
  
    
  
Mathematical Problems in EngineeringVolume 2013 (2013), Article ID 726721, 10 pageshttp://dx.doi.org/10.1155/2013/726721
Research Article
Fractional Resonance-Based 
	
		
			
				𝑅
				𝐿
			

			

				𝛽
			

			

				𝐶
			

			

				𝛼
			

		
	
 Filters
Todd J. Freeborn,1 Brent Maundy,1 and Ahmed Elwakil2
1Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N42Department of Electrical and Computer Engineering, University of Sharjah, P.O. Box 27272, Sharjah, UAE
Received 17 September 2012; Accepted 20 December 2012
Academic Editor: József Kázmér Tar 
Copyright © 2013 Todd J. Freeborn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
We propose the use of a fractional order capacitor and fractional order inductor with orders 
	
		
			
				0
				≤
				𝛼
			

		
	
,  
	
		
			
				𝛽
				≤
				1
			

		
	
, respectively, in a fractional 
	
		
			
				𝑅
				𝐿
			

			

				𝛽
			

			

				𝐶
			

			

				𝛼
			

		
	
 series circuit to realize fractional-step lowpass, highpass, bandpass, and bandreject filters. MATLAB simulations of lowpass and highpass responses having orders of 
	
		
			
				(
				𝛼
				+
				𝛽
				)
				=
				1
				.
				1
			

		
	
, 1.5, and 1.9 and bandpass and bandreject responses having orders of 1.5 and 1.9 are given as examples. PSPICE simulations of 1.1, 1.5, and 1.9 order lowpass and 1.0 and 1.4 order bandreject filters using approximated fractional order capacitors and fractional order inductors verify the implementations.


1. Introduction
 Fractional calculus, the branch of mathematics concerning differentiations and integrations to noninteger order, has been steadily migrating from the theoretical realms of mathematicians into many applied and interdisciplinary branches of engineering [1]. These concepts have been imported into many broad fields of signal processing having many diverse applications, which include electromagnetics [2], wave propagation in human cancellous bone [3], state-of-charge estimation in batteries [4], thermal systems [5], and more. From the import of these concepts into electronics for analog signal processing has emerged the field of fractional order filters. This import into filter design has yielded much recent progress in theory [6–9], noise analysis [10], stability analysis [11], and implementation [12–14]. These filter circuits have all been designed using the fractional Laplacian operator, 
	
		
			

				𝑠
			

			

				𝛼
			

		
	
, because the algebraic design of transfer functions are much simpler than solving the difficult time domain representations of fractional derivatives. A fractional derivative of order 
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 is given by the Caputo derivative [15] as 
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 is the gamma function and 
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				𝛼
				≤
				𝑛
			

		
	
. We use the Caputo definition of a fractional derivative over other approaches because the initial conditions for this definition take the same form as the more familiar integer-order differential equations. Applying the Laplace transform to the fractional derivative of (1) with lower terminal 
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 is also referred to as the fractional Laplacian operator. With zero initial conditions, (2) can be simplified to 
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					Therefore it becomes possible to define a general fractance device with impedance proportional to 
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 [16], where the traditional circuit elements are special cases of the general device when the order is 
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				1
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, and 
	
		
			

				1
			

		
	
 for a capacitor, resistor, and inductor, respectively. The expressions of the voltage across a traditional capacitor and inductor are defined by integer order integration and differentiation, respectively, of the current through them. We can expand these devices to the fractional domain using integrations and differentiations of non-integer order. Then the time domain expressions for the voltage across the fractional order capacitor and fractional order inductor become 
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 are the fractional orders of the capacitor and inductor, respectively, 
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				𝑡
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 is the current through the devices, 
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 is the capacitance with units 
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				−
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 is the inductance with units 
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				1
				−
				𝛽
			

		
	
, and [s] is a unit of time not to be mistaken with the Laplacian operator. Note that we will refer to the units of these devices as [F] and [H] for simplicity.
By applying the Laplace transform to (4), with zero initial conditions, the impedances of these fractional order elements are given as 
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				𝐿
			

		
	
 for the fractional order capacitor and fractional order inductor, respectively. Using these fractional elements in circuits increases the range of responses that can be realized, expanding them from the narrow integer subset to the more general fractional domain. While these devices are not yet commercially available, recent research regarding their manufacture and production shows very promising results [17, 18]. Therefore, it is becoming increasingly important to develop the theory behind using these fractional elements so that when they are available their unique characteristics can be fully taken advantage of.
While a thorough stability analysis of the fractional 
	
		
			
				𝑅
				𝐿
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 circuit has been presented in [11], the full range of filter responses possible with this topology have not. In this paper we examine the responses possible using a fractional order capacitor and fractional order inductor with orders of 
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 in a series 
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 circuit to realize fractional step filters. With this topology, fractional lowpass, highpass, bandpass, and bandreject filters of order 
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 are realized. MATLAB simulations of lowpass and highpass responses having orders of 
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 and bandpass and bandreject having orders of 
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 are presented. PSPICE simulations of 
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 order lowpass and 
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				.
				4
			

		
	
 order bandreject filters are presented using approximations of both fractional order capacitors and fractional order inductors to verify the 
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				𝛼
			

		
	
 circuit and its implementation.
2. Fractional Responses
 The traditional RLC circuit uses standard capacitors and inductors with which only 2nd order filter responses can be realized. We can further generalize this filter to the fractional domain by introducing fractional orders for both frequency-dependent elements. This approach of replacing traditional components with fractional components has previously been investigated for fractional order capacitors in the Sallen-Key filter, Kerwin-Huelsman-Newcomb biquad [7], and Tow-Thomas biquad [14]. The addition of the two fractional parameters allows the 
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 circuit to realize any order 
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				≤
				𝛼
				+
				𝛽
				≤
				2
			

		
	
. With this modification fractional lowpass, highpass, bandpass, and bandreject filter responses requiring only rearrangement of the series components are realizable. The topologies to realize these four fractional order filter responses are shown in Figure 1. 
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Figure 1: Fractional 
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 topologies to realize 
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				𝛼
				+
				𝛽
				)
			

		
	
 order (a) FLPF, (b) FHPF, (c) FBPF, and (d) FBRF responses.


2.1. Fractional Lowpass Filter (FLPF)
 The circuit shown in Figure 1(a) can be used to realize a lowpass filter response with a transfer function given by 
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, high frequency gain of zero, and fractional attenuation of 
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							The MATLAB simulated magnitude responses of (5) with fractional orders of 
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 F are illustrated in Figure 2, respectively.  From the magnitude responses of Figure 2 we see stopband attenuations and 
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				.
				9
			

		
	
 order FLPFs, respectively. This confirms the decreasing fractional step of the stopband attenuation as the order, 
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				+
				𝛽
				)
			

		
	
, increases.



Figure 2: Simulated magnitude response of (5) when 
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, and 
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 for 
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 H, and 
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 F.


The half power frequency, 
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, can be found by numerically solving the following equation:
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				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
 increase, the half power frequency increases. It should be noted that all subsequent MATLAB simulations are performed for fixed values of 
	
		
			

				𝛽
			

		
	
 when 
	
		
			

				𝛼
			

		
	
 is varied in steps of 
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Figure 3: Half power frequencies of (5) for fixed values of 
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2.2.  Fractional Highpass Filter (FHPF)
 The circuit shown in Figure 1(b) can be used to realize a highpass filter response with a transfer function given by 
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Figure 4: Simulated magnitude response of (8) when 
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Figure 5: Half power frequencies of (8) for fixed values of 
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 is varied from 
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2.3.  Fractional Bandpass Filter (FBPF)
 The circuit shown in Figure 1(c) can be used to realize a bandpass filter response with a transfer function given by 
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							The MATLAB simulated magnitude response of (10) with fractional orders of 
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 F are illustrated in Figure 6. From the simulated magnitude responses, we see that the low frequency stopband has attenuations of 
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 dB/decade while the high frequency stopband maintains an attenuation of 
	
		
			
				−
				2
				0
			

		
	
 dB/decade. The stopband attenuations closely match those predicted and confirm that the low and high frequency stopband attenuations are independent of each other (which is unique for fractional-order bandpass filters), with low frequency stopba