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Abstract. 
We first propose the fractal models for the one-phase problems of discontinuous transient heat transfer. The models are taken in sense of local fractional differential operator and used to describe the (dimensionless) melting of fractal solid semi-infinite materials initially at their melt temperatures.


1. Introduction
We know that the local fractional calculus is set up on fractals. Fractal media is complex, and it appears in different fields of engineering and physics. Fractal physical parameters are considered as local fractional continuous functions, which is fractal characteristics of local fractional functional analysis from fractal geometry point of view. Moreover, the local fractional calculus is a powerful tool to model Fourier law of heat conductions in discontinuous heat transfer in fractal media. Local fractional heat-conduction equations may be applied to describe the fractal behaviors of discontinuous heat transfer in fractal media.
As it is known the Goodman’s heat balance integral method represents an approximate technique for generating functional solutions to thermal problems that were described by differential equations [1–3]. Based on theory of fractional calculus [4, 5], both the Stefan problem and the heat-balance integral method governed by a fractional diffusion equation were investigated [6–8]. However, we mention that the above problems are considered in the smooth condition.
On the other hand the heat transfer with nonsmooth condition (fractal space) is an interesting topic. The various phenomena in nanoscale heat (e.g., a charged jet in electrospinning process) can produce both continuous nanofibers and discontinuous nanoporous material. For continuous case, the classical Fourier law is valid. However, for nanoporous material, the fractal Fourier law should be used. For examples, the generalized transfer equation in a medium with fractal geometry was considered in [9], the Fourier’s law heat conduction in the discontinuous media was investigated in [10], and the heat transfer from discontinuous media was discussed in [11, 12].
Maybe, there are one-phase problems of fractal heat transfer in nanoporous materials. The aim of this paper is to study the fractal models for one-phase problems. The organization of the paper is organized as follows. In Section 2, we introduce the concept of local fractional derivative and give some results on local fractional chain rule and the fractal complex transform. Section 3 is devoted to the fractal models for the one-phase problems of discontinuous transient heat transfer. Finally, conclusions are given in Section 4.
2. Preliminaries
In this section, we give some basic definitions and properties of the local fractional differential operator theory which are used further in this paper. In order to discuss the fractal behaviors of materials, we start with the fractal result derived from the fractal geometry.
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For the convenience of the reader, we represent here the following results.
Following Lemma 1, we have [11]
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						We stress on the fact that the above method is different from fractional complex transform method discussed in [15, 16]. The fractional complex transform method is proposed in [15, 16], while fractal complex transform method is based on the local fractional calculus theory [14].
3. Fractal Models for One-Phase Problems
We propose a one-phase fractal problem that describes the (dimensionless) melting of a fractal solid semi-infinite material initially at its melt temperature. The corresponding equations are given by the following expressions:
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4. Conclusions
In this paper we have proposed alternative fractal models for the one-phase problems of discontinuous transient heat transfer in fractal media. By applying the fractal complex transform and the chain rule within local fractional derivative, we have derived the one-phase problems of discontinuous transient heat transfer in fractal media, which describe the (dimensionless) melting of fractal solid semi-infinite materials initially at their melt temperatures. We consider the fractal models for the one-phase problems of discontinuous transient heat transfer. The fractal models for one-phase problems are classical examples when the fractional dimension is equal to 1. The discontinuous transient heat transfer in fractal media can serve as a good starting point for experimental investigations and further discussions.
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