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This paper deals with the fuzzy controller design problem for discrete-time Takagi-Sugeno (T-S) fuzzy systems with multiplicative
noises. Using the Lyapunov stability theory and Itô formula, the sufficient conditions are derived to guarantee the stability of the
closed-loop nonlinear stochastic systems subject to actuator saturation. Based on the Parallel Distributed Compensation (PDC)
concept, the fuzzy controller can be obtained to stabilize the T-S fuzzy models with multiplicative noises by combining the same
membership functions of plants and desired state feedback gains. In order to illustrate the availability and practicability of proposed
fuzzy controller design approach, the numerical simulations for the nonlinear truck-trailer system are given to demonstrate the
applications of this paper.

1. Introduction

In recent years, there has been an increasing interest in the
fuzzy control of nonlinear systems. Some works have studied
the stability and the stabilization of closed-loop fuzzy sys-
tems. Specially, these approaches are studied for the T-S fuzzy
models which are described by a set of fuzzy “IF-THEN” rules
with fuzzy sets in the antecedent and dynamic systems in
the consequent part. The subsystems are considered as local
linearmodels, the aggregation ofwhich representing the non-
linear systems. Tanaka and Sugeno [1] presented sufficient
conditions for the stability of T-S models. Applying the fuzzy
modeling approach, many papers [2–4] have been proposed
to investigate the controller design methods of nonlinear
systems. According to the discrete T-S fuzzy models, the
stability analysis and synthesis have been considered in [5–
9]. Not only control schemes [5–8] but also filter design
methods [9] have been proposed for nonlinear discrete-time
systems via T-S fuzzymodel. In general, the stochastic signals
and random parameters may exist in the real systems. It is
interesting to consider the stochastic behaviors for analyzing
the stability of nonlinear stochastic systems. Recently, the
T-S fuzzy system with multiplicative noise term [10–16] is
structured for representing the nonlinear stochastic system.
In [10, 11, 13, 15], the time delay phenomenon is considered in

the control problem. Besides, the fuzzy filter design problem
for nonlinear stochastic systems is studied in [12]. Different
from the traditional additive noise, multiplicative noise is
more practical since it allows the statistical description of
the noise to be unknown a prior but depends on the control
and state solution. Therefore, the T-S fuzzy model with
multiplicative noises is considered in this paper to represent
the nonlinear stochastic systems.

The presence of actuator saturation imposes additional
constraints on the analysis and synthesis of control systems.
Addressing actuator saturation has beenwell recognized to be
practically imperative, yet it brings theoretically challenging.
Physical capacity of the actuator is limited and the actuator
saturation may severely degrade the performance of the
closed-loop systems. The actuator saturation usually leads to
a large overshoot, induces a limit cycle, and even makes the
otherwise stable closed-loop systemunstable.This is reflected
in the large body of literature on linear and nonlinear systems
in the presence of actuator saturation (see, e.g. [17–24]).
Recently, some fuzzy control approaches for nonlinear sys-
tems subject to actuator saturation were investigated in [19–
24]. Most of recent papers studied the fuzzy controller design
problem of continuous-time nonlinear systems subject to
actuator saturation. However, few papers [21] have been
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proposed to investigate the similar problems for discrete
nonlinear systems, especially for discrete nonlinear stochastic
systems. In general, the saturation function is character-
ized in terms of convex hull of some linear combinations
of linear function and saturation function [19]. However,
the number of stability conditions increases dramatically
with the number of control inputs. In [22], the saturation
function is formulated inside a specific nonlinear satura-
tion sector that provides less stability condition numbers.
The saturation function formulated in [22] has not been
employed to deal with the actuator saturation constrained
control problem for the discrete-time T-S fuzzy model with
multiplicative noises. Thus, the motivation of this paper is
to discuss fuzzy control problem of discrete-time nonlinear
stochastic system with multiplicative noises and actuator
saturation. The actuator saturation function formulated in
[22] is employed in this paper to design a stable fuzzy
controller.

To deal with a performance constrained control problem
for the nonlinear T-S fuzzy stochastic systems, a fuzzy
controller design subject to actuator saturation is investi-
gated in this paper. Based on the PDC concept [25], the
fuzzy controller can be obtained by combining the same
membership functions of plant and linear feedback gains of
subsystems.Thus, the overall system input can be blended by
these linear feedback gains. Usually, the sufficient conditions
are derived into Linear Matrix Inequality (LMI) forms [26]
which can be calculated by optimal convex algorithm [27]
for finding a common definite matrix and feedback gains.
According to the actuator saturation function formulated in
[22], the contribution of this paper is to develop a PDC-
based fuzzy controller design methodology for guaranteeing
the stability of discrete-time T-S fuzzy models with mul-
tiplicative noises. In order to demonstrate the applicability
and effectiveness of the proposed design approach, the
fuzzy controller design problem of a truck-trailer system
[28] subject to actuator saturation is discussed in this
paper.

The organization of this paper is structured as follows.
The structure of T-S fuzzy model with multiplicative noises
is introduced in Section 2. In Section 3, a fuzzy controller
design methodology is developed by using the concept of
PDC and the Lyapunov stability criterion. Through applying
the proposed fuzzy controller design approach, simulation
results for the nonlinear stochastic truck-trailer systems are
demonstrated in Section 4. Finally, some conclusions are
proposed in Section 5.

2. System Descriptions and
Problem Statements

The T-S fuzzy model is described by fuzzy IF-THEN rules,
which represent local linear input-output relations of the
nonlinear systems. This section outlines the mathematical
model of the T-S fuzzy model with multiplicative noise for
the discrete-time nonlinear stochastic systems. The 𝑖-th rule
of T-S fuzzy model is introduced in the following form.

2.1. Plant Part

Rule i

IF 𝑧
1
(𝑘) is 𝑀

𝑖1
⋅ ⋅ ⋅ and 𝑧

𝑝
(𝑘) is 𝑀

𝑖𝑝

THEN 𝑥 (𝑘 + 1) = A
𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘)

+ (A
𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘))𝑤 (𝑘) ,

(1)

where A
𝑖

∈ R𝑛×𝑛, B
𝑖

∈ R𝑛×𝑚, A
𝑖

∈ R𝑛×𝑛, and B
𝑖

∈

R𝑛×𝑚 are constant matrices, 𝑖 = 1, 2, . . . , 𝑟 and 𝑟 is the
number of fuzzy rules, and 𝑧

1
(𝑘), 𝑧
2
(𝑘), . . . , 𝑧

𝑝
(𝑘) are premise

variables. Besides, 𝑥(𝑘) ∈ R𝑛 denotes the state vector, 𝑢(𝑘) =

sat(𝑢(𝑘)) ∈ R𝑚 denotes the saturating control input, and𝑤(𝑘)

is a scalar zero mean white noise with variance one.
In this paper, the saturating actuator is defined as follows:

𝑢
𝑘
(𝑘) = sat (𝑢

𝑘
) =

{{

{{

{

𝑢
𝑘𝐿

if 𝑢
𝑘
< 𝑢
𝑘𝐿

𝑢
𝑘

if 𝑢
𝑘𝐿

≤ 𝑢
𝑘
≤ 𝑢
𝑘𝐻

𝑢
𝑘𝐻

if 𝑢
𝑘𝐻

< 𝑢
𝑘
,

(2)

where 𝑢
𝑘𝐿

< 0 < 𝑢
𝑘𝐻

and 𝑘 = 1, 2, . . . , 𝑚.
Given a pair of (𝑥(𝑘), 𝑢(𝑘)), the final output of the fuzzy

system is inferred as follows:

𝑥 (𝑘 + 1)

= (

𝑟

∑

𝑖=1

𝜔
𝑖
(𝑧 (𝑘))

× {A
𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘) + (A

𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘))𝑤 (𝑘)})

×(

𝑟

∑

𝑖=1

𝜔
𝑖
(𝑧 (𝑘)))

−1

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) {A

𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘)

+ (A
𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘))𝑤 (𝑘)} ,

(3)

where 𝑧(𝑘) = [𝑧
1
(𝑘)𝑧
2
(𝑘) ⋅ ⋅ ⋅ 𝑧

𝑝
(𝑘)]
𝑇, ℎ
𝑖
(𝑧(𝑘)) = 𝜔

𝑖
(𝑧(𝑘))/

∑
𝑟

𝑖=1
𝜔
𝑖
(𝑧(𝑘)) and 𝜔

𝑖
(𝑧(𝑘)) = ∏

𝑝

𝑗=1
𝑀
𝑖𝑗
(𝑧
𝑗
(𝑘)). Note that

ℎ
𝑖
(𝑧(𝑘)) ≥ 0 and ∑

𝑟

𝑖=1
ℎ
𝑖
(𝑧(𝑘)) = 1.

Considering the saturating actuator, one can formulate
the following inequality from relations of 𝑢

𝑘
(𝑘) defined in (2):

‖𝑢 (𝑘)‖ ≥ ‖𝑢 (𝑘)‖ . (4)

The following inequality can be derived from the inequal-
ity (4) and Remark 1 of [22]:

1 − 𝜀

2
‖𝑢 (𝑘)‖ ≥


𝑢 (𝑘) −

1 + 𝜀

2
𝑢 (𝑘)


, (5)

where 0 < 𝜀 < 1. The sector parameter 𝜀 can be used
to guarantee that the saturation map sat is inside the sector
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(𝜀, 1). The inequality (5) can be arranged by 𝑢
𝑘𝐻

≥ 𝜀𝑢
𝑘
and

𝑢
𝑘𝐿

≤ 𝜀𝑢
𝑘
as follows:

𝑢
𝑘𝐿

𝜀
≤ 𝑢
𝑘
≤

𝑢
𝑘𝐻

𝜀
, 𝑘 = 1, 2, . . . , 𝑚. (6)

In this paper, one can find that if 𝑢
𝑘𝐻

= −𝑢
𝑘𝐿

is set, then
one has

𝑢𝑘
 ≤

𝑢
𝑘𝐻

𝜀
. (7)

Expanding the inequality (5), one can obtain the follow-
ing inequality:

(𝑢 (𝑘) −
1 + 𝜀

2
𝑢 (𝑘))

𝑇

(𝑢 (𝑘) −
1 + 𝜀

2
𝑢 (𝑘))

≤ (
1 − 𝜀

2
)

2

𝑢
𝑇
(𝑘) 𝑢 (𝑘) .

(8)

The inequality (8) is an important basis in the following
derivations of this paper. According to the sector parameter
𝜀, the state equation (3) can be rewritten as

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘))

× {A
𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘) + A

𝑖
𝑤 (𝑘) 𝑥 (𝑘) + B

𝑖
𝑤 (𝑘) 𝑢 (𝑘)}

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) {A

𝑖
𝑥 (𝑘) + B

𝑖
(
1 + 𝜀

2
) 𝑢 (𝑘)

+ B
𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
𝑢 (𝑘))

+ A
𝑖
𝑤 (𝑘) 𝑥 (𝑘) + B

𝑖
𝑤 (𝑘) (

1 + 𝜀

2
) 𝑢 (𝑘)

+ B
𝑖
𝑤 (𝑘) (𝑢 (𝑘) −

1 + 𝜀

2
𝑢 (𝑘))} .

(9)

Based on the PDC concept [25], the fuzzy controller can
be proposed as follows.

2.2. Controller Part

Rule i

IF 𝑧
1
(𝑘) is𝑀

𝑖1
⋅ ⋅ ⋅ and 𝑧

𝑝
(𝑘) is𝑀

𝑖𝑝

THEN 𝑢 (𝑘) = K
𝑖
𝑥 (𝑘) for 𝑖 = 1, 2, . . . , 𝑟,

(10)

where K
𝑖
∈ R𝑚×𝑛 are constant feedback matrices. The output

of PDC-based fuzzy controller (10) is determined by the
summation

𝑢 (𝑘) =
∑
𝑟

𝑖=1
𝜔
𝑖
(𝑧 (𝑘)) (K

𝑖
𝑥 (𝑘))

∑
𝑟

𝑖=1
𝜔
𝑖
(𝑧 (𝑘))

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) (K

𝑖
𝑥 (𝑘)) .

(11)

By substituting (11) into (9), one can obtain the corre-
sponding closed-loop system as follows:

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘))

× {A
𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘) + (A

𝑖
𝑥 (𝑘) + B

𝑖
𝑢 (𝑘))𝑤 (𝑘)}

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘)) {A

𝑖𝑗
𝑥 (𝑘) + A

𝑖𝑗
𝑤 (𝑘) 𝑥 (𝑘)

+ B
𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+ B
𝑖
𝑤 (𝑘)

× (𝑢 (𝑘) −
1 + 𝜀

2
K
𝑗
𝑥 (𝑘))} ,

(12)

whereA
𝑖𝑗
= A
𝑖
+((1+𝜀)/2)B

𝑖
K
𝑗
andA

𝑖𝑗
= A
𝑖
+((1+𝜀)/2)B

𝑖
K
𝑗
.

After arranging (12), the augmented system can be derived in
the following form:

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

ℎ
2

𝑖
(𝑧 (𝑘))

× {A
𝑖𝑖
𝑥 (𝑘) + A

𝑖𝑖
𝑤 (𝑘) 𝑥 (𝑘)

+ B
𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))

+ B
𝑖
𝑤 (𝑘) (𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))}

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× {
1

2
( (A
𝑖𝑗
+ A
𝑗𝑖
) 𝑥 (𝑘) + (A

𝑖𝑗
+ A
𝑗𝑖
)𝑤 (𝑘) 𝑥 (𝑘)

+ (B
𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+B
𝑗
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘)))

+ (B
𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+B
𝑗
𝑤 (𝑘) (𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))))} .

(13)
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Let an ellipsoidΩ
1
and a positive scalar function𝑉(𝑥(𝑘))

be defined as follows, respectively:

Ω
1
= {𝑥 (𝑘) | 𝑥

𝑇
(𝑘)P𝑥 (𝑘) ≤ 1} ,

𝑉 (𝑥 (𝑘)) = 𝑥
𝑇
(𝑘)P𝑥 (𝑘) ,

(14)

where P ∈ R𝑛×𝑛 denotes a positive definite matrix. The
ellipsoid Ω

1
, which is inside the domain of attraction, is said

to be contractively invariant [19] if the following condition
can be satisfied:

Δ𝑉 (𝑥 (𝑘)) < 0, ∀𝑥 (𝑘) ∈ Ω
1
\ {0} . (15)

From (7) and (11), the constraint |𝑢
𝑘
| ≤ 𝑢

𝑘𝐻
/𝜀 can be

inferred as follows:


𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) (K(𝑘)

𝑖
𝑥 (𝑘))



≤
𝑢
𝑘𝐻

𝜀
, (16)

whereK(𝑘)
𝑖

denotes the 𝑘-th row ofK
𝑖
. It is obvious that if (16)

holds with ℎ
𝑖
(𝑧(𝑘)) = 1, then one can define the following

equation:

Ω
2
= {𝑥 (𝑘) | 𝑥

𝑇
(𝑘) (K(𝑘)

𝑖
)
𝑇

(K(𝑘)
𝑖

) 𝑥 (𝑘) ≤ (
𝑢
𝑘𝐻

𝜀
)

2

} .

(17)

In this paper, it is required that𝑥(𝑘) ∈ Ω
1
⊂ Ω
2
; that is,Ω

1

is a subset ofΩ
2
.The equivalent condition for𝑥(𝑘) ∈ Ω

1
⊂ Ω
2

can be represented as follows:

(K(𝑘)
𝑖

)P−1(K(𝑘)
𝑖

)
𝑇

≤ (
𝑢
𝑘𝐻

𝜀
)

2

. (18)

Considering the discrete-time T-S fuzzy model with
multiplicative noises (1), the purpose of this paper is to find
the solutions of PDC-based fuzzy controller (11) subject to
actuator saturation defined in (2). Employing the Lyapunov
stability criterion and Itô formula, the stability conditions are
derived in the next section. Solving these stability conditions,
the feedback gains K

𝑖
of PDC-based fuzzy controller (11) can

be used to stabilize the discrete-time T-S fuzzy model with
multiplicative noises (1) subject to the constraint of actuator
saturation (2).

3. Stability Conditions Derivations and
Fuzzy Controller Design

In this section, the stability conditions are derived for the
closed-loop system (12) subject to actuator saturation (2).
Before describing the stability conditions, the Lyapunov
function is defined in the following equation which satisfies
𝑥(0) ∈ Ω

1
⊂ Ω
2
and 𝑥(𝑘) ∈ Ω

1
⊂ Ω
2
, for all 𝑘 ≥ 0:

𝑉 (𝑥 (𝑘)) = 𝑥
𝑇
(𝑘)P𝑥 (𝑘) . (19)

Based on the Lyapunov function (19), one can obtain the
following theorem for analyzing the stability of augmented
system (12).

Theorem 1. Considering the actuator saturation (2), the
closed-loop system (12) is asymptotically stable if there exist
matrix Q = Q𝑇 > 0 and feedback gains K

𝑖
such that

[
[

[

−Q QA𝑇
𝑖
+ Y𝑇
𝑗
B𝑇
𝑖

QA𝑇
𝑖
+ Y𝑇
𝑗
B𝑇
𝑖

∗ −Q 0

∗ ∗ −Q

]
]

]

< 0 (20)

[
ℓ

1 + 𝜀

2
Y(𝑘)
𝑖

∗ Q
] ≥ 0, (21)

where Q = P−1, Y
𝑖

= K
𝑖
Q, Y(𝑘)
𝑖

= K(𝑘)
𝑖
Q, and ℓ =

((1 + 𝜀)/2)
2
(𝑢
𝑘𝐻

/𝜀)
2 and ∗ denotes the transposed element in

the symmetric position.

Proof. By choosing the Lyapunov function defined in (19),
one can obtain

Δ𝑉 (𝑥 (𝑘)) = 𝑉 (𝑥 (𝑘 + 1)) − 𝑉 (𝑥 (𝑘)) . (22)

According to the Lyapunov function (19) and the closed-
loop system (12), one can get

𝑉 (𝑥 (𝑘 + 1))

= 𝑥
𝑇
(𝑘 + 1)P𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× { (A
𝑖𝑗
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+ A
𝑖𝑗
𝑤 (𝑘) 𝑥 (𝑘)

+B
𝑖
𝑤 (𝑘) (𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘)))

𝑇

× P(A
𝑖𝑗
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+ A
𝑖𝑗
𝑤 (𝑘) 𝑥 (𝑘) + B

𝑖
𝑤 (𝑘)

× (𝑢 (𝑘) −
1 + 𝜀

2
K
𝑗
𝑥 (𝑘)))}

=

𝑟

∑

𝑖=1

ℎ
2

𝑖
(𝑧 (𝑘))

× {(A
𝑖𝑖
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))
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+ A
𝑖𝑖
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘)))

𝑇

× P(A
𝑖𝑖
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))

+A
𝑖𝑖
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘)))}

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× {
1

2
(A
𝑖𝑗
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+ A
𝑗𝑖
𝑥 (𝑘) + B

𝑗
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))

+ A
𝑖𝑗
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+A
𝑗𝑖
𝑥 (𝑘) + B

𝑗
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘)))

𝑇

× P(
1

2
(A
𝑖𝑗
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+ A
𝑗𝑖
𝑥 (𝑘) + B

𝑗
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))

+ A
𝑖𝑗
𝑥 (𝑘) + B

𝑖
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑗
𝑥 (𝑘))

+A
𝑗𝑖
𝑥 (𝑘) + B

𝑗
(𝑢 (𝑘) −

1 + 𝜀

2
K
𝑖
𝑥 (𝑘))))} .

(23)

According to (8), (23), and the fact that X𝑇Y + Y𝑇X ≤

X𝑇X + Y𝑇Y, the inequality (22) can be arranged as follows:

Δ𝑉 (𝑥 (𝑘))

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘)) 𝑥

𝑇
(𝑘)

× {
1

4
(A
𝑇

𝑖𝑗

PA
𝑖𝑗
+ A𝑇
𝑖𝑗
PA
𝑗𝑖
+ A𝑇
𝑗𝑖
PA
𝑖𝑗
+ A𝑇
𝑗𝑖
PA
𝑗𝑖

+ A𝑇
𝑖𝑗
PB
𝑖
(
1 − 𝜀

2
K
𝑗
) + A𝑇

𝑖𝑗
PB
𝑗
(
1 − 𝜀

2
K
𝑖
)

+ A𝑇
𝑗𝑖
PB
𝑖
(
1 − 𝜀

2
K
𝑗
) + A𝑇

𝑗𝑖
PB
𝑗
(
1 − 𝜀

2
K
𝑖
)

+ (
1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PA
𝑖𝑗
+ (

1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PA
𝑗𝑖

+ (
1 − 𝜀

2
K
𝑖
)

𝑇

B𝑇
𝑗
PA
𝑖𝑗
+ (

1 − 𝜀

2
K
𝑖
)

𝑇

B𝑇
𝑗
PA
𝑗𝑖

+ (
1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PB
𝑖
(
1 − 𝜀

2
K
𝑗
)

+ (
1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PB
𝑗
(
1 − 𝜀

2
K
𝑖
)

+ (
1 − 𝜀

2
K
𝑖
)

𝑇

B𝑇
𝑗
PB
𝑖
(
1 − 𝜀

2
K
𝑗
)

+ (
1 − 𝜀

2
K
𝑖
)

𝑇

B𝑇
𝑗
PB
𝑗
(
1 − 𝜀

2
K
𝑖
)

+ A𝑇
𝑖𝑗
PA
𝑖𝑗
+ A𝑇
𝑖𝑗
PA
𝑗𝑖
+ A𝑇
𝑗𝑖
PA
𝑖𝑗
+ A𝑇
𝑗𝑖
PA
𝑗𝑖

+ A𝑇
𝑖𝑗
PB
𝑖
(
1 − 𝜀

2
K
𝑗
) + A𝑇

𝑖𝑗
PB
𝑗
(
1 − 𝜀

2
K
𝑖
)

+ A𝑇
𝑗𝑖
PB
𝑖
(
1 − 𝜀

2
K
𝑗
) + A𝑇

𝑗𝑖
PB
𝑗
(
1 − 𝜀

2
K
𝑖
)

+ (
1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PA
𝑖𝑗
+ (

1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PA
𝑗𝑖

+ (
1 − 𝜀

2
K
𝑖
)

𝑇

B𝑇
𝑗
PA
𝑖𝑗
+ (

1 − 𝜀

2
K
𝑖
)

𝑇

B𝑇
𝑗
PA
𝑗𝑖

+ (
1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PB
𝑖
(
1 − 𝜀

2
K
𝑗
)

+ (
1 − 𝜀

2
K
𝑗
)

𝑇

B𝑇
𝑖
PB
𝑗
(
1 − 𝜀

2
K
𝑖
)

+ (
1 − 𝜀

2
K
𝑖
)

𝑇

B𝑇
𝑗
PB
𝑖
(
1 − 𝜀

2
K
𝑗
) + (

1 − 𝜀

2
K
𝑖
)

𝑇

× B𝑇
𝑗
PB
𝑗
(
1 − 𝜀

2
K
𝑖
))} 𝑥 (𝑘) − 𝑥

𝑇
(𝑘)P𝑥 (𝑘)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘)) 𝑥

𝑇
(𝑘)PΘ

𝑖𝑗
P𝑥 (𝑘) ,

(24)

where

Θ
𝑖𝑗
= P−1 ((A

𝑖
+ B
𝑖
K
𝑗
)
𝑇

P (A
𝑖
+ B
𝑖
K
𝑗
)

+(A
𝑖
+ B
𝑖
K
𝑗
)
𝑇

P (A
𝑖
+ B
𝑖
K
𝑗
) − P)P−1.

(25)

Using the Schur complement [26], the condition (20) is
equivalent to Θ

𝑖𝑗
< 0. Obviously, if the condition (20) of

Theorem 1 is satisfied, then Δ𝑉(𝑥(𝑘)) < 0 can be obtained
from (25). Therefore, the condition (20) is provided for
guaranteeing the asymptotical stability of the closed-loop
system (12). Additionally, using the Schur complement [26],
the following relation can be obtained from (18):

[
ℓ
2

1 + 𝜀

2
Y(𝑘)
𝑖

∗ Q
] ≥ 0, (26)

whereY(𝑘)
𝑖

= K(𝑘)
𝑖
Q and ℓ

2
= ((1 + 𝜀)/2)

2
(𝑢
𝑘𝐻

/𝜀)
2. Obviously,

the inequality (26) is equivalent to the condition (21). Hence,
if the condition (21) is satisfied, then (26) holds and the
actuator saturation constraint is achieved. Therefore, if the
conditions (20)-(21) are held, then the closed-loop system (12)
is asymptotically stable subject to actuator saturation (2).
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Remark 2. In Theorem 1, the sufficient conditions (20) and
(21) are derived into LMI problems that can be directly cal-
culated via optimal convex algorithm [27]. In the conditions
of Theorem 1, the variables P and K

𝑖
are needed to be found.

With increasing the number of fuzzy rules, the number of
inequality conditions is increasing such that the difficulty
of finding the desired variables is also increased. Thus, the
computational complexity of the proposed approach will be
increased when the number of fuzzy rules is arisen. For
reducing the computational complexity, the nonlinear system
is recommended to be modeled by T-S fuzzy model as less
fuzzy rules as possible.

Remark 3. The fuzzy control problem for discrete-time
nonlinear systems subject to actuator saturation has been
discussed in [21]. Based on the saturation function of [21], the
number of stability conditions is increased dramatically when
the number of control inputs is increased. For this reason, the
authors of [22] propose a novel function to formulate actuator
saturation such that the energy of controller can be limited
in a specific nonlinear saturation sector. Referring to [22],
the number of stability conditions is not increased when the
number of control inputs is increased. Based on the actuator
saturation described in [22], the stability conditions of fuzzy
controller design are derived in Theorem 1 for the discrete-
time nonlinear stochastic system with multiplicative noises.

The LMI stability conditions (20)-(21) have been derived
in Theorem 1 to guarantee the stability of T-S fuzzy model
with multiplicative noises subject to actuator saturation. In
the following section, a truck-trailer system is proposed to
demonstrate the application and usefulness of the proposed
fuzzy controller design approach.

4. Numerical Simulations for the Control of
Nonlinear Truck-Trailer Systems

Applying the proposed fuzzy controller design approach,
the control problem subject to actuator saturation for a
nonlinear discrete-time truck-trailer model [28] is studied in
this section. The considered truck-trailer system is depicted
in Figure 1. According to Figure 1, the dynamic equations
of the nonlinear discrete-time truck-trailer system can be
described as follows:

𝑥
0
(𝑘 + 1) = 𝑥

0
(𝑘) +

V × Δ𝑡

𝐿
1

tan (𝑢 (𝑘)) (27a)

𝑥
1
(𝑘) = 𝑥

0
(𝑘) − 𝑥

2
(𝑘) (27b)

𝑥
2
(𝑘 + 1) =

V × Δ𝑡

𝐿
2

sin (𝑥
1
(𝑘)) + 𝑥

2
(𝑘) (27c)

𝑥
3
(𝑘 + 1) = 𝑥

3
(𝑘) + V × Δ𝑡 × cos (𝑥

1
(𝑘))

× sin(
𝑥
2
(𝑘 + 1) + 𝑥

2
(𝑘)

2
)

(27d)

x3(k)

x4(k)

x2(k)

x1(k)

x0(k)

u(k)

L2 L1

Trailer part Truck part

0

Figure 1: Nonlinear discrete-time truck-trailer system.

𝑥
4
(𝑘 + 1) = 𝑥

4
(𝑘) + V × Δ𝑡 × cos (𝑥

1
(𝑘))

× cos(𝑥
2
(𝑘 + 1) + 𝑥

2
(𝑘)

2
) ,

(27e)

where 𝐿
1
is length of truck (2.8m); 𝐿

2
is length of trailer

(5.5m); Δ𝑡 is sampling time (2.0 sec); V is constant speed
of backing up (−1.0m/sec); 𝑥

0
(𝑘) is angle of truck; 𝑥

1
(𝑘) is

angle difference between truck and trailer; 𝑥
2
(𝑘) is angle of

trailer; 𝑥
3
(𝑘) is vertical position of rear end of trailer; 𝑥

4
(𝑘)

is horizontal position of rear end of trailer; 𝑢(𝑘) is steering
angle.

For the state 𝑥
1
(𝑘), 90∘ and −90∘ correspond to two

“jackknife” positions. The jackknife phenomenon cannot be
avoided if the steering is not controlled during the backward
movement. To succeed in the backing control, we need to
avoid the jackknife phenomenon.The control purpose of this
example is to back up a truck-trailer along straight line (𝑥

3
=

0) without forward movements as shown in Figure 1; that is,
𝑥
1
(𝑘) → 0, 𝑥

2
(𝑘) → 0, and 𝑥

3
(𝑘) → 0.

In this example, the multiplicative noise term is added
into the system for describing the stochastic behaviors.
Besides, it is assumed that 𝑥

1
(𝑘) and 𝑢(𝑘) are always small

values and the horizontal position motion 𝑥
4
(𝑘) is not

considered in this example. Therefore, one can represent and
simplify the original model equation ((27a), (27b), (27c),
(27d), and (27e)) as follows:

𝑥
1
(𝑘 + 1) = (1 −

V × Δ𝑡

𝐿
2

)𝑥
1
(𝑘) +

V × Δ𝑡

𝐿
1

𝑢 (𝑘) + 0.01

× ((1 −
V × Δ𝑡

𝐿
2

)𝑥
1
(𝑘) +

V × Δ𝑡

𝐿
1

𝑢 (𝑘))𝑤 (𝑘)

(28a)

𝑥
2
(𝑘 + 1) =

V × Δ𝑡

𝐿
2

𝑥
1
(𝑘) + 𝑥

2
(𝑘) + 0.01

× (
V × Δ𝑡

𝐿
2

𝑥
1
(𝑘) + 𝑥

2
(𝑘))𝑤 (𝑘)

(28b)
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𝑥
3
(𝑘 + 1) = V × Δ𝑡 × sin(

V × Δ𝑡

2𝐿
2

𝑥
1
(𝑘) + 𝑥

2
(𝑘))

+ 𝑥
3
(𝑘) + 0.01

× (V × Δ𝑡 × sin(
V × Δ𝑡

2𝐿
2

𝑥
1
(𝑘) + 𝑥

2
(𝑘))

+𝑥
3
(𝑘) )𝑤 (𝑘) ,

(28c)

where 𝑤(𝑘) is a scalar zero mean white noise with variance
one.

Assume that (V × Δ𝑡/2𝐿
2
)𝑥
1
(𝑘) + 𝑥

2
(𝑘) is operated

between (−𝜋, +𝜋).Then, theT-S fuzzymodel representing the
dynamics of the truck-trailer system ((28a), (28b), and (28c))
with multiplicative noise term can be described as follows.
Rule 1. IF (V × Δ𝑡/2𝐿

2
)𝑥
1
(𝑘) + 𝑥

2
(𝑘) is about 0 THEN

𝑥 (𝑘 + 1) = A
1
𝑥 (𝑘) + B

1
𝑢 (𝑘) + (A

1
𝑥 (𝑘) + B

1
𝑢 (𝑘))𝑤 (𝑘) .

(29)
Rule 2. IF (V × Δ𝑡/2𝐿

2
)𝑥
1
(𝑘) + 𝑥

2
(𝑘) is about −𝜋 or 𝜋 THEN

𝑥 (𝑘 + 1) = A
2
𝑥 (𝑘) + B

2
𝑢 (𝑘) + (A

2
𝑥 (𝑘) + B

2
𝑢 (𝑘))𝑤 (𝑘) ,

(30)
where

A
1
=

[
[
[
[
[
[
[

[

1 −
V × Δ𝑡

𝐿
2

0 0

V × Δ𝑡

𝐿
2

1 0

V2 × Δ𝑡
2

2𝐿
2

V × Δ𝑡 1

]
]
]
]
]
]
]

]

,

A
1
= 0.01 ×

[
[
[
[
[
[
[

[

1 −
V × Δ𝑡

𝐿
2

0 0

V × Δ𝑡

𝐿
2

1 0

V2 × Δ𝑡
2

2𝐿
2

V × Δ𝑡 1

]
]
]
]
]
]
]

]

,

A
2
=

[
[
[
[
[
[
[

[

1 −
V × Δ𝑡

𝐿
2

0 0

V × Δ𝑡

𝐿
2

1 0

𝜑 × V2 × Δ𝑡
2

2𝐿
2

𝜑 × V × Δ𝑡 1

]
]
]
]
]
]
]

]

,

A
2
= 0.01 ×

[
[
[
[
[
[
[

[

1 −
V × Δ𝑡

𝐿
2

0 0

V × Δ𝑡

𝐿
2

1 0

𝜑 × V2 × Δ𝑡
2

2𝐿
2

𝜑 × V × Δ𝑡 1

]
]
]
]
]
]
]

]

,

B
1
= B
2
=

[
[
[

[

V × Δ𝑡

𝐿
1

0

0

]
]
]

]

, B
1
= B
2
= 0.01 ×

[
[
[

[

V × Δ𝑡

𝐿
1

0

0

]
]
]

]

,

(31)

and 𝜑 is 10−2/𝜋.

−𝜋 𝜋0

1

Rule 1

Rule 2Rule 2

v × Δt

2L2

x1(k) + x2(k)

Figure 2: Membership function of (V × Δ𝑡/2𝐿
2
)𝑥
1
(𝑘) + 𝑥

2
(𝑘).

The membership function is proposed in Figure 2. For
applying the proposed fuzzy controller design technique, the
parameters corresponding to actuator saturation are chosen
as 𝑢
𝑘𝐻

= 1.5 and 𝜀 = 0.6. Because there are two fuzzy rules in
this T-S fuzzymodel, three variables, that is,P,K

1
, andK

2
, are

needed to be found to satisfy (20) and (21). By using the LMI
toolbox inMATLAB [27], the following feasible solutions can
be solved:

P = [

[

1.0467 −1.6144 0.2874

−1.6144 3.7534 −0.6673

0.2874 −0.6673 0.2486

]

]

. (32)

Besides, the control gains are also obtained as follows:

K
1
= [1.8985 −2.0338 0.2439] , (33a)

K
2
= [1.8589 −1.7002 0.3022] . (33b)

Substituting the above control gains into (10), the PDC-
based fuzzy controller can be obtained. Employing the
obtained fuzzy controller (10) to drive the nonlinear discrete-
time stochastic truck-trailer system ((28a), (28b), and (28c)),
the simulation results of the state responses can be found
in Figures 3, 4, and 5 with the initial conditions 𝑥(0) =

[88
∘

90
∘

3]
𝑇. Besides, the responses of constrained control

input are shown in Figure 6. From the simulation results, one
can find that the nonlinear discrete-time stochastic truck-
trailer system ((28a), (28b), and (28c)) is asymptotically stable
and the actuator saturation constraint is achieved.

5. Conclusions

In this paper, the T-S fuzzy model with multiplicative
noises was employed to represent the discrete-time nonlinear
stochastic systems. According to the discrete-time T-S fuzzy
model with multiplicative noises, the sufficient stability con-
ditions have been derived subject to the actuator saturation
constraints. Solving these sufficient stability conditions via
LMI techniques, the PDC-based fuzzy controllers can be
obtained. Applying the proposed fuzzy controller design
approach, some systems represented by the discrete-time T-
S fuzzy model with multiplicative noises can be protected
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Figure 3: The angle difference 𝑥
1
(𝑘) between truck and trailer.
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Figure 4: The angle 𝑥
2
(𝑘) for trailer.
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Figure 5: The vertical position of rear end 𝑥
3
(𝑘) for trailer.
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Figure 6: The constrained control input.

for avoiding the huge power into the precise system. Finally,
a numerical simulation was provided to demonstrate the
effectiveness and applicability of the proposed fuzzy control
method.
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stochastic delay systems via dynamic output feedback,” IEEE
Transactions on Systems, Man, and Cybernetics B, vol. 39, no. 5,
pp. 1308–1315, 2009.

[14] C.-C. Ku, P.-H. Huang, and W.-J. Chang, “Passive fuzzy con-
troller design for nonlinear systems with multiplicative noises,”
Journal of the Franklin Institute, vol. 347, no. 5, pp. 732–750, 2010.

[15] W.-J. Chang, C.-C. Ku, and P.-H. Huang, “Robust fuzzy control
for uncertain stochastic time-delay Takagi-Sugeno fuzzy mod-
els for achieving passivity,” Fuzzy Sets & Systems, vol. 161, no. 15,
pp. 2012–2032, 2010.

[16] W.-J. Chang, C.-C. Ku, and C.-H. Chang, “PDC and non-PDC
fuzzy control with relaxed stability conditions for contintuous-
time multiplicative noised fuzzy systems,” Journal of the
Franklin Institute, vol. 349, no. 8, pp. 2664–2686, 2012.

[17] B.-S. Chen and S. S. Wang, “The stability of feedback control
with nonlinear saturating actuator: time domain approach,”
IEEE Transactions on Automatic Control, vol. 33, no. 5, pp. 483–
487, 1988.

[18] W. J.Wang and B.-S. Chen, “Stability of large-scale systems with
saturating actuators,” International Journal of Control, vol. 47,
no. 3, pp. 827–850, 1988.

[19] Y.-Y. Cao and Z. Lin, “Robust stability analysis and fuzzy-
scheduling control for nonlinear systems subject to actuator
saturation,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 1,
pp. 57–67, 2003.

[20] W.-J. Chang and S.-M. Wu, “Continuous fuzzy controller
design subject to minimizing control input energy with output
variance constraints,” European Journal of Control, vol. 11, no. 3,
pp. 269–279, 2005.

[21] S. Lee, E. Kim, H. Kim, and M. Park, “Robust analysis and
design for discrete-time nonlinear systems subject to actuator
saturation via fuzzy control,” IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, vol.
E88-A, no. 8, pp. 2181–2191, 2005.

[22] C.-S. Tseng and B.-S. Chen, “H
∞

fuzzy control design for
nonlinear systems subject to actuator saturation,” in Proceedings
of the IEEE International Conference on Fuzzy Systems, pp. 783–
788, Canada, July 2006.

[23] X. Gao,M.Ma, andH. Chen, “Guaranteed cost tracking scheme
forwheeledmobile robotwith actuator saturations via T-S fuzzy
model,” in Proceedings of the 5th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD ’08), pp. 85–89,
Jinan, China, October 2008.

[24] T. Zhang, G. Feng, H. Liu, and J. Lu, “Piecewise fuzzy anti-
windup dynamic output feedback control of nonlinear pro-
cesses with amplitude and rate actuator saturations,” IEEE
Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 253–264, 2009.

[25] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and
Analysis: A Linear Matrix Inequality Approach, John Wiley &
Sons, 2001.

[26] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Lin-
ear Matrix Inequalities in System and Control Theory, SIAM,
Philadelphia, Pa, USA, 1994.

[27] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI
Control Toolbox, The MathWorks, Natick, Mass, USA, 1995.

[28] K. Tanaka and M. Sano, “Robust stabilization problem of fuzzy
control systems and its application to backing up control of a
truck-trailer,” IEEE Transactions on Fuzzy Systems, vol. 2, no. 2,
pp. 119–134, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


