) = −𝑓

T
1
(x̃ (𝑡)) ℎT (𝑡)Me (𝑡) ,

ė
𝐵
(𝑡) = 𝑔

1
(y (𝑡)) e (𝑡) .

(23)

The proof is similar to Case 1 and is omitted here.

4. Numerical Simulations

In this section, four typical cases are provided to verify and
show the effectiveness of the controller, parameter update
rule, and control gain strength adapt law. The solver DDE23
in Matlab is used to integrate the delay differential equations.

4.1. Case 1: MFPLS between Two Five-Dimensional Hyper-
chaotic Systems with Identical Structures. In this subsection,
we consider the case that 𝑚 = 𝑛 and the drive and re-
sponse system have the identical dimensions and structures.
Recently, Hu [31] proposed a new five-dimensional hyper-
chaotic Lorenz system by introducing two state feedback
controllers to the classical three-dimensional Lorenz system,
which is described by

�̇�
1
= −𝜎𝑥

1
+ 𝜎𝑥
2
+ 𝑥
4
,

�̇�
2
= 𝑟𝑥
1
− 𝑥
2
− 𝑥
1
𝑥
3
− 𝑥
5
,

�̇�
3
= −𝛽𝑥

3
+ 𝑥
1
𝑥
2
,

�̇�
4
= −𝑥
1
𝑥
3
+ 𝑑
1
𝑥
4
,

�̇�
5
= 𝑑
2
𝑥
2
,

(24)

where 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, and 𝑥

5
are state variables and 𝜎, 𝛽, 𝑟, 𝑑

1
,

and 𝑑
2
are the unknown system parameters to be identified.

When 𝜎 = 10, 𝛽 = 8/3, 𝑟 = 28, 𝑑
1
= 2, and 𝑑

2
∈ (2, 12), the

system is hyperchaotic with three positive LEs. 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
,

and 𝑢
5
are the controllers to be designed.

The five-dimensional Lorenz hyperchaotic system, as the
response system, is described as

̇𝑦
1
= −𝜎𝑦

1
+ 𝜎𝑦
2
+ 𝑦
4
+ 𝑢
1
,

̇𝑦
2
= 𝑟𝑦
1
− 𝑦
2
− 𝑦
1
𝑦
3
− 𝑦
5
+ 𝑢
2
,

̇𝑦
3
= −𝛽𝑦

3
+ 𝑦
1
𝑦
2
+ 𝑢
3
,

̇𝑦
4
= −𝑦
1
𝑦
3
+ 𝑑
1
𝑦
4
+ 𝑢
4
,

̇𝑦
5
= 𝑑
2
𝑦
2
+ 𝑢
5
,

(25)

where 𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, and 𝑦

5
are state variables, 𝜎, 𝛽, 𝑟, 𝑑

1
,

and 𝑑
2
are the unknown system parameters to be identified.

𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, and 𝑢

5
are the controllers to be constructed so
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that the drive system (24) and the response system (25) can
be synchronized in the sense of MFPLS.

We define the MFPLS error as follows:

𝑒
1
(𝑡) = 𝑦

1
(𝑡) − 𝑚

1
ℎ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) ,

𝑒
2
(𝑡) = 𝑦

2
(𝑡) − 𝑚

2
ℎ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) ,

𝑒
3
(𝑡) = 𝑦

3
(𝑡) − 𝑚

3
ℎ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) ,

𝑒
4
(𝑡) = 𝑦

4
(𝑡) − 𝑚

4
ℎ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) ,

𝑒
5
(𝑡) = 𝑦

5
(𝑡) − 𝑚

5
ℎ (𝑡) 𝑥

5
(𝑡 − 𝜏
5
) ,

(26)

where𝑚
𝑖
(𝑖 = 1, 2, 3, 4, 5) is a scaling constant, ℎ(𝑡) is a nonz-

ero continuous differentiable function, and the time delay
vector is 𝜏 = (𝜏

1
, 𝜏
2
, 𝜏
3
, 𝜏
4
, 𝜏
5
)
T.

The time derivative of the error system (26) is as follows:

̇𝑒
1
(𝑡) = ̇𝑦

1
(𝑡) − 𝑚

1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) − 𝑚
1
ℎ (𝑡) �̇�

1
(𝑡 − 𝜏
1
) ,

̇𝑒
2
(𝑡) = ̇𝑦

2
(𝑡) − 𝑚

2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡) �̇�

2
(𝑡 − 𝜏
2
) ,

̇𝑒
3
(𝑡) = ̇𝑦

3
(𝑡) − 𝑚

3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) − 𝑚
3
ℎ (𝑡) �̇�

3
(𝑡 − 𝜏
3
) ,

̇𝑒
4
(𝑡) = ̇𝑦

4
(𝑡) − 𝑚

4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) − 𝑚
4
ℎ (𝑡) �̇�

4
(𝑡 − 𝜏
4
) ,

̇𝑒
5
(𝑡) = ̇𝑦

5
(𝑡) − 𝑚

5
ℎ̇ (𝑡) 𝑥

5
(𝑡 − 𝜏
5
) − 𝑚
5
ℎ (𝑡) �̇�

5
(𝑡 − 𝜏
5
) .

(27)

Substituting (24) and (25) into (27), we can get the following:

̇𝑒
1
(𝑡) = −𝜎𝑦

1
(𝑡) + 𝜎𝑦

2
(𝑡) + 𝑦

4
(𝑡) + 𝑢

1
(𝑡)

− 𝑚
1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) − 𝑚
1
ℎ (𝑡)

× (−𝜎𝑥
1
(𝑡 − 𝜏
1
) + 𝜎𝑥

2
(𝑡 − 𝜏
1
) + 𝑥
4
(𝑡 − 𝜏
1
)) ,

̇𝑒
2
(𝑡) = 𝑟𝑦

1
(𝑡) − 𝑦

2
(𝑡) − 𝑦

1
(𝑡) 𝑦
3
(𝑡) − 𝑦

5
(𝑡) + 𝑢

2
(𝑡)

− 𝑚
2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡)

× (𝑟𝑥
1
(𝑡 − 𝜏
2
) − 𝑥
2
(𝑡 − 𝜏
2
)

− 𝑥
1
(𝑡 − 𝜏
2
) 𝑥
3
(𝑡 − 𝜏
2
) − 𝑥
5
(𝑡 − 𝜏
2
)) ,

̇𝑒
3
(𝑡) = −𝛽𝑦

3
(𝑡) + 𝑦

1
(𝑡) 𝑦
2
(𝑡) + 𝑢

3
(𝑡)

− 𝑚
3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) − 𝑚
3
ℎ (𝑡)

× (−𝛽𝑥
3
(𝑡 − 𝜏
3
) + 𝑥
1
(𝑡 − 𝜏
3
) 𝑥
2
(𝑡 − 𝜏
3
)) ,

̇𝑒
4
(𝑡) = −𝑦

1
(𝑡) 𝑦
3
(𝑡) + 𝑑

1
𝑦
4
(𝑡) + 𝑢

4
(𝑡)

− 𝑚
4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) − 𝑚
4
ℎ (𝑡)

× (−𝑥
1
(𝑡 − 𝜏
4
) 𝑥
3
(𝑡 − 𝜏
4
) + 𝑑
1
𝑥
4
(𝑡 − 𝜏
4
)) ,

̇𝑒
5
(𝑡) = 𝑑

2
𝑦
2
(𝑡) + 𝑢

5
(𝑡) − 𝑚

5
ℎ̇ (𝑡) 𝑥

5
(𝑡 − 𝜏
5
)

− 𝑚
5
ℎ (𝑡) 𝑑

2
𝑥
2
(𝑡 − 𝜏
5
) .

(28)

Based on Theorem 3, the controller, parameter update
rule, and control gain strength adapt law are described as
follows:

𝑢
1
(𝑡) = �̂� (𝑦

1
(𝑡) − 𝑦

2
(𝑡)) − 𝑦

4
(𝑡) + 𝑚

1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
)

− 𝑚
1
ℎ (𝑡) (�̂�𝑥

1
(𝑡 − 𝜏
1
) − �̂�𝑥

2
(𝑡 − 𝜏
1
) − 𝑥
4
(𝑡 − 𝜏
1
))

− 𝑘
1
𝑒
1
,

𝑢
2
(𝑡) = −𝑟𝑦

1
(𝑡) + 𝑦

2
(𝑡) + 𝑦

1
(𝑡) 𝑦
3
(𝑡) + 𝑦

5
(𝑡)

+ 𝑚
2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡)

× (−𝑟𝑥
1
(𝑡 − 𝜏
2
) + 𝑥
2
(𝑡 − 𝜏
2
) + 𝑥
1
(𝑡 − 𝜏
2
)

× 𝑥
3
(𝑡 − 𝜏
2
) + 𝑥
5
(𝑡 − 𝜏
2
)) − 𝑘

2
𝑒
2
,

𝑢
3
(𝑡) = 𝛽𝑦

3
(𝑡) − 𝑦

1
(𝑡) 𝑦
2
(𝑡) + 𝑚

3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
)

− 𝑚
3
ℎ (𝑡) (𝛽𝑥

3
(𝑡 − 𝜏
3
) − 𝑥
1
(𝑡 − 𝜏
3
) 𝑥
2
(𝑡 − 𝜏
3
))

− 𝑘
3
𝑒
3
,

𝑢
4
(𝑡) = 𝑦

1
(𝑡) 𝑦
3
(𝑡) − 𝑑

1
𝑦
4
(𝑡) + 𝑚

4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
)

− 𝑚
4
ℎ (𝑡) (𝑥

1
(𝑡 − 𝜏
4
) 𝑥
3
(𝑡 − 𝜏
4
) − 𝑑
1
𝑥
4
(𝑡 − 𝜏
4
))

− 𝑘
4
𝑒
4
,

𝑢
5
(𝑡) = −𝑑

2
𝑦
2
(𝑡) + 𝑚

5
ℎ̇ (𝑡) 𝑥

5
(𝑡 − 𝜏
5
)

+ 𝑚
5
ℎ (𝑡) 𝑑

2
𝑥
2
(𝑡 − 𝜏
5
) − 𝑘
5
𝑒
5
,

(29)

̇𝑒
𝜎
= ̇̂𝜎 = −𝑒

1
(𝑦
1
(𝑡) − 𝑦

2
(𝑡))

+ 𝑚
1
ℎ (𝑡) 𝑒

1
(𝑥
1
(𝑡 − 𝜏
1
) − 𝑥
2
(𝑡 − 𝜏
1
)) ,

̇𝑒
𝛽
=

̇̂
𝛽 = −𝑒

3
𝑦
3
(𝑡) + 𝑚

3
ℎ (𝑡) 𝑒

3
𝑥
3
(𝑡 − 𝜏
3
) ,

̇𝑒
𝑟
= ̇̂𝑟 = 𝑒

2
𝑦
1
(𝑡) − 𝑚

2
ℎ (𝑡) 𝑒

2
𝑥
1
(𝑡 − 𝜏
2
) ,

̇𝑒
𝑑
1

=
̇̂

𝑑
1
= 𝑒
4
𝑦
4
(𝑡) − 𝑚

4
ℎ (𝑡) 𝑒

4
𝑥
4
(𝑡 − 𝜏
4
) ,

̇𝑒
𝑑
2

=
̇̂

𝑑
2
= 𝑒
5
𝑦
2
(𝑡) − 𝑚

5
ℎ (𝑡) 𝑒

5
𝑥
2
(𝑡 − 𝜏
5
) ,

(30)

�̇�
𝑖
= 𝜀
𝑖
𝑒
2

𝑖
, 𝜀
𝑖
> 0, 𝑖 = 1, 2, . . . , 5, (31)

where �̂�, 𝛽, 𝑟, 𝑑
1
, and 𝑑

2
are the estimation of uncertain

parameters 𝜎, 𝛽, 𝑟, 𝑑
1
, and 𝑑

2
, respectively, 𝑒

𝜎
= �̂� − 𝜎, 𝑒

𝛽
=

𝛽 − 𝛽, 𝑒
𝑟
= 𝑟 − 𝑟, 𝑒

𝑑
1

= 𝑑
1
− 𝑑
1
, and 𝑒

𝑑
2

= 𝑑
2
− 𝑑
2
are the

corresponding parameter errors.

Proof. The Lyapunov function is chosen as

𝑉 (𝑡) =
1

2
(𝑒

T
1
(𝑡) 𝑒
1
(𝑡) + 𝑒

T
2
(𝑡) 𝑒
2
(𝑡) + 𝑒

T
3
(𝑡) 𝑒
3
(𝑡)

+ 𝑒
T
4
(𝑡) 𝑒
4
(𝑡) + 𝑒

T
5
(𝑡) 𝑒
5
(𝑡) + 𝑒

T
𝜎
(𝑡) 𝑒
𝜎
(𝑡)



6 Mathematical Problems in Engineering

+ 𝑒
T
𝛽
(𝑡) 𝑒
𝛽
(𝑡) + 𝑒

T
𝑟
(𝑡) 𝑒
𝑟
(𝑡) + 𝑒

T
𝑑
1

(𝑡) 𝑒
𝑑
1

(𝑡)

+ 𝑒
T
𝑑
2

(𝑡) 𝑒
𝑑
2

(𝑡)) +
1

2

5

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

,

(32)
where 𝑘 > 0 is a positive constant.

Then the time derivation of the Lyapunov function along
the trajectory of error systems (27) is as follows:

�̇� (𝑡) = 𝑒
T
1
(𝑡) ̇𝑒
1
(𝑡) + 𝑒

T
2
(𝑡) ̇𝑒
2
(𝑡) + 𝑒

T
3
(𝑡) ̇𝑒
3
(𝑡)

+ 𝑒
T
4
(𝑡) ̇𝑒
4
(𝑡) + 𝑒

T
5
(𝑡) ̇𝑒
5
(𝑡) + 𝑒

T
𝜎
(𝑡) ̇𝑒
𝜎
(𝑡)

+ 𝑒
T
𝛽
(𝑡) ̇𝑒
𝛽
(𝑡) + 𝑒

T
𝑟
(𝑡) ̇𝑒
𝑟
(𝑡) + 𝑒

T
𝑑
1

(𝑡) ̇𝑒
𝑑
1

(𝑡)

+ 𝑒
T
𝑑
2

(𝑡) ̇𝑒
𝑑
2

(𝑡) + �̇�
𝑖

5

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

.

(33)

Constituting (28), (29), (30), and (31) into (33), we get the
following:

�̇� (𝑡) = −𝑘 (𝑒
T
1
(𝑡) 𝑒
1
+𝑒

T
2
(𝑡) 𝑒
2
+𝑒

T
3
(𝑡) 𝑒
3
+𝑒

T
4
(𝑡) 𝑒
4
+𝑒

T
5
(𝑡) 𝑒
5
)

< 0.

(34)

𝑉(𝑡) is positive definite and �̇�(𝑡) < 0; thus, according
to Barbalat’s Lemma, MFPLS between the drive system (24)
and the response system (25) is achieved. The uncertain
parameters and control gain strengths can be identified and
defined as well.

To verify the effectiveness of the proposed synchroniza-
tionmethod, the numerical simulation is performed.The sys-
tem parameters are chosen as 𝜎 = 10, 𝛽 = 8/3, 𝑟 = 28, 𝑑

1
= 2,

and 𝑑
2
= 8, such that the drive system (24) and the response

system (25) can exhibit hyperchaotic behaviors without con-
trol. The initial conditions of the drive system (24) and the
response system (25) are taken as x(0) = (−2, 1, 4, 2, −3)

T,
y(0) = (−2, −2, 3, 4, 1)

T, respectively. The initial values of
the control gain strengths are selected as 𝑘

1
(0) = 𝑘

2
(0) =

𝑘
3
(0) = 𝑘

4
(0) = 𝑘

5
(0) = 6, and the constants are 𝜀

1
=

𝜀
2
= 𝜀
3
= 𝜀
4
= 𝜀
5
= 10. The initial values of the unknown

parameters are set as �̂�(0) = 𝛽(0) = 𝑟(0) = 𝑑
1
(0) = 𝑑

2
(0) =

0.001. The time delays are arbitrarily chosen as (𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
4
,

𝜏
5
) = (0.2, 0.1, 0.3, 0.1, 0.4). The scaling constants are ran-

domly taken as (𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
, 𝑚
5
) = (2, −3, −2, 1, −4), and

nonzero continuous differentiable function is selected as
ℎ(𝑡) = 2 sin(𝑡) + 1.

The corresponding simulation results are illustrated in
Figures 1, 2, and 3. Figure 1 displays that the synchronization
error variables 𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, and 𝑒

5
converge to zero after a

transient time, respectively. Figure 2 shows that the estimated
values of the uncertain parameters approach to the true
values; that is, �̂� → 10, 𝛽 → 8/3, 𝑟 → 28, 𝑑

1
→ 2, and

𝑑
2

→ 8 as 𝑡 → ∞. Figure 3 depicts the control gain
strengths adapt themselves to a certain value, that is, 𝑘

1
=

32.34, 𝑘
2
= 88.97, 𝑘

3
= 10.82, 𝑘

4
= 10.77, and 𝑘

5
= 27.67

as 𝑡 → ∞. In Figure 3, the upper right small figure is
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Figure 1: Time evolution ofMFPLS errors between systems (24) and
(25).
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Figure 3: Time evolution of the control gain strength.

the magnified drawing of the circling part. These results
show that the MFPLS has been achieved with the adaptive
controller (29) and the parameter update rule (30), and
control gain strengths can be identified automatically.

4.2. Case 2: MFPLS between Two Four-Dimensional Hyper-
chaotic Systems with Different Structures. In this subsection,
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we consider the case that 𝑚 = 𝑛 and the drive and response
system have the same dimensions and different structures.
Furthermore, we select the four-dimensional Lü hyperchaotic
system [32] and the four-dimensional Lorenz-Stenflo (LS)
hyperchaotic system [33] as the drive system and the response
system, respectively.

The four-dimensional Lü hyperchaotic system [32] is
given by the following equations:

�̇�
1
= 𝑎
1
(𝑥
2
− 𝑥
1
) + 𝑥
4
,

�̇�
2
= −𝑥
1
𝑥
3
+ 𝑐
1
𝑥
2
,

�̇�
3
= 𝑥
1
𝑥
2
− 𝑏
1
𝑥
3
,

�̇�
4
= 𝑥
1
𝑥
3
+ 𝑑
1
𝑥
4
,

(35)

where 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
are state variables and 𝑎

1
, 𝑏
1
, 𝑐
1
, and

𝑑
1
are uncertain system parameters. When 𝑎

1
= 36, 𝑏

1
= 3,

𝑐
1
= 20, and 𝑑

1
= 1, system (35) is hyperchaotic.

Lorenz-Stenflo (LS) hyperchaotic system [33] is described
as

̇𝑦
1
= 𝛼 (𝑦

2
− 𝑦
1
) + 𝛽𝑦

4
+ 𝑢
1
,

̇𝑦
2
= 𝛾𝑦
1
− 𝑦
1
𝑦
3
− 𝑦
2
+ 𝑢
2
,

̇𝑦
3
= 𝑦
1
𝑦
2
− 𝜃𝑦
3
+ 𝑢
3
,

̇𝑦
4
= −𝑦
1
− 𝛼𝑦
4
+ 𝑢
4
,

(36)

where𝑦
1
,𝑦
2
,𝑦
3
, and𝑦

4
are state variables,𝛼,𝛽, 𝛾, and 𝜃 are the

unknown system parameters. When 𝛼 = 1, 𝛽 = 1.5, 𝛾 = 26,
and 𝜃 = 0.7, system (36) exhibits hyperchaotic behavior.
And 𝑢

1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
are the controllers such that the two

hyperchaotic systems can be synchronized in the sense of
MFPLS.

We define the error as

𝑒
1
(𝑡) = 𝑦

1
(𝑡) − 𝑚

1
ℎ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) ,

𝑒
2
(𝑡) = 𝑦

2
(𝑡) − 𝑚

2
ℎ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) ,

𝑒
3
(𝑡) = 𝑦

3
(𝑡) − 𝑚

3
ℎ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) ,

𝑒
4
(𝑡) = 𝑦

4
(𝑡) − 𝑚

4
ℎ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) ,

(37)

where𝑚
𝑖
(𝑖 = 1, 2, 3, 4) is a scaling constant, ℎ(𝑡) is a nonzero

continuous differentiable function, and 𝜏 = (𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
4
)
T

are the time delays.
The time derivative of the error system (37) is

̇𝑒
1
(𝑡) = ̇𝑦

1
(𝑡) − 𝑚

1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) − 𝑚
1
ℎ (𝑡) �̇�

1
(𝑡 − 𝜏
1
) ,

̇𝑒
2
(𝑡) = ̇𝑦

2
(𝑡) − 𝑚

2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡) �̇�

2
(𝑡 − 𝜏
2
) ,

̇𝑒
3
(𝑡) = ̇𝑦

3
(𝑡) − 𝑚

3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) − 𝑚
3
ℎ (𝑡) �̇�

3
(𝑡 − 𝜏
3
) ,

̇𝑒
4
(𝑡) = ̇𝑦

4
(𝑡) − 𝑚

4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) − 𝑚
4
ℎ (𝑡) �̇�

4
(𝑡 − 𝜏
4
) .

(38)

Substituting (35) and (36) into (38), the error dynamical
system is obtained as follows:

̇𝑒
1
(𝑡) = 𝛼 (𝑦

2
(𝑡) − 𝑦

1
(𝑡)) + 𝛽𝑦

4
(𝑡) + 𝑢

1
(𝑡)

− 𝑚
1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) − 𝑚
1
ℎ (𝑡)

× (𝑎
1
(𝑥
2
(𝑡 − 𝜏
1
) − 𝑥
1
(𝑡 − 𝜏
1
)) + 𝑥

4
(𝑡 − 𝜏
1
))

− 𝑘
1
𝑒
1
,

̇𝑒
2
(𝑡) = 𝛾𝑦

1
(𝑡) − 𝑦

1
(𝑡) 𝑦
3
(𝑡) − 𝑦

2
(𝑡) + 𝑢

2
(𝑡)

− 𝑚
2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡)

× (−𝑥
1
(𝑡 − 𝜏
2
) 𝑥
3
(𝑡 − 𝜏
2
) + 𝑐
1
𝑥
2
(𝑡 − 𝜏
2
)) − 𝑘

2
𝑒
2
,

̇𝑒
3
(𝑡) = 𝑦

1
(𝑡) 𝑦
2
(𝑡) − 𝜃𝑦

3
(𝑡) + 𝑢

3
(𝑡)

− 𝑚
3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) − 𝑚
3
ℎ (𝑡)

× (𝑥
1
(𝑡 − 𝜏
3
) 𝑥
2
(𝑡 − 𝜏
3
) − 𝑏
1
𝑥
3
(𝑡 − 𝜏
3
)) − 𝑘

3
𝑒
3
,

̇𝑒
4
(𝑡) = −𝑦

1
(𝑡) − 𝛼𝑦

4
(𝑡) + 𝑢

4
(𝑡)

− 𝑚
4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) − 𝑚
4
ℎ (𝑡)

× (𝑥
1
(𝑡 − 𝜏
4
) 𝑥
3
(𝑡 − 𝜏
4
) + 𝑑
1
𝑥
4
(𝑡 − 𝜏
4
)) − 𝑘

4
𝑒
4
.

(39)

Based on Theorem 3, the controller, parameter update
rule, and control gain strength adapt law are constructed as
follows:

𝑢
1
(𝑡) = −�̂� (𝑦

2
(𝑡) − 𝑦

1
(𝑡)) − 𝛽𝑦

4
(𝑡)

+ 𝑚
1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) − 𝑚
1
ℎ (𝑡)

× (−𝑎
1
(𝑥
2
(𝑡 − 𝜏
1
) − 𝑥
1
(𝑡 − 𝜏
1
)) − 𝑥

4
(𝑡 − 𝜏
1
))

− 𝑘
1
𝑒
1
,

𝑢
2
(𝑡) = −𝛾𝑦

1
(𝑡) + 𝑦

1
(𝑡) 𝑦
3
(𝑡) + 𝑦

2
(𝑡)

+ 𝑚
2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡)

× (𝑥
1
(𝑡 − 𝜏
2
) 𝑥
3
(𝑡 − 𝜏
2
) − 𝑐
1
𝑥
2
(𝑡 − 𝜏
2
))

− 𝑘
2
𝑒
2
,

𝑢
3
(𝑡) = −𝑦

1
(𝑡) 𝑦
2
(𝑡) + 𝜃𝑦

3
(𝑡) + 𝑚

3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
)

− 𝑚
3
ℎ (𝑡) (−𝑥

1
(𝑡 − 𝜏
3
) 𝑥
2
(𝑡 − 𝜏
3
) + �̂�
1
𝑥
3
(𝑡 − 𝜏
3
))

− 𝑘
3
𝑒
3
,

𝑢
4
(𝑡) = 𝑦

1
(𝑡) + �̂�𝑦

4
(𝑡) + 𝑚

4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
)

− 𝑚
4
ℎ (𝑡) (−𝑥

1
(𝑡 − 𝜏
4
) 𝑥
3
(𝑡 − 𝜏
4
) − 𝑑
1
𝑥
4
(𝑡 − 𝜏
4
))

− 𝑘
4
𝑒
4
,

(40)
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̇𝑒
𝑎
1

= ̇̂𝑎
1
= −𝑚
1
ℎ (𝑡) 𝑒

1
(𝑥
2
(𝑡 − 𝜏
1
) − 𝑥
1
(𝑡 − 𝜏
1
)) ,

̇𝑒
𝑏
1

=
̇̂
𝑏
1
= 𝑚
3
ℎ (𝑡) 𝑒

3
𝑥
3
(𝑡 − 𝜏
3
) ,

̇𝑒
𝑐
1

= ̇̂𝑐
1
= −𝑚
2
ℎ (𝑡) 𝑒

2
𝑥
2
(𝑡 − 𝜏
2
) ,

̇𝑒
𝑑
1

=
̇̂

𝑑
1
= −𝑚
4
ℎ (𝑡) 𝑒

4
𝑥
4
(𝑡 − 𝜏
4
) ,

̇𝑒
𝛼
= ̇̂𝛼 = −𝑒

4
𝑦
4
(𝑡) + 𝑒

1
(𝑦
2
(𝑡) − 𝑦

1
(𝑡)) ,

̇𝑒
𝛽
=

̇̂
𝛽 = 𝑒
1
𝑦
4
(𝑡) ,

̇𝑒
𝛾
= ̇̂𝛾 = 𝑒

2
𝑦
1
(𝑡) ,

̇𝑒
𝜃
=

̇̂
𝜃 = −𝑒

3
𝑦
3
(𝑡) ,

(41)

�̇�
𝑖
= 𝜀
𝑖
𝑒
2

𝑖
, 𝜀
𝑖
> 0, 𝑖 = 1, 2, . . . , 4, (42)

where 𝑎
1
, �̂�
1
, 𝑐
1
, 𝑑
1
, �̂�, 𝛽, 𝛾, and 𝜃 are estimated values of the

unknown parameters 𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
, 𝛼, 𝛽, 𝛾, and 𝜃, respectively,

and 𝑒
𝑎
1

= 𝑎
1
− 𝑎
1
, 𝑒
𝑏
1

= �̂�
1
− 𝑏
1
, 𝑒
𝑐
1

= 𝑐
1
− 𝑐
1
, 𝑒
𝑑
1

= 𝑑
1
− 𝑑
1
,

𝑒
𝛼
= �̂� − 𝛼, 𝑒

𝛽
= 𝛽 − 𝛽, 𝑒

𝛾
= 𝛾 − 𝛾, and 𝑒

𝜃
= 𝜃 − 𝜃 are the

parameter errors.

Proof. The Lyapunov function is chosen as

𝑉 (𝑡) =
1

2
(𝑒

T
1
(𝑡) 𝑒
1
(𝑡) + 𝑒

T
2
(𝑡) 𝑒
2
(𝑡) + 𝑒

T
3
(𝑡) 𝑒
3
(𝑡)

+ 𝑒
T
4
(𝑡) 𝑒
4
(𝑡) + 𝑒

T
𝑎
1

(𝑡) 𝑒
𝑎
1

(𝑡) + 𝑒
T
𝑏
1

(𝑡) 𝑒
𝑏
1

(𝑡)

+ 𝑒
T
𝑐
1

(𝑡) 𝑒
𝑐
1

(𝑡) + 𝑒
T
𝑑
1

(𝑡) 𝑒
𝑑
1

(𝑡) + 𝑒
T
𝛼
(𝑡) 𝑒
𝛼
(𝑡)

+ 𝑒
T
𝛽
(𝑡) 𝑒
𝛽
(𝑡) + 𝑒

T
𝛾
(𝑡) 𝑒
𝛾
(𝑡) + 𝑒

T
𝜃
(𝑡) 𝑒
𝜃
(𝑡))

+
1

2

4

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

,

(43)

where 𝑘 > 0 is a positive constant.
Then the time derivation of the Lyapunov function along

the trajectory of error systems (39) is

�̇� (𝑡) = 𝑒
T
1
(𝑡) ̇𝑒
1
(𝑡) + 𝑒

T
2
(𝑡) ̇𝑒
2
(𝑡) + 𝑒

T
3
(𝑡) ̇𝑒
3
(𝑡)

+ 𝑒
T
4
(𝑡) ̇𝑒
4
(𝑡) + 𝑒

T
𝑎
1

(𝑡) ̇𝑒
𝑎
1

(𝑡) + 𝑒
T
𝑏
1

(𝑡) ̇𝑒
𝑏
1

(𝑡)

+ 𝑒
T
𝑐
1

(𝑡) ̇𝑒
𝑐
1

(𝑡) + 𝑒
T
𝑑
1

(𝑡) ̇𝑒
𝑑
1

(𝑡) + 𝑒
T
𝛼
(𝑡) ̇𝑒
𝛼
(𝑡)

+ 𝑒
T
𝛽
(𝑡) ̇𝑒
𝛽
(𝑡) + 𝑒

T
𝛾
(𝑡) ̇𝑒
𝛾
(𝑡) + 𝑒

T
𝜃
(𝑡) ̇𝑒
𝜃
(𝑡)

+ �̇�
𝑖

4

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

.

(44)

Constituting (39), (40), (41), and (42) into (44), we get the
following:

�̇� (𝑡) = −𝑘 (𝑒
T
1
(𝑡) 𝑒
1
+ 𝑒

T
2
(𝑡) 𝑒
2
+ 𝑒

T
3
(𝑡) 𝑒
3
+ 𝑒

T
4
(𝑡) 𝑒
4
) < 0.

(45)
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Figure 4: Time evolution of MFPLS errors between systems (35)
and (36).

𝑉(𝑡) is positive definite and �̇�(𝑡) < 0; thus, according to
Barbalat’s Lemma, MFPLS between the drive system (35) and
the response system (36) is achieved. The uncertain parame-
ters and control gain strengths can be identified and defined
as well.

In the numerical simulation, the system parameters are
selected as 𝑎

1
= 36, 𝑏

1
= 3, 𝑐

1
= 20, 𝑑

1
= 1, 𝛼 = 1, 𝛽 = 1.5,

𝛾 = 26, and 𝜃 = 0.7, such that the drive system (35) and
the response system (36) are hyperchaotic with no control
applied. The initial conditions of the drive system (35) and
the response system (36) are taken as x(0) = (−2, −1, −4, 2)

T,
y(0) = (−2, −1, 3, 5)

T, respectively. The initial values of the
unknown parameters are arbitrarily set as 𝑎

1
(0) = �̂�

1
(0) =

𝑐
1
(0) = 𝑑

1
(0) = �̂�(0) = 𝛽(0) = 𝛾(0) = 𝜃(0) = 0.001.

The constants are 𝜀
1

= 𝜀
2

= 𝜀
3

= 𝜀
4

= 5 and the initial
values of the control gain strength are chosen as 𝑘

1
(0) =

𝑘
2
(0) = 𝑘

3
(0) = 𝑘

4
(0) = 10. The scaling constants are set

as (𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
) = (−3, 2, −1, 2), and nonzero continuous

differentiable function is selected as ℎ(𝑡) = sin(𝑡). The time
delays are chosen as (𝜏

1
, 𝜏
2
, 𝜏
3
, 𝜏
4
) = (0.1, 0.2, 0.3, 0.4).

Numerical results are displayed in Figures 4–7. Figure 4
shows the time evolution of theMFPLS errors, which displays
that the errors tend to zero as 𝑡 → ∞. Figures 5 and 6 depict
the evolution of the estimated parameters of Lü hyperchaotic
system and Lorenz-Stenflo (LS) hyperchaotic system, which
displays that the estimates of the uncertain parameters
converge to 𝑎

1
= 36, 𝑏

1
= 3, 𝑐
1
= 20, 𝑑

1
= 1, 𝛼 = 1, 𝛽 = 1.5,

𝛾 = 26, and 𝜃 = 0.7 as 𝑡 → ∞, respectively. Figure 7 illus-
trates that the control gain strengths approach to some certain
values, that is, 𝑘

1
= 73.95, 𝑘

2
= 74.16, 𝑘

3
= 12.34, and 𝑘

4
=

35.46 as 𝑡 → ∞. In Figure 7, the middle small figure is the
magnified drawing of the circling part. These results show
that MFPLS between four-dimensional Lü hyperchaotic sys-
tem and four-dimensional Lorenz-Stenflo (LS) hyperchaotic
system is realized by using the adaptive controllers (40) and
the parameter update rule (41), and the control gain strength
can be gotten adaptively.

4.3. Case 3:MFPLS between a Four-Dimensional Hyperchaotic
System and a Three-Dimensional Chaotic System. In this
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Figure 5: Time evolution of parameter estimation for Lü hyper-
chaotic system (35).
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Figure 6: Time evolution of parameter estimation for Lorenz-
Stenflo (LS) hyperchaotic system (36).

subsection, we consider the case that 𝑚 > 𝑛 and the dimen-
sion of drive system is larger than that of the response system.

The four-dimensional Lorenz-Stenflo (LS) hyperchaotic
system [33], as the drive system, is given by

�̇�
1
= 𝛼 (𝑥

2
− 𝑥
1
) + 𝛽𝑥

4
,

�̇�
2
= 𝛾𝑥
1
− 𝑥
1
𝑥
3
− 𝑥
2
,

�̇�
3
= 𝑥
1
𝑥
2
− 𝜃𝑥
3
,

�̇�
4
= −𝑥
1
− 𝛼𝑥
4
,

(46)

where 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
are state variables and 𝛼, 𝛽, 𝛾, and 𝜃

are the uncertain system parameters to be estimated. When
𝛼 = 1, 𝛽 = 1.5, 𝛾 = 26, and 𝜃 = 0.7, system (46) exhibits
hyperchaotic behavior.

In order to achieve the full-stateMFPLS, an auxiliary state
should be added to the response system. Since adding sub-
controller to the response system to compensate it as extra-
dimensions is a practicable way [21], the auxiliary state is ̇𝑦

4
=

𝑢
4
.
Then, the three-dimensional Lorenz system, as the re-

sponse system, is described by
̇𝑦
1
= 𝑙 (𝑦
2
− 𝑦
1
) + 𝑢
1
,

̇𝑦
2
= 𝑚𝑦
1
− 𝑦
2
− 𝑦
1
𝑦
3
+ 𝑢
2
,

̇𝑦
3
= −𝑛𝑦

3
+ 𝑦
1
𝑦
2
+ 𝑢
3
,

̇𝑦
4
= 𝑢
4
,

(47)
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Figure 7: Time evolution of the control gain strength.

where 𝑦
1
, 𝑦
2
, 𝑦
3
, and 𝑦

4
are state variables 𝑙,𝑚, and 𝑛 are the

unknown system parameters. When 𝑙 = 10,𝑚 = 28, 𝑛 = 8/3,
system (47) is chaotic, 𝑢

1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
are the controllers to

be designed.
The MFPLS error is defined as

𝑒
1
(𝑡) = 𝑦

1
(𝑡) − 𝑚

1
ℎ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) ,

𝑒
2
(𝑡) = 𝑦

2
(𝑡) − 𝑚

2
ℎ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) ,

𝑒
3
(𝑡) = 𝑦

3
(𝑡) − 𝑚

3
ℎ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) ,

𝑒
4
(𝑡) = 𝑦

4
(𝑡) − 𝑚

4
ℎ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) ,

(48)

where𝑚
𝑖
(𝑖 = 1, 2, 3, 4) is a scaling constant, ℎ(𝑡) is a nonzero

continuous differentiable function, and 𝜏 = (𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
4
)
T

are the time delays.
Based on Theorem 3, the controller, parameter update

rules, and control gain strength adapt laws are as follows:

𝑢
1
(𝑡) = −�̂� (𝑦

2
(𝑡) − 𝑦

1
(𝑡)) + 𝑚

1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
)−𝑚
1
ℎ (𝑡)

× (−�̂� (𝑥
2
(𝑡 − 𝜏
1
) − 𝑥
1
(𝑡 − 𝜏
1
)) − 𝛽𝑥

4
(𝑡 − 𝜏
1
))

− 𝑘
1
𝑒
1
,

𝑢
2
(𝑡) = −�̂�𝑦

1
+ 𝑦
2
+ 𝑦
1
𝑦
3
+ 𝑚
2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡)

× (−𝛾𝑥
1
(𝑡−𝜏
2
)+𝑥
1
(𝑡 − 𝜏
2
) 𝑥
3
(𝑡−𝜏
2
)+𝑥
2
(𝑡 − 𝜏
2
))

− 𝑘
2
𝑒
2
,

𝑢
3
(𝑡) = +𝑛𝑦

3
− 𝑦
1
𝑦
2
+ 𝑚
3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) − 𝑚
3
ℎ (𝑡)

× (−𝑥
1
(𝑡 − 𝜏
3
) 𝑥
2
(𝑡 − 𝜏
3
) + 𝜃𝑥

3
(𝑡 − 𝜏
3
)) − 𝑘

3
𝑒
3
,

𝑢
4
(𝑡) = +𝑚

4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
)

− 𝑚
4
ℎ (𝑡) (𝑥

1
(𝑡 − 𝜏
4
) + �̂�𝑥

4
(𝑡 − 𝜏
4
)) − 𝑘

4
𝑒
4
,

(49)

̇𝑒
𝛼
= ̇̂𝛼 = −𝑚

1
ℎ (𝑡) 𝑒

1
(𝑥
2
(𝑡 − 𝜏
1
) − 𝑥
1
(𝑡 − 𝜏
1
))

+ 𝑚
4
ℎ (𝑡) 𝑒

4
𝑥
4
(𝑡 − 𝜏
4
) ,

̇𝑒
𝛽
=

̇̂
𝛽 = −𝑚

1
ℎ (𝑡) 𝑒

1
𝑥
4
(𝑡 − 𝜏
1
) ,
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̇𝑒
𝛾
= ̇̂𝛾 = −𝑚

2
ℎ (𝑡) 𝑒

2
𝑥
1
(𝑡 − 𝜏
2
) ,

̇𝑒
𝜃
=

̇̂
𝜃 = 𝑚

3
ℎ (𝑡) 𝑒

3
𝑥
3
(𝑡 − 𝜏
3
) ,

̇𝑒
𝑙
=

̇̂
𝑙 = (𝑦

2
(𝑡) − 𝑦

1
(𝑡)) 𝑒
1
,

̇𝑒
𝑚
= ̇̂𝑚 = 𝑒

2
𝑦
1
(𝑡) ,

̇𝑒
𝑛
= ̇̂𝑛 = −𝑒

3
𝑦
3
(𝑡) ,

(50)

�̇�
𝑖
= 𝜀
𝑖
𝑒
2

𝑖
, 𝜀
𝑖
> 0, 𝑖 = 1, 2, . . . , 4, (51)

where �̂�, 𝛽, 𝛾, 𝜃, �̂�, �̂�, and 𝑛 are estimated values of the
unknown parameters 𝛼, 𝛽, 𝛾, 𝜃, 𝑙, 𝑚, and 𝑛, respectively and
𝑒
𝛼
= �̂� − 𝛼, 𝑒

𝛽
= 𝛽 − 𝛽, 𝑒

𝛾
= 𝛾 − 𝛾, 𝑒

𝜃
= 𝜃 − 𝜃, 𝑒

𝑙
= �̂� − 𝑙,

𝑒
𝑚
= �̂� − 𝑚, and 𝑒

𝑛
= 𝑛 − 𝑛 are the parameter errors.

Proof. The Lyapunov function is chosen as

𝑉 (𝑡) =
1

2
(𝑒

T
1
(𝑡) 𝑒
1
(𝑡) + 𝑒

T
2
(𝑡) 𝑒
2
(𝑡) + 𝑒

T
3
(𝑡) 𝑒
3
(𝑡)

+ 𝑒
T
4
(𝑡) 𝑒
4
(𝑡) + 𝑒

T
𝛼
(𝑡) 𝑒
𝛼
(𝑡) + 𝑒

T
𝛽
(𝑡) 𝑒
𝛽
(𝑡)

+ 𝑒
T
𝛾
(𝑡) 𝑒
𝛾
(𝑡) + 𝑒

T
𝜃
(𝑡) 𝑒
𝜃
(𝑡) + 𝑒

T
𝑙
(𝑡) 𝑒
𝑙
(𝑡)

+ 𝑒
T
𝑚
(𝑡) 𝑒
𝑚
(𝑡) + 𝑒

T
𝑛
(𝑡) 𝑒
𝑛
(𝑡))

+
1

2

4

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

,

(52)

where 𝑘 > 0 is a positive constant.
Then the time derivation of the Lyapunov function along

the trajectory of error systems is

�̇� (𝑡) = 𝑒
T
1
(𝑡) ̇𝑒
1
(𝑡) + 𝑒

T
2
(𝑡) ̇𝑒
2
(𝑡) + 𝑒

T
3
(𝑡) ̇𝑒
3
(𝑡)

+ 𝑒
T
4
(𝑡) ̇𝑒
4
(𝑡) + 𝑒

T
𝛼
(𝑡) ̇𝑒
𝛼
(𝑡) + 𝑒

T
𝛽
(𝑡) ̇𝑒
𝛽
(𝑡)

+ 𝑒
T
𝛾
(𝑡) ̇𝑒
𝛾
(𝑡) + 𝑒

T
𝜃
(𝑡) ̇𝑒
𝜃
(𝑡) + 𝑒

T
𝑙
(𝑡) ̇𝑒
𝑙
(𝑡)

+ 𝑒
T
𝑚
(𝑡) ̇𝑒
𝑚
(𝑡) + 𝑒

T
𝑛
(𝑡) ̇𝑒
𝑛
(𝑡)

+ �̇�
𝑖

4

∑

𝑖=1

1

𝜀
𝑖

(𝑘
𝑖
− 𝑘)
2

.

(53)

Constituting (48), (49), (50), and (51) into (53), we get the
following:

�̇� (𝑡) = −𝑘 (𝑒
T
1
(𝑡) 𝑒
1
+ 𝑒

T
2
(𝑡) 𝑒
2
+ 𝑒

T
3
(𝑡) 𝑒
3
+ 𝑒

T
4
(𝑡) 𝑒
4
) < 0.

(54)

𝑉(𝑡) is positive definite and �̇�(𝑡) < 0; thus, according
to Barbalat’s Lemma, MFPLS between the drive system (46)
and the response system (47) is achieved. The uncertain
parameters and control gain strengths can be identified and
defined as well.
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Figure 8: Time evolution of MFPLS errors between systems (46)
and (47).

In the numerical simulation, the system parameters are
selected as 𝛼 = 1, 𝛽 = 1.5, 𝛾 = 26, 𝜃 = 0.7, 𝑙 = 10, 𝑚 = 28,
𝑛 = 8/3, such that the drive system (46) and the response
system (47) are chaotic without control. We take that the
initial conditions of the drive system (46) and the response
system (47) are x(0) = (−2, 1, 4, 2)

T, y(0) = (2, −2, 3, 4)
T,

respectively. The constants are 𝜀
1
= 𝜀
2
= 𝜀
3
= 𝜀
4
= 10, and

the initial values of the control gain strengths are chosen as
𝑘
1
(0) = 𝑘

2
(0) = 𝑘

3
(0) = 𝑘

4
(0) = 8. The initial values of the

unknown parameters are set as �̂�(0) = 𝛽(0) = 𝛾(0) = 𝜃(0) =

�̂�
1
(0) = �̂�

1
(0) = 𝑛

1
(0) = 0.001. The time delays are randomly

selected as (𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
4
) = (0.2, 0.1, 0.3, 0.1). The scaling

constants are taken as (𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
) = (2, −3, −2, 3)

and nonzero continuous differentiable function is chosen as
ℎ(𝑡) = 2 sin(0.5𝑡) + 1.

Corresponding simulation results are displayed in Figures
8–11. Figure 8 shows that the error variables 𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4

tend to zero, respectively. Figures 9 and 10 illustrate that the
estimated values of the unknown parameters approach to
𝛼 = 1, 𝛽 = 1.5, 𝛾 = 26, 𝜃 = 0.7, 𝑙 = 10, 𝑚 = 28, 𝑛 = 8/3 as
𝑡 → ∞, respectively. Figure 11 depicts that the control gain
strength 𝑘

1
, 𝑘
2
, 𝑘
3
, and 𝑘

4
tend to some certain value, 𝑘

1
=

32.42, 𝑘
2
= 121.3, 𝑘

3
= 12.24, 𝑘

4
= 12.62 as 𝑡 → ∞. As

shown in Figures 8–11, MFPLS between Lorenz-Stenflo (LS)
hyperchaotic system (46) and the three-dimensional Lorenz
system (47) is obtained and all the uncertain parameters are
identified successfully by using the controller (49) and the
parameter update rule (50). At themeantime, the control gain
strengths can be estimated.

4.4. Case 4: MFPLS between a Novel Three-Dimensional
Chaotic System and a Five-Dimensional Hyperchaotic Sys-
tem. In this subsection, MFPLS between a novel three-
dimensional chaotic system and a five-dimensional hyper-
chaotic system is analyzed.

Recently,Wu andLi [34] introduced a novel three-dimen-
sional autonomous chaotic system by adding a quadratic
cross-product term to the first equation and modifying the
state variable in the third equation of a chaotic system
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Figure 9: Time evolution of parameter estimation for the drive
system (46).
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Figure 10: Time evolution of parameter estimation for the response
system (47).

proposed byCai et al. [35], investigated some basic dynamical
properties, such as Lyapunov exponent spectrum, bifurca-
tions, equilibria, and chaotic dynamical behaviors of the
new chaotic system, and studied hybrid function projective
synchronization (HFPS) of the new chaotic system. The
system is described by

�̇�
1
= 𝑎 (𝑥

2
− 𝑥
1
) + 𝑥
2
𝑥
3
,

�̇�
2
= 𝑏𝑥
1
+ 𝑐𝑥
2
− 𝑥
1
𝑥
3
,

�̇�
3
= 𝑥
2

2
− 𝑑𝑥
3
,

(55)

where 𝑥
1
, 𝑥
2
, and 𝑥

3
are state variables and 𝑎, 𝑏, 𝑐, and 𝑑

are the uncertain system parameters to be estimated. When
𝑎 = 20, 𝑏 = 5, 𝑐 = 10, 𝑑 ∈ [0, +∞), the system behaves as
hyperchaos.

The response system is a five-dimensional hyperchaotic
Lorenz system, which is given by

̇𝑦
1
= −𝜎𝑦

1
+ 𝜎𝑦
2
+ 𝑦
4
+ 𝑢
1
,

̇𝑦
2
= 𝑟𝑦
1
− 𝑦
2
− 𝑦
1
𝑦
3
− 𝑦
5
+ 𝑢
2
,

̇𝑦
3
= −𝛽𝑦

3
+ 𝑦
1
𝑦
2
+ 𝑢
3
,

̇𝑦
4
= −𝑦
1
𝑦
3
+ 𝑑
1
𝑦
4
+ 𝑢
4
,

̇𝑦
5
= 𝑑
2
𝑦
2
+ 𝑢
5
,

(56)
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Figure 11: Time evolution of the control gain strength.

where 𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, and 𝑦

5
are state variables and 𝜎, 𝛽, 𝑟, 𝑑

1
,

and 𝑑
2
are the unknown system parameters to be identified.

When 𝜎 = 10, 𝛽 = 8/3, 𝑟 = 28, 𝑑
1
= 2, and 𝑑

2
∈ (2, 12), the

system is hyperchaotic with three positive LEs. 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
,

and 𝑢
5
are the controllers to be designed.

Based on the above method, we construct two auxiliary
state variable 𝑥

4
= 𝑥
1
, 𝑥
5
= 𝑥
2
+ 𝑥
3
. Then the drive system

can be written as follows:

�̇�
1
= 𝑎 (𝑥

2
− 𝑥
1
) + 𝑥
2
𝑥
3
,

�̇�
2
= 𝑏𝑥
1
+ 𝑐𝑥
2
− 𝑥
1
𝑥
3
,

�̇�
3
= 𝑥
2

2
− 𝑑𝑥
3
,

�̇�
4
= 𝑎 (𝑥

2
− 𝑥
1
) + 𝑥
2
𝑥
3
,

�̇�
5
= 𝑏𝑥
1
+ 𝑐𝑥
2
− 𝑥
1
𝑥
3
+ 𝑥
2

2
− 𝑑𝑥
3
.

(57)

The MFPLS error is

𝑒
1
(𝑡) = 𝑦

1
(𝑡) − 𝑚

1
ℎ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
) ,

𝑒
2
(𝑡) = 𝑦

2
(𝑡) − 𝑚

2
ℎ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) ,

𝑒
3
(𝑡) = 𝑦

3
(𝑡) − 𝑚

3
ℎ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
) ,

𝑒
4
(𝑡) = 𝑦

4
(𝑡) − 𝑚

4
ℎ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
) ,

𝑒
5
(𝑡) = 𝑦

5
(𝑡) − 𝑚

5
ℎ (𝑡) 𝑥

5
(𝑡 − 𝜏
5
) ,

(58)

where𝑚
𝑖
(𝑖 = 1, 2, 3, 4, 5) is a scaling constant, ℎ(𝑡) is a nonz-

ero continuous differentiable function, and the time delay
vector is 𝜏 = (𝜏

1
, 𝜏
2
, 𝜏
3
, 𝜏
4
, 𝜏
5
)
T.

Based on Theorem 3, the controller, parameter update
rules, and control gain strength adapt laws are chosen as
follows:

𝑢
1
(𝑡) = �̂� (𝑦

1
(𝑡) − 𝑦

2
(𝑡)) − 𝑦

4
(𝑡) + 𝑚

1
ℎ̇ (𝑡) 𝑥

1
(𝑡 − 𝜏
1
)

+ 𝑚
1
ℎ (𝑡) 𝑎 (𝑥

2
(𝑡 − 𝜏
1
) − 𝑥
1
(𝑡 − 𝜏
1
))

+ 𝑚
1
ℎ (𝑡) 𝑥

2
(𝑡 − 𝜏
1
) 𝑥
3
(𝑡 − 𝜏
1
) − 𝑘
1
𝑒
1
,
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𝑢
2
(𝑡) = −𝑟𝑦

1
(𝑡) + 𝑦

2
(𝑡) + 𝑦

1
(𝑡) 𝑦
3
(𝑡) + 𝑦

5
(𝑡)

+ 𝑚
2
ℎ̇ (𝑡) 𝑥

2
(𝑡 − 𝜏
2
) − 𝑚
2
ℎ (𝑡)

× (−�̂�𝑥
1
(𝑡−𝜏
2
)−𝑐𝑥
2
(𝑡−𝜏
2
)+𝑥
1
(𝑡 − 𝜏
2
) 𝑥
3
(𝑡 − 𝜏
2
))

− 𝑘
2
𝑒
2
,

𝑢
3
(𝑡) = 𝛽𝑦

3
(𝑡) − 𝑦

1
(𝑡) 𝑦
2
(𝑡) + 𝑚

3
ℎ̇ (𝑡) 𝑥

3
(𝑡 − 𝜏
3
)

− 𝑚
3
ℎ (𝑡) (−𝑥

2

2
(𝑡 − 𝜏
3
) + 𝑑𝑥

3
(𝑡 − 𝜏
3
)) − 𝑘

3
𝑒
3
,

𝑢
4
(𝑡) = 𝑦

1
(𝑡) 𝑦
3
(𝑡) − 𝑑

1
𝑦
4
(𝑡) + 𝑚

4
ℎ̇ (𝑡) 𝑥

4
(𝑡 − 𝜏
4
)

+ 𝑚
4
ℎ (𝑡) 𝑎 (𝑥

2
(𝑡 − 𝜏
4
) − 𝑥
1
(𝑡 − 𝜏
4
))

+ 𝑚
4
ℎ (𝑡) 𝑥

2
(𝑡 − 𝜏
4
) 𝑥
3
(𝑡 − 𝜏
4
) − 𝑘
4
𝑒
4
,

𝑢
5
(𝑡) = −𝑑

2
𝑦
2
(𝑡) + 𝑚

5
ℎ̇ (𝑡) 𝑥

5
(𝑡 − 𝜏
5
) − 𝑚
5
ℎ (𝑡)

× (−�̂�𝑥
1
(𝑡 − 𝜏
5
) − 𝑐𝑥

2
(𝑡 − 𝜏
5
)

+ 𝑥
1
(𝑡 − 𝜏
5
) 𝑥
3
(𝑡 − 𝜏
5
)

− 𝑥
2

2
(𝑡 − 𝜏
5
) + 𝑑𝑥

3
(𝑡 − 𝜏
5
)) − 𝑘

5
𝑒
5
,

̇𝑒
𝑎
= ̇̂𝑎 = −𝑒

1
𝑚
1
ℎ (𝑡) (𝑥

2
(𝑡 − 𝜏
1
) − 𝑥
1
(𝑡 − 𝜏
1
))

− 𝑚
4
ℎ (𝑡) 𝑒

4
(𝑥
2
(𝑡 − 𝜏
4
) − 𝑥
1
(𝑡 − 𝜏
4
)) ,

̇𝑒
𝑏
=

̇̂
𝑏 = −𝑒

2
𝑚
2
ℎ (𝑡) 𝑥

1
(𝑡 − 𝜏
2
) − 𝑚
5
ℎ (𝑡) 𝑒

5
𝑥
1
(𝑡 − 𝜏
5
) ,

̇𝑒
𝑐
= ̇̂𝑐 = −𝑚

2
ℎ (𝑡) 𝑒

2
𝑥
2
(𝑡 − 𝜏
2
) − 𝑚
5
ℎ (𝑡) 𝑒

5
𝑥
2
(𝑡 − 𝜏
5
) ,

̇𝑒
𝑑
=

̇̂
𝑑 = 𝑚

3
ℎ (𝑡) 𝑒

3
𝑥
3
(𝑡 − 𝜏
3
) + 𝑚
5
ℎ (𝑡) 𝑒

5
𝑥
3
(𝑡 − 𝜏
5
) ,

̇𝑒
𝜎
= ̇̂𝜎 = −𝑒

1
(𝑦
1
(𝑡) − 𝑦

2
(𝑡)) ,

̇𝑒
𝛽
=

̇̂
𝛽 = −𝑒

3
𝑦
3
(𝑡) ,

̇𝑒
𝑟
= ̇̂𝑟 = 𝑒

2
𝑦
1
(𝑡) ,

̇𝑒
𝑑
1

=
̇̂

𝑑
1
= 𝑒
4
𝑦
4
(𝑡) ,

̇𝑒
𝑑
2

=
̇̂

𝑑
2
= 𝑒
5
𝑦
2
(𝑡) ,

�̇�
𝑖
= 𝜀
𝑖
𝑒
2

𝑖
, 𝜀
𝑖
> 0, 𝑖 = 1, 2, . . . , 5,

(59)

where 𝑎, �̂�, 𝑐, 𝑑, �̂�, 𝛽, 𝑟, 𝑑
1
, and 𝑑

2
are the estimated values

of 𝑎, 𝑏, 𝑐, 𝑑, 𝜎, 𝛽, 𝑟, 𝑑
1
, and 𝑑

2
, respectively and 𝑒

𝑎
= 𝑎 − 𝑎,

𝑒
𝑏
= �̂� − 𝑏, 𝑒

𝑐
= 𝑐 − 𝑐, 𝑒

𝑑
= 𝑑 − 𝑑, 𝑒

𝜎
= �̂� − 𝜎, 𝑒

𝛽
= 𝛽 − 𝛽,

𝑒
𝑟
= 𝑟 − 𝑟, 𝑒

𝑑
1

= 𝑑
1
− 𝑑
1
, 𝑒
𝑑
2

= 𝑑
2
− 𝑑
2
are parameter errors.

Proof. The Lyapunov function is chosen as
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(60)

where 𝑘 > 0 is a positive constant.
Then the time derivation of the Lyapunov function along

the trajectory of error systems is

�̇� (𝑡) = 𝑒
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(61)

Constituting (58) and (59) into (61), we get the following:

�̇� (𝑡) = −𝑘 (𝑒
T
1
(𝑡) 𝑒
1
+𝑒

T
2
(𝑡) 𝑒
2
+𝑒

T
3
(𝑡) 𝑒
3
+𝑒

T
4
(𝑡) 𝑒
4
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T
5
(𝑡) 𝑒
5
)

< 0.

(62)

𝑉(𝑡) is positively definite and �̇�(𝑡) < 0; thus, according
to Barbalat’s Lemma, MFPLS between the drive system (57)
and the response system (56) is achieved. The uncertain
parameters and control gain strengths can be identified and
defined as well.

In the simulation, the system parameters are selected as
𝑎 = 20, 𝑏 = 5, 𝑐 = 10, 𝑑 = 2, 𝜎 = 10, 𝛽 = 8/3, 𝑟 = 28, 𝑑

1
= 2,

and 𝑑
2
= 8, such that the drive system (57) and the response

system (56) can exhibit chaotic behaviors without control.We
assume that the initial conditions of the drive system (57)
and the response system (56) as x(0) = (−2, 1, 4, 2, −3)

T,
y(0) = (2, −2, 3, 6, 1)

T, respectively. We choose the initial
values of the unknown parameters as 𝑎(0) = �̂�(0) = 𝑐(0) =

𝑑(0) = �̂�(0) = 𝛽(0) = 𝑟(0) = 𝑑
1
(0) = 𝑑

2
(0) = 0.001. We

select the initial values of the control gain strength as 𝑘
1
(0) =

𝑘
2
(0) = 𝑘

3
(0) = 𝑘

4
(0) = 𝑘

5
(0) = 4, and the constants as

𝜀
1
= 𝜀
2
= 𝜀
3
= 𝜀
4
= 𝜀
5
= 6.The time delay is arbitrarily chosen

as (𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
4
, 𝜏
5
) = (0.3, 0.4, 0.2, 0.1, 0.2). We take the

scaling constants as (𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
, 𝑚
5
) = (−2, 3, −1, 2, −5)

and nonzero continuous differentiable function as ℎ(𝑡) =

sin(𝑡). The corresponding simulation results are illustrated in
Figures 12–15.

Figure 12 shows that the synchronization errors converge
to zero after a transient time, which indicates that MFPLS
between the drive system (57) and the response system (56)
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Figure 12: Time evolution ofMFPLS errors between the system (57)
and the system (56).
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Figure 13: Time evolution of parameter estimation for the drive
system (57).

is achieved. From Figures 13 and 14, it is easy to see that the
nine unknown parameters are also identified. Time evolution
of the adaptive control strength is illustrated in Figure 15, and
the control strengths approach to 𝑘

1
= 29.32, 𝑘

2
= 70.77,

𝑘
3
= 23.85, 𝑘

4
= 47.18 and 𝑘

5
= 25.98 as 𝑡 → ∞. Hence, the

MFPLS between the 3-dimensional hyperchaotic system and
the 5-dimensional hyperchaotic system are attained, all the
uncertain parameters can be estimated and the control gain
strengths can be given, too.

5. Conclusions

The paper investigated MFPLS of hyperchaotic or chaotic
system, when the system parameters are all uncertain and
the dimension and structure of the drive system and the
response system are the same or different. A general theorem
for controller designing, parameter update rule designing,
and control gain strength adapt law designing is introduced
by using adaptive control method, and it has been proven
effective theoretically based on Lyapunov stability theory. It
is worth mentioning that the systems can have the identical
or different dimensions and structures, and the control gain
strengths can be identified adaptively.
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Figure 14: Time evolution of parameter estimation for the response
system (56).
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Figure 15: Time evolution of the control gain strength.

Furthermore, the proposed method is applied to four
typical examples, which include MFPLS between two five-
dimensional hyperchaotic systems with identical structures,
MFPLS between two four-dimensional hyperchaotic systems
with different structures,MFPLS between a four-dimensional
hyperchaotic system and a three-dimensional chaotic system,
and MFPLS between a novel three-dimensional chaotic
system and a five-dimensional hyperchaotic system. In every
case, controller, parameter update rule, and control gain
strength adapt law are constructed in detail. The corre-
sponding numerical simulations are performed to show the
effectiveness of our results.

By now, many fractional-order differential systems such
as fractional-order Chua’s circuit, the fractional-order van
der pol system, and the fractional-order Lorenz system,
are chaotic. And study on the synchronization of chaotic
fractional-order differential systems has greatly attracted
interest of many researchers due to its potential applications
in secure communication and control processing [36–38].
Wang et al. [36, 37] introduced projective synchronization
of fractional-order chaotic systems based on linear separa-
tion and synchronization of fractional-order chaotic systems
with activation feedback control. In [38], modified projec-
tive synchronization of fractional-order chaotic systems via
active sliding mode control is analyzed, and active sliding
mode controller is proposed to synchronize two different
fractional-order differential systems based on the stability
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theorems of fractional-order linear system. Research on
MFPLS of fractional-order chaotic systems is interesting and
useful. The adding of time delay makes the solving of the
equation more difficult. To the best of our knowledge, mod-
ified function projective lag synchronization of fractional-
order chaotic systems are not studied. So, we will investigate
the MFPLS of fractional-order chaotic systems and derive
some stability criteria in a near future.
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