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Abstract. 
The main purpose of this paper is to investigate the structure of the weighted multifrequency multiple signal classification (MUSIC) type imaging function in order to improve the traditional MUSIC-type imaging. For this purpose, we devise a weighted multifrequency MUSIC-type imaging function and examine a relationship between weighted multifrequency MUSIC-type function and Bessel functions of integer order of the first kind. Some numerical results are demonstrated to support the survey.


1. Introduction
Inverse problem, which deals with the reconstruction of cracks or thin inclusions in homogeneous material (or space) with physical features different from space, is of interest in a wide range of fields such as physics, engineering, and image medical science which are closely related to human life; refer to [1–9]. That is why inverse problem has been established as one interesting research field. Compared to the early studies on inverse problem in which much research had been done theoretically, in recent studies, more practical and applicable approaches have been undertaken and the reconstructive way appropriate to each specific study field started to be investigated thanks to the development of computational science using not only computers but also mathematical theory. As we can see through a series of papers [10, 11], the reconstruction algorithm, based on the iterative scheme such as Newton’s method, has been mainly studied. Generally, in regard to algorithms using Newton’s method, in the case of the initial shape quite different from the unknown target, the reconstruction of material leads to failure with the nonconvergence or yields faulty shapes even after the iterative methods are conducted. Hence, in such an iterative method, several noniterative algorithms have been proposed as a way to find the shape of initial value close to that of the unknown target as quickly as possible.
The noniterative algorithms such as multiple signal classification (MUSIC), subspace migrations, topological derivative, and linear sampling method can contribute to yielding the appropriate image as an initial guess. Previous attempts to investigate MUSIC-type algorithm presented various experiments with the use of MUSIC-type algorithm. For instance, the use of MUSIC-type algorithm for eddy-current nondestructive evaluation of three-dimensional defects [12], and MUSIC-type algorithm designed for extended target, the boundary curves which have a five-leaf shape or big circle was presented [13]. In addition, MUSIC-type algorithm was introduced for locating small inclusions buried in a half space [2] and for detecting internal corrosion located in pipes [3]. Although the past phenomena about experimental results could not be theoretically explained because the mathematical structure about these algorithms was not verified, recent studies [14–19] managed to partially analyze the structure of some algorithms. On the basis of these studies, the present study examined the structure of algorithms to make improvements in imaging the defects. Therefore, this paper aims to improve traditional MUSIC-type imaging algorithm by weighting applied to each frequencies.
This paper is organized as follows. In Section 2, we discuss two-dimensional direct scattering problem in the presence of perfectly conducting crack and MUSIC-type algorithm. In Section 3, we introduce a weighted multifrequency MUSIC-type imaging algorithm and analyze its structure to confirm that it is an improved version of traditional MUSIC algorithm. In Section 4, we present several numerical experiments with noisy data. In Section 5, our conclusions are briefly presented.
2. Direct Scattering Problem and Single- and Multifrequency MUSIC-Type Algorithm
In this section, we simplify surveying the two-dimensional direct scattering problem for the existence of perfectly conducting cracks and the single- and multifrequency MUSIC algorithm. For more information, see [10, 20].
2.1. Direct Scattering Problem and MUSIC-Type Imaging Function
First, we consider the two-dimensional electromagnetic scattering by a perfectly conducting crack located in the homogeneous space 
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The far-field pattern is defined as function 
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Second, we present the traditional MUSIC-type algorithm for imaging of perfectly conducting cracks. For the sake of simplicity, we exclude the constant 
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2.2. Multifrequency MUSIC-Type Imaging Function
We design multifrequency MUSIC-type imaging function and try to describe its structure. First, we introduce a multifrequency MUSIC-type algorithm 
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3. Weighted Multifrequency MUSIC-Type Algorithm and Its Structure
In order to propose the weighted multifrequency MUSIC-type imaging algorithm, we introduce the following lemma derived from [16].
Lemma 2 ([16, page 218]).  For sufficiently large 
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				=
				√
			

			
				
			
			
				𝑁
				
				𝜔
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			

				
			

			
				1
				/
				2
			

			

				.
			

		
	

Next, we introduce a weighted multifrequency MUSIC-type imaging function based on MUSIC-type imaging function 
	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				∶
				ℂ
			

			
				𝑁
				×
				1
			

			
				→
				ℝ
			

		
	
 defined by
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝔼
			

			
				𝑊
				𝑀
				𝐹
			

			
				
				1
				(
				𝐳
				;
				𝑆
				)
				=
			

			
				
			
			

				𝑆
			

			

				𝑆
			

			

				
			

			
				𝑠
				=
				1
			

			
				‖
				‖
				𝐏
			

			
				W
				N
			

			
				
				𝐟
				
				𝐳
				,
				𝜔
			

			

				𝑠
			

			
				‖
				‖
				
				
			

			

				2
			

			

				
			

			
				−
				1
				/
				2
			

			

				.
			

		
	

					Then, we can obtain the structure of 
	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				(
				𝐳
				;
				𝑆
				)
			

		
	
.
Theorem 4.  Assume that 
	
		
			

				𝑆
			

		
	
 and 
	
		
			

				𝜔
			

			

				𝑆
			

		
	
 are sufficiently large; then,
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝔼
			

			
				𝑊
				𝑀
				𝐹
			

			
				≈
				
				(
				𝐳
				;
				𝑆
				)
			

			
				
			
			

				1
			

			
				
			
			
				𝑁
				
				𝜔
			

			

				𝑆
			

			
				+
				𝜔
			

			

				1
			

			
				
			
			
				2
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				Ψ
				
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				;
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				𝑆
			

			
				
				
			

			
				−
				1
				/
				2
			

			

				,
			

		
	

						where function 
	
		
			
				Ψ
				(
				𝑥
				;
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				𝑆
			

			

				)
			

		
	
 is defined as
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				Ψ
				
				𝑥
				;
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				𝑆
			

			
				
				1
				∶
				=
			

			
				
			
			

				𝜔
			

			

				𝑆
			

			
				−
				𝜔
			

			

				1
			

			
				
				𝜔
			

			
				2
				𝑆
			

			
				
			
			
				2
				
				𝐽
			

			

				0
			

			
				
				𝜔
			

			

				𝑆
			

			
				𝑥
				
			

			

				2
			

			
				+
				𝐽
			

			

				1
			

			
				
				𝜔
			

			

				𝑆
			

			
				𝑥
				
			

			

				2
			

			
				
				−
				𝜔
			

			
				2
				1
			

			
				
			
			
				2
				
				𝐽
			

			

				0
			

			
				
				𝜔
			

			

				1
			

			
				𝑥
				
			

			

				2
			

			
				+
				𝐽
			

			

				1
			

			
				
				𝜔
			

			

				1
			

			
				𝑥
				
			

			

				2
			

			
				
				
				.
			

		
	

Proof. By Theorem 3, we can calculate the following:
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				=
				
				1
				(
				𝐳
				;
				𝑆
				)
			

			
				
			
			

				𝑆
			

			

				𝑆
			

			

				
			

			
				𝑠
				=
				1
			

			
				‖
				‖
				𝐏
			

			
				W
				N
			

			
				
				𝐟
				
				𝐳
				,
				𝜔
			

			

				𝑠
			

			
				‖
				‖
				
				
			

			

				2
			

			

				
			

			
				−
				1
				/
				2
			

			
				≈
				⎛
				⎜
				⎜
				⎝
				1
			

			
				
			
			

				𝑆
			

			

				𝑆
			

			

				
			

			
				𝑠
				=
				1
			

			
				⎛
				⎜
				⎜
				⎝
				√
			

			
				
			
			
				𝑁
				
				𝜔
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			

				
			

			
				1
				/
				2
			

			
				⎞
				⎟
				⎟
				⎠
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎠
			

			
				−
				1
				/
				2
			

			
				=
				
				1
			

			
				
			
			

				𝑆
			

			

				𝑆
			

			

				
			

			
				𝑠
				=
				1
			

			
				𝑁
				
				𝜔
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				
				
			

			
				−
				1
				/
				2
			

			
				=
				
			

			
				
			
			

				1
			

			
				
			
			
				𝑁
				
			

			

				𝑆
			

			

				
			

			
				𝑠
				=
				1
			

			
				
				𝜔
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				
				1
			

			
				
			
			
				𝑆
				
			

			
				−
				1
				/
				2
			

			

				.
			

		
	

						Then, since 
	
		
			

				𝑆
			

		
	
 is sufficiently large, we can observe that
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝑆
			

			

				
			

			
				𝑠
				=
				1
			

			
				
				𝜔
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				
				1
			

			
				
			
			
				𝑆
				≈
				1
			

			
				
			
			

				𝜔
			

			

				𝑆
			

			
				−
				𝜔
			

			

				1
			

			

				
			

			

				𝜔
			

			

				𝑆
			

			

				𝜔
			

			

				1
			

			
				
				𝜔
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				
				𝑑
				𝜔
				,
			

		
	

						and applying an indefinite integral of the Bessel function (see [24, page 106])
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				𝑥
				𝐽
			

			

				0
			

			
				(
				𝑥
				)
			

			

				2
			

			
				𝑥
				𝑑
				𝑥
				=
			

			

				2
			

			
				
			
			
				2
				
				𝐽
			

			

				0
			

			
				(
				𝑥
				)
			

			

				2
			

			
				+
				𝐽
			

			

				1
			

			
				(
				𝑥
				)
			

			

				2
			

			

				
			

		
	

						yields
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝜔
			

			

				𝑆
			

			
				−
				𝜔
			

			

				1
			

			

				
			

			

				𝜔
			

			

				𝑆
			

			

				𝜔
			

			

				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				=
				1
				𝑑
				𝜔
			

			
				
			
			

				𝜔
			

			

				𝑆
			

			
				−
				𝜔
			

			

				1
			

			
				
				𝜔
			

			
				2
				𝑆
			

			
				
			
			
				2
				
				𝐽
			

			

				0
			

			
				
				𝜔
			

			

				𝑆
			

			
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				+
				𝐽
			

			

				1
			

			
				
				𝜔
			

			

				𝑆
			

			
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				
				−
				𝜔
			

			
				2
				1
			

			
				
			
			
				2
				
				𝐽
			

			

				0
			

			
				
				𝜔
			

			

				1
			

			
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				+
				𝐽
			

			

				1
			

			
				
				𝜔
			

			

				1
			

			
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				
				𝜔
				|
				|
				
				
				=
				Ψ
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				;
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				𝑆
			

			
				
				.
			

		
	
Hence, we can obtain
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝜔
			

			

				𝑆
			

			
				−
				𝜔
			

			

				1
			

			

				
			

			

				𝜔
			

			

				𝑆
			

			

				𝜔
			

			

				1
			

			
				
				𝜔
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝜔
				𝐽
			

			

				0
			

			
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				
			

			

				2
			

			
				
				=
				𝜔
				𝑑
				𝜔
			

			

				𝑆
			

			
				+
				𝜔
			

			

				1
			

			
				
			
			
				2
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				Ψ
				
				𝜔
				|
				|
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				;
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				𝑆
			

			
				
				.
			

		
	
Therefore,
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				
				(
				𝐳
				;
				𝑆
				)
				≈
			

			
				
			
			

				1
			

			
				
			
			
				𝑁
				
				𝜔
			

			

				𝑆
			

			
				+
				𝜔
			

			

				1
			

			
				
			
			
				2
				−
			

			

				𝑀
			

			

				
			

			
				𝑚
				=
				1
			

			
				|
				|
				Ψ
				(
				𝐳
				−
				𝐲
			

			

				𝑚
			

			
				|
				|
				;
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				𝑆
			

			
				)
				
			

			
				−
				1
				/
				2
			

			

				.
			

		
	

						This completes the proof.
Looking at the results of Theorem 4, in contrast to the 
	
		
			

				𝔼
			

			
				M
				F
			

			
				(
				𝐳
				;
				𝑆
				)
			

		
	
, the 
	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				(
				𝐳
				;
				𝑆
				)
			

		
	
 does not have the 
	
		
			
				∫
				𝐽
			

			
				2
				1
			

			
				(
				𝑥
				)
				𝑑
				𝑥
			

		
	
 term. Therefore, we expect that the imaging results of the 
	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				(
				𝐳
				;
				𝑆
				)
			

		
	
 will be better than 
	
		
			

				𝔼
			

			
				M
				F
			

			
				(
				𝐳
				;
				𝑆
				)
			

		
	
. In the next section, numerical experiments will be presented to support this.
4. Numerical Experiments
In this section, some numerical examples are displayed in order to support our analysis in the previous section. Applied frequencies are of the form 
	
		
			

				𝜔
			

			

				𝑠
			

			
				=
				2
				𝜋
				/
				𝜆
			

			

				𝑠
			

		
	
, where 
	
		
			

				𝜆
			

			

				𝑠
			

		
	
, 
	
		
			
				𝑠
				=
				1
				,
				2
				,
				…
				,
				𝑆
			

		
	
(=10) is the given wavelength. The observation directions 
	
		
			

				𝜽
			

			

				𝑛
			

			
				∈
				𝕊
			

			

				1
			

		
	
 are taken as
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝜽
			

			

				𝑛
			

			
				=
				
				c
				o
				s
				2
				𝜋
				𝑛
			

			
				
			
			
				𝑁
				,
				s
				i
				n
				2
				𝜋
				𝑛
			

			
				
			
			
				𝑁
				
			

			

				𝑇
			

			

				.
			

		
	

For illustrating arc-like cracks, three 
	
		
			

				Ω
			

			

				𝑙
			

		
	
 are chosen:
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				Ω
			

			

				1
			

			
				=
				
				
				1
				𝑠
				,
			

			
				
			
			
				2
				c
				o
				s
				𝑠
				𝜋
			

			
				
			
			
				2
				+
				1
			

			
				
			
			
				5
				s
				i
				n
				𝑠
				𝜋
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				1
				0
				c
				o
				s
				3
				𝑠
				𝜋
			

			
				
			
			
				2
				
			

			

				𝑇
			

			
				∶
				[
				]
				
				,
				Ω
				𝑠
				∈
				−
				1
				,
				1
			

			

				2
			

			
				=
				
				
				𝑠
				2
				s
				i
				n
			

			
				
			
			
				2
				
				,
				s
				i
				n
				𝑠
			

			

				𝑇
			

			
				
				𝜋
				∶
				𝑠
				∈
			

			
				
			
			
				4
				,
				7
				𝜋
			

			
				
			
			
				4
				
				
				,
				Ω
			

			

				3
			

			
				=
				Ω
			

			
				3
				(
				1
				)
			

			
				∪
				Ω
			

			
				3
				(
				2
				)
			

			

				,
			

		
	

					where
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				Ω
			

			
				3
				(
				1
				)
			

			
				=
				
				
				1
				𝑠
				−
			

			
				
			
			
				5
				𝑠
				,
				−
			

			

				2
			

			
				
			
			
				2
				+
				3
			

			
				
			
			
				5
				
			

			

				𝑇
			

			
				
				−
				1
				∶
				𝑠
				∈
			

			
				
			
			
				2
				,
				1
			

			
				
			
			
				2
				
				
				,
				Ω
			

			
				3
				(
				2
				)
			

			
				=
				
				
				1
				𝑠
				+
			

			
				
			
			
				5
				,
				𝑠
			

			

				3
			

			
				+
				𝑠
			

			

				2
			

			
				−
				3
			

			
				
			
			
				5
				
			

			

				𝑇
			

			
				
				−
				1
				∶
				𝑠
				∈
			

			
				
			
			
				2
				,
				1
			

			
				
			
			
				2
				
				
				.
			

		
	

It is worth emphasizing that all the far-field data 
	
		
			

				𝑢
			

			
				f
				a
				r
			

		
	
 of (6) are generated by the method introduced in [25, Chapter 3, 4]. After generating the data, a 20 dB white Gaussian random noise is added to the unperturbed data. In order to obtain the number of nonzero singular values 
	
		
			

				𝑀
			

		
	
 for each frequency, a 
	
		
			
				0
				.
				1
			

		
	
-threshold scheme (choosing first 
	
		
			

				𝑚
			

		
	
 singular values 
	
		
			

				𝜏
			

			

				𝑚
			

		
	
 such that 
	
		
			

				𝜏
			

			

				𝑚
			

			
				/
				𝜏
			

			

				1
			

			
				≥
				0
				.
				1
			

		
	
) is adopted. A more detailed discussion of thresholding can be found in [20, 22].
Figures 1 and 2 show the imaging results via multifrequency MUSIC and weighted multifrequency MUSIC algorithms for single crack 
	
		
			

				Ω
			

			

				1
			

		
	
 and 
	
		
			

				Ω
			

			

				2
			

		
	
, respectively. As we already mentioned, since the term 
	
		
			
				∫
				𝐽
			

			
				2
				1
			

			
				(
				𝑥
				)
				𝑑
				𝑥
			

		
	
 can be disregarded, it is very hard to compare the improvements via visual inspection of the reconstructions. However, based on Figure 3, we can examine that the proposed weighted multifrequency MUSIC algorithm successfully reduces these artifacts, so we can conclude that this is an improved version.


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
	
	
		
			
				
			
		
	
	
		
			
		
			
		
			
			
			
		
		
			
		
			
		
			
			
			
		
		
			
		
			
		
			
			
			
		
		
			
		
			
		
			
			
			
		
		
			
		
			
		
			
			
			
		
		
			
		
			
		
			
			
			
		
		
			
		
			
		
			
			
			
		
		
			
		
			
		
			
			
			
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	


	
	
	


	


	
	
	


	


	
		
			
		
		
			
			
			
			
			
		
	
	
		
			
		
		
			
			
			
			
			
		
	

(a)  Map of 
	
		
			

				𝔼
			

			
				M
				F
			

			
				(
				𝐳
				;
				1
				0
				)
			

		
	



	
		
			
		
	


	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
	
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
	
		
	
		
	
		


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
	


	


	


	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	


	
	
	


	


	
	
	


	


	
		
	
	
		
		
		
		
		
	













(b) Map of 
	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				(
				𝐳
				;
				1
				0
				)
			

		
	

Figure 1: Shape reconstruction of 
	
		
			

				Ω
			

			

				1
			

		
	
 via MUSIC algorithm.




	
		
			
		
	


	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
	
	
		
		
		
	
	
	
	
		
		
		
	
	
	
	
		
		
		
	
	
	
		
	
		
	
		


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
	


	


	


	


	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
		
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	


	
	
	


	


	
	
	


	


	
		
	
	
		
		
		
		
		
	













(a) Map of 
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				F
			

			
				(
				𝐳
				;
				1
				0
				)
			

		
	



	
		
			
		
	


	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
		
	
		
	
		
		
		
	
	
	
	
		
		
		
	
	
	
	
		
		
		
	
	
	
	
		
		
		
	
	
	
		
	
		
	
		


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
	


	
		
	
	
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	


	
	
	


	


	
	
	


	


	
		
	
	
		
		
		
		
		
	


	


	


	


	


	
		
	
	
		
	













(b) Map of 
	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				(
				𝐳
				;
				1
				0
				)
			

		
	

Figure 2: Same as Figure 1 except the crack is 
	
		
			

				Ω
			

			

				2
			

		
	
.
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(b) Graph of oscillating pattern


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
	


	
		
			
		
	


	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
	
	
		
	
		
	
		


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	
	


	


	


	


	


	
		
	
	
		
	


	
		
	
	
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	


	
	
	


	


	
	
	


	


	
		
	
	
		
		
		
		
		
	













(c) Map of 
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(d) Graph of oscillating pattern
Figure 3: Blue- and red-colored lines are 
	
		
			

				𝔼
			

			
				W
				M
				F
			

			
				(
				𝐳
				;
				1
				0
				)
			

		
	
 and 
	
		
			

				𝔼
			

			
				M
				F
			

			
				(
				𝐳
				;
				1
				0
				)
			

		
	
, respectively, at 
	
		
			
				𝐳
				=
				[
				−
				0
				.
				8
				,
				𝑦
				]
			

			

				𝑇
			

		
	
 ((a) and (b)) and 
	
		
			
				𝐳
				=
				[
				𝑥
				,
				0
				]
			

			

				𝑇
			

		
	
 ((c) and (d)).


Figure 4 shows the imaging results via multifrequency MUSIC and weighted multifrequency MUSIC algorithms for multiple cracks 
	
		
			

				Ω
			

			

				3
			

		
	
. Similar to the imaging of single crack, we can observe that weighted multifrequency MUSIC algorithm improves the traditional one, although it is hard to compare the improvements via visual inspection.
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(b) Map of 
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Figure 4: Same as Figure 1 except the crack is 
	
		
			

				Ω
			

			

				3
			

		
	
.


Figure 5 shows the noise contribution in terms of SNR. In order to observe the effect of noise, 30 dB and 10 dB white Gaussian random noises are added to the unperturbed data. Based on these results, we can easily observe that both traditional and proposed MUSIC algorithms offer very good result when 30 dB noise is added. However, when 10 dB noise is added, the traditional MUSIC algorithm yields a poor result while the proposed algorithm yields an acceptable result.


	
	