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Abstract. 
The parallelization of 2D/3D software SAPTIS is discussed for nonlinear analysis of complex structures. A comparative study is made on different parallel solvers. The numerical models are presented, including hydration models, water cooling models, modulus models, creep model, and autogenous deformation models. A finite element simulation is made for the whole process of excavation and pouring of dams using these models. The numerical results show a good agreement with the measured ones. To achieve a better computing efficiency, four parallel solvers utilizing parallelization techniques are employed: (1) a parallel preconditioned conjugate gradient (PCG) solver based on OpenMP, (2) a parallel preconditioned Krylov subspace solver based on MPI, (3) a parallel sparse equation solver based on OpenMP, and (4) a parallel GPU equation solver. The parallel solvers run either in a shared memory environment OpenMP or in a distributed memory environment MPI. A comparative study on these parallel solvers is made, and the results show that the parallelization makes SAPTIS more efficient, powerful, and adaptable.


1. Introduction
Complex structures are largely employed in engineering practice in a variety of situations and applications, for example, water resources and hydropower engineering, mining engineering, and traffic engineering. An analysis of such structures is not possible by empirical methods, and moreover in situ experimental studies are costly. Recent advances in numerical techniques have provided the finite element method (FEM) for analysis of much more complex systems in a much more realistic way. The FEM can model the complex behavior of concrete without limitations caused by complexity. 
Many authors have studied the nonlinear response of concrete structures using the FEM focusing on the three-dimensional elastoplastic problem [1–12]. Most authors consider the effect of creep [4–8], while others consider cracking [9–12], with regard to nonlinear analysis of structures. Generally, the models are extremely computation intensive. Many engineers complain about the high computational costs. As a result, some nonlinear analysis codes have to be given up. The situation has changed since the arrival of a variety of high performance computers and the advances in parallel computing techniques, that is,  parallel algorithms and parallel platforms. Parallel algorithms on different platforms, that is,  algorithms utilizing OpenMP and MPI, are studied by [13–16]. Recently, the GPU high performance computing has been popular. A parallel GPU equation solver is introduced into SAPTIS as well. In these respects, we should be able to model more complex effects like hydration, water cooling, cracking, creep, autogenous deformation, and so forth.


The aim of this work is the prediction of concrete behaviors in different situations as well as the improvement of the runtime in the nonlinear analysis program structure analysis program for temperature and induced stress SAPTIS. A composition of models is presented in terms of the former, and a comparative study on different parallel solvers is made for the sake of the latter. The paper does not address the issue in mathematics itself, but focuses on the application of current algorithms. The goal is to develop practical and efficient parallel strategies for nonlinear analysis of complex structures.
In this study, we will arrange the contents as follows. In the first section, a composition of models and its basic formulations are introduced. Then, the parallel strategies as well as the three parallel solvers are presented. Furthermore, the performance of the newly developed parallel code is tested on different computers. Finally, conclusions regarding the parallelized SAPTIS are reported.

2. Models for Nonlinear Analysis of Concrete Structures
The nonlinear analysis of the model takes into consideration the effects of hydration, water cooling, modulus changes, creep, and autogenous deformation. An appropriate model for these effects as well as the FEM equations is used for building the nonlinear system.
2.1. Thermal Simulation
2.1.1. Hydration Models
Hydration of concrete brings heat. Hereby it can be modeled using five models in SAPTIS, namely, exponential model, hyperbolic model, complex model, hydration degree model, and table model [17]. We put a superscript “+” as heat increasing, and the first four models can be explicitly formulated as follows.
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Exponential Model 2: 
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Hyperbolic Model: 
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Hydration Degree Model: 
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Table Model. Calculate the hydration heats and increments by splines based on experimental data.
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2.1.2. Water Cooling Models
There are two water cooling models in SAPTIS: one is a fine model and the other is an equivalent model. Derivations and formulations of the two models are described in detail in [18]. The cooling pipes take away heat, which can be written as:
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In the fine model, a local grid refinement of the cooling pipes is needed. In every single time step, thermal distribution along the cooling pipes is obtained by calculating the heat exchange between the cooling pipes and the concrete, and the thermal field of concrete is therefore obtained. The fine model can accurately simulate the thermal distribution around the cooling pipes, but it needs a grid refinement, which inevitably enlarge the calculation scale.

The equivalent model does not take into consideration the location of pipes. An average concept is exploited by inputting the pipe spacing, the flux, the temperature, and the time of watering and calculating a mean effect of water cooling. The equivalent model can reduce calculation time without local grid refinements and ensure an average precise, but it does not consider the thermal distribution along the cooling pipes and it cannot obtain the thermal gradient near them.


2.1.3. Basic Thermal Model
The equilibrium equation of heat transfer can be written as:
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									The initial condition can be written as:
										
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑇
				=
				𝑇
			

			

				0
			

			
				(
				𝑥
				,
				𝑦
				,
				𝑧
				)
				(
				𝜏
				=
				0
				)
				.
			

		
	

									The boundary conditions are
										
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑇
				=
				𝑇
			

			

				𝑏
			

			
				
				D
				i
				r
				i
				c
				h
				l
				e
				t
				B
				.
				C
				.
				,
				−
				𝜆
				𝜕
				𝑇
			

			
				
			
			
				
				
				𝜕
				𝑛
				=
				𝑞
				N
				e
				u
				m
				a
				n
				n
				B
				.
				C
				.
				,
				−
				𝜆
				𝜕
				𝑇
			

			
				
			
			
				
				
				𝜕
				𝑛
				=
				𝛽
				𝑇
				−
				𝑇
			

			

				𝑎
			

			
				
				M
				i
				x
				e
				d
				B
				.
				C
				.
			

		
	

									In (7) ~ (9), 
	
		
			

				𝜏
			

		
	
 represents age, 
	
		
			

				𝜆
			

		
	
 is thermal conductivity [kJ/(m·h·°C)], 
	
		
			

				𝜌
			

		
	
 stands for density [kg/m3], 
	
		
			

				𝑐
			

		
	
 is specific heat capacity [kJ/(kg·°C)], 
	
		
			

				𝑎
			

		
	
 is thermal diffusivity and 
	
		
			
				𝑎
				=
				𝜆
				/
				(
				𝜌
				𝑐
				)
			

		
	
 [m2/h], 
	
		
			

				𝜃
			

		
	
 stands for total adiabatic temperature incremental and 
	
		
			
				𝜃
				=
				𝑄
			

			

				+
			

			
				(
				𝜏
				)
				+
				𝑄
			

			

				−
			

			
				(
				𝜏
				)
			

		
	
  [°C]; 
	
		
			

				𝑇
			

		
	
 is temperature [°C], 
	
		
			

				𝑇
			

			

				0
			

		
	
 is the initial temperature of concrete  [°C], 
	
		
			

				𝑇
			

			

				𝑏
			

		
	
 is the fixed boundary temperature [°C], 
	
		
			

				𝑞
			

		
	
 represents heat flux [kJ/(m2·h)], 
	
		
			

				𝑇
			

			

				𝑎
			

		
	
 denotes ambient temperature in natural convection conditions and adiabatic temperature of boundary layer in forced convection conditions [°C] and 
	
		
			

				𝛽
			

		
	
 is heat transfer coefficient in surface  [kJ/(m2·h·°C)]. 
2.2. Creep Simulation
SAPTIS can simulate thermal distribution as well as stress field in concrete casting. Apart from linear, nonlinear, and elastoplastic simulation, creep and hardening of concrete are also required.

2.2.1. Modulus Models
Modulus and strength of concrete increase to peaks with age due to hydration effect after pouring. The increasing rate of modulus and strength relates to temperatures of concrete and environment. To simulate such effect, SAPTIS adopts several modulus models [19].
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Aging Degree Model: 
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							Table Model. Calculate the modulus by interpolation based on experimental data.
In (10) ~ (13), 
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In practical modeling, choose one model from (10) ~ (13), and the results show that any of the models can well simulate the process of modulus growth of concrete.
2.2.2. Creep Model
Zhu [19] proposed a creep formula for loading at different ages after a rigorous derivation:
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 are regression coefficients. An increment method is employed to calculate the creep influence on deformation and stress. Modulus and creep of concrete in several engineerings are shown in Tables 1 and 2.
Table 1: Modulus in engineerings.
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Table 2: Creep coefficients in engineerings.
	

	Engineering	Concrete	Coefficients (
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	Laxiwa arch dam	Normal	0.0178, 0.6483, 0.0266, 9.0540, 42.2266, 31.0377, 0.0000, 43.8010, 0.3994, 20.2991
	Xiaowan arch dam	Normal	0.7313, 0.0421, 0.0222, 0.0000, 7.4472, 0.4479, 0.4811, 2.4581, 2.9923, 2.4952
	Xiluodu arch dam	Normal	0.0226, 0.7303, 0.1442, 13.0595, 6.6032, 50.5629, 3.0621, 9.2789, 0.0315, 52.3952
	Jinping arch dam	Normal	0.7179, 0.0221, 0.8149, 0.0000, 70.0000, 0.4915, 0.0000, 43.8500, 0.3915, 70.0000
	Shapai arch dam	RCC	0.0153, 0.4785, 0.7976, 0.0000, 47.1714, 0.2374, 0.0000, 107.4084, 0.4078, 150.0000
	Longtan gravity dam	RCC	0.0143, 0.7653, 0.0742, 0.0000, 13.2130, 0.2376, 0.5435, 55.7605, 0.6757, 16.6353
	Xiangjiaba gravity dam	Normal	1.0000, 0.0194, 0.0666, 7.6095, 69.9867, 1.0995, 10.9448, 1.7950, 22.1736, 16.2207
	Guangzhao gravity dam	RCC	0.0561, 0.6408, 0.0080, 0.0000, 33.7144, 0.3831, 0.0000, 52.9215, 0.6150, 14.8707
	


Note: unit of creep C in [10−6/MPa]; unit of time 
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2.2.3. Autogenous Deformation and MgO Linear Expansion Models
Input the ages of concrete and corresponding strains, and autogenous deformations can be obtained from spline interpolation.
Autogenous deformations exist in MgO concrete and can somehow offset the shrinkage due to thermal decrease, which is beneficial for preventing dam cracking. MgO concrete has been applied in a few projects, and good performance has been achieved [20, 21]. We propose two formulas to calculate autogenous deformations of MgO concrete from practice.
Dynamic Formula: 
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑑
				𝜀
				(
				𝜏
				)
			

			
				
			
			
				𝑑
				𝜏
				=
				𝛼
				𝜀
			

			

				0
			

			
				
				1
				−
				𝜀
				(
				𝜏
				)
			

			
				
			
			

				𝜀
			

			

				0
			

			

				
			

			
				(
				𝛽
			

			

				1
			

			
				+
				𝛽
			

			

				2
			

			
				𝑇
				+
				𝛽
			

			

				3
			

			

				𝑇
			

			

				2
			

			

				)
			

			

				𝑒
			

			
				−
				(
				𝛾
				/
				(
				𝑇
				+
				2
				7
				3
				)
				)
			

			

				.
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2.3. Finite Element Formulation
2.3.1. Element Types
SAPTIS is 2D/3D software for general analysis. In 2D space, elements of triangle with 3–6 nodes and quadrilateral with 4–9 nodes are employed. In 3D space, elements consist of tetrahedra with 4–11 nodes, wedges with 6–16 nodes, and hexahedra with 8–21 nodes. The shape functions of these elements can be found in and elaborated upon by [20, 21]. Besides, a one-dimensional (1d) element used for links and prestressed anchors is defined in the software.
Two definitions for this 1d element are emphasized: one is an explicit definition, in which the element is a real bar connected by its two nodes, and it has its own stiff matrix (Figures 1(a), 1(b), and 1(c)). The other is an implicit definition and it treats the element as a virtual bar, which does not have a geometric entity in representation, but its stiff matrix is nominally added to its neighboring element(s) (Figures 1(d), 1(e), and 1(f)). In both definitions, there are three connection types in terms of hexahedral neighbors, that is, edge connection (Figures 1(a) and 1(d)), face diagonal connection (Figures 1(b) and 1(e)), and body diagonal connection (Figures 1(c) and 1(f)).
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Figure 1: Definitions and connection types of 1d element.


2.3.2. Finite Element Formulation of Heat Transfer
By using the variation formulation, the equilibrium equation of heat transfer in (7) can be transformed into the following matrix form:
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] is the matrix for specific heat capacity, [
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] is the matrix for heat conductivity, and 
	
		
			
				{
				𝑄
				}
			

		
	
 is the total heat flux vector for internal hydration heat and heat convection.
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2.3.3. Finite Element Formulation of Stress Analysis
An incremental method is employed to analyze the deformation and stress of concrete. The sum of elastic and creep strain in concrete is proportional to a sustained load under ordinary service stress level, while the thermal strain is proportional to the temperature rise. The autogenous deformation in MgO concrete can be worked out by the formulas we propose. The incremental method has been elaborated upon in [12, 22], and we only present its finite element equation as follows:
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Put (20) into (19), and we can get an equilibrium form
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 are nodal load increments caused, respectively, by creep, temperature, and autogenous deformation. The matrix and vectors can be summarized as
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									After the assembly of all element stiffness matrices, a general finite element equation in its global form can be expressed as
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 are global increment vectors caused by creep, temperature, and autogenous deformation, respectively.
3. Parallelization Strategy
Since the 1980s, a lot of work has been done in parallel and distributed computing for structural analysis. Parallel processing benefits such analysis a lot by using two different strategies [23].(1)The analysis problem may be subdivided by geometrically dividing the idealization into a number of subdomains: explicit decomposition approach, also called substructure approach.(2)Alternatively the system of equations for the whole structure may be assembled and solved in parallel without recourse to a physical partitioning of the problem: implicit domain decomposition (IDD) approach, or global approach.
It should be noted that such strategies with domain decomposition techniques are not general solution procedures and are specialized for particular applications. Furthermore, what can be parallelized are [24] (a) input problem characteristics, (b) assembly, (c) boundary conditions, (d) solution of algebraic equations, and (e) postprocessing. The fourth item is the most important to parallelize. Additionally, Gummadi and Palazotto [25] indicated that in a typical linear static FEA, the most consuming operation is the solution of linear equations. We recognize from our own experience that the time used for solving equations can reach 70%~90%. An optimization in linear equation solvers is required to largely improve computing efficiency.
3.1. Linear Equation Solvers
Linear system of large equations is solved by two kinds of solvers, that is, the direct solvers (e.g., Gauss) and the iterative ones (e.g., PCG).
The direct solvers are applicable with accuracy assurance for any nonsingular linear system with an appropriate scale and density. When solving a large sparse system with many 0’s, a direct solver is particularly consuming. Additionally it cannot ensure the accuracy in terms of rounding errors. The parallelization for direct solvers is only suitable for tridiagonal matrices, block tridiagonal matrices and banded matrices. For a general sparse linear system, the sparse equation solvers are popular with multifrontal algorithms and supernode technology. 
The iterative solvers overcome the shortcomings of the direct ones and retain the sparsity of coefficient matrix. With small storage and computation, they have more obvious advantages especially for large, sparse, asymmetric, and seriously ill-conditioned matrices. At present, the preconditioned conjugate gradient (PCG) solver on behalf of the Krylov subspace solvers is among the most popular iterative solvers in engineering and sciences. Classical iterative solvers (e.g., Jacobi, GS, SOR, and SSOR) with their improved ones are used for preconditions in most situations.
In SAPTIS, four linear equation solvers are adopted: (1)the preconditioned (i.e., SSOR) conjugate gradient solver, (2)the preconditioned (e.g., CG, CGS, BiCGSTAB, etc.) Krylov subspace solver, (3)the sparse equation solver,(4)the GPU solver.
3.2. Key Technique for Parallel Programming
A parallel procedure is the implement of a parallel algorithm on a parallel computer or cluster. The parallel algorithm is designed for a parallel computing model, which is abstracted from different parallel systems or architectures of computer models. There are three programming models for parallel computing at present: 
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 distributed/shared memory system, for example, multicore clusters and SMP clusters.
To implement a parallel procedure, four major problems are faced with. The first to be concerned is what parts of the algorithm can be parallelized. These parts should be decomposed and executed by different processes, and a judgment for decomposition is whether there exists data competition. The second problem is the strategy for decomposition. There are two strategies: one is task strategy, another is data strategy. In task strategy, the procedure is decomposed into different tasks, whose dependence on whom should be noted. Then the tasks are scheduled to avoid mutual interference. Such parallelization strategy belongs to a coarse one and demands high independence of specific problems. In data strategy, the data space of procedure is decomposed into different areas. Each processor takes in charge of its own area. Obviously, this strategy is well suited for parallelization of finite element analysis. The third to be concerned is the programming model. This can be determined by the parallel architecture. The last one is the programming method. In scientific computing, data parallelization strategy is generally employed. As a result, the looping or (Single Program Multiple Data SPMD) programming is adopted.  In looping programming, loops without competition are distributed into different processors. In SPMD programming, all processors execute the same procedure, but they use different data, which are transferred and shared among the processors via communication.
In SAPTIS, these problems are solved one by one as follows.(i)The solution of algebraic equations should be urgent to parallelize.(ii)For FEA parallelization, the data strategy should be exploited.(iii)The message passing programming model should be employed if based on MPI, and the multithread programming model should be employed if based on OpenMP.(iv)Data parallelization strategy determines that the looping or SPMD programming method should be used.
3.3. Implementation
The implementation is based on reference books [26] and work made by [13–16, 27–29].
3.3.1. Parallel Preconditioned Conjugate Gradient Solver Based on OpenMP
The parallel preconditioned conjugate gradient (PCG) solver uses symmetric successive over relaxation (SSOR) technique and runs on the OpenMP-based platform.
The bottlenecks of performance for the PCG solver are the matrix and vector operations like 
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, which costs over 80% of the computation time. Therefore, the parallelization strategy for the PCG solver based on OpenMP is to parallelize the loops containing such operations without data competition by controlling statements of OpenMP. After such programming process, parallelization of matrix-vector multiplication and inner product operation is achieved, and the data formats and compile options are optimized simultaneously. 
The PCG solver is parallelized in an algorithm level, which requires frequent communication on computers of distributed memory systems. Thus, such parallel algorithm is more suitable for computers of shared memory systems, and an OpenMP-based platform is employed.
The parallelization procedures for the PCG solver can be summarized as follows:(i)first, the matrix and vector operations are parallelized, including 
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 is generated by specific algorithm;(ii)then, the inner product operation is parallelized;(iii)furthermore, the vectors are updated;(iv)finally, the preconditions are calculated (if necessary).
3.3.2. Parallel Preconditioned Krylov Subspace Solver Based on MPI
The Krylov subspace 
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, let us obtain a complete algorithm to solve the original system, where we obtain a better solution in each step [29]. 
The parallel preconditioned Krylov subspace (PKS) solver uses iterative techniques, for example, CG, CGS, BiCGSTAB, GMRES, TFQMR, and so forth, and runs on the MPI-based platform.
For the parallelization of the PKS solver, a domain decomposition method is employed. The “divide and conquer” strategy is used, in which the finite analysis domain is divided into several subdomains and each subdomain is in the charge of one or several processors. All the processors solve the whole problem independently and interactively, and synergistically and simultaneously.
Based on the distributed memory environment of parallel computing, the PKS solver is paralleled by using the SPMD programming method and the message passing programming model. Since the “divide and conquer” strategy is used, the solution procedures of FEA equations consist of assembly of global matrix and parallel solving of all local equations. The SPMD programming model implies that the source codes of every process are nearly the same, in spite of the differences of data in different areas.
The parallelization procedures for the PKS solver can be summarized as follows:(i)the global FEA equations are assembled;(ii)the “divide and conquer” strategy is employed to divide the FEA domain into sub-domains;(iii)local equations are formed based on sub-domains;(iv)iterative techniques, for example, CG, CGS, BiCGSTAB, GMRES, TFQMR, and so forth, are paralleled and used to solve all the local equations.
3.3.3. Parallel Sparse Equation Solver Based on OpenMP
The parallel sparse equation (SE) solver uses a direct solving method and runs on the OpenMP-based platform.
Algorithms based on iterative methods are not always suitable for specific structural analysis, for such algorithms don not always work since the matrix may not be well conditioned during the iterative process. The direct method has fewer problems in achieving solution convergence. In terms of these reasons, a sparse equation solving method is adopted as well in SAPTIS. This is a numerically stable parallel algorithm for solving ill-conditioned linear systems of equations.
The sparse methods are close to direct methods in essence, but they have also big differences. The rearrangements of matrices, incomplete decompositions, and multifront techniques have made the sparse methods more efficient than the direct ones.
The sparse equation solver is parallelized in CSR matrix format, which supports several types of matrices including real/imaginary matrices and symmetric/asymmetric matrices. 
The parallelization procedures for the sparse equation solver are similar to those for the PCG solver. In this case, we will omit the discussions.
3.3.4. Parallel GPU Equation Solver
Recently, the high performance computing is quite popular, that is, the GPU computing. The graphics processing unit (GPU) has become an integral part of today’s mainstream computing systems. Over the past decade, there has been a marked increase in the performance and capabilities of GPUs. The advent of GPU computing technology greatly improves the computational performance of numerical simulations and the speedups reach tens to hundreds. Besides, a GPU is small, portable, and cheap. It costs little power.
The parallel GPU equation solver uses an iterative method. The strategies used for GPU implementation can be summarized as follows:(1)replace the original CPU-based calculation functions with GPU kernels. A kernel is a function that runs on the GPU device;(2)integrate as many GPU kernels into a large one as possible. This is to ensure the efficiency of GPU codes, for data transfer among different kernels is time-consuming.
  Based on the strategies above,  the functions shown in Algorithm 1 are introduced into SAPTIS. These functions as well as their library files have enabled SAPTIS to carry out GPU high performance computing.
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	// Funcition:                         Initialize the solver
	extern “C” int VeksSetK(double afK[ ]
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);
	// Funcition:                         Set element stiffness matrices
	extern “C” int VeksSetDemF(double afF[ ]
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	// Funcition:                         Set element loads
	extern “C” int VeksSetU(double afU[ ]
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);
	// Funcition:                         Set nodal displacements
	extern “C” int VeksSetF(double afF[ ]
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	// Funcition:                         Set nodal loads
	extern “C” int VeksFixU(char abU[ ]
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, double afU[ ]
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);
	// Funcition:                         Set nodal displacements
	extern “C” int VeksGetU(double afU[ ]
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);
	// Funcition:                         Get nodal displacements
	extern “C” int VeksSetC(double afC[ ]
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);
	// Funcition:                         Set element conductivity matrices
	extern “C” int VeksSetDemQ(double afQ[ ]
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);
	// Funcition:                         Set element thermal loads
	extern “C” int VeksSetQ(double afQ[ ]);
	// Funcition:                         Set nodal thermal loads 
	extern “C” int VeksFixT(char abT[ ], double afT[ ]);
	// Funcition:                         Set nodal thermal  constraints
	extern “C” int VeksGetT(double afT[ ]);
	// Funcition:                         Get nodal temperatures
	extern “C” __int64 VeksSolve(__int64 nMaxIter, double fTimeStep, double fUnbRatio, double fEps, unsigned int nPrint);
	// Funcition:                         Solve equations
	// The procedures for GPU analysis
	#include “Eks.h”
	int nRet = VeksInit(nElems, nGlobalNodes, aiElemConn);
	VeksSetK(afK);
	VeksSetDemF(afDemF); 
	VeksFixU(abU, afU);
	VeksSetC(afC); VeksSetDemQ(afDemQ);
	VeksFixT(abT, afT); 
	VeksSolve(nSteps, fTimeStep, fUnbRatio, fEps, nStipePrint);
	VeksGetU(afU); 
	VeksGetT(afT); 


	Algorithm 1


The analysis procedures by using the GPU parallel solver are summarized as follows:(1)include the “Eks.h” file into the source files;(2)link the library files Geks.Lib;(3)call the function VeksInit to initialize the GPU solver;(4)call the function VeksSetK to transfer the element stiffness matrices into the GPU solver;(5)call the function VeksSetC to transfer the element conductivity matrices into the GPU solver;(6)call the function VeksSetDemF to transfer the loads vector into the GPU solver;(7)call the function VeksFixU to set the displacement constraints;(8)call the function VeksSetDemQ to transfer the thermal loads vector into the GPU solver;(9)call the function VeksSolve to solve the equations;(10)call the functions VeksGetU and VeksGetT to get the displacements and temperatures, respectively.
4. Numerical Examples
4.1. Thermal Field Verification
4.1.1. Cylinder Water Cooling Pipe
Take a piece of circular area, whose radius 
	
		
			
				𝑅
				=
				1
				.
				5
				m
			

		
	
 (see Figure 3). The fine and equivalent models of FEA are used for comparison and verification. Comparative simulations between a plastic and a metal pipe are performed. The parameters for the simulations are presented in Table 3.
Table 3: Parameters for cooling pipe simulations.
	

	Items	Concrete	Plastic pipe	Metal pipe
	

	Materials	C40 concrete	Polyethylene	Steel
	Physical properties	λ = 6.26 kJ/(m·h·°C) ρ = 2430 kg/m3  c = 0.97 kJ/(kg·°C)	λ = 1.73 kJ/(m·h·°C) ρ = 940 kg/m3  c = 2.3 kJ/(kg·°C)	λ = 173 kJ/(m·h·°C) ρ= 7850 kg/m3  c = 4.8 × 105 kJ/(kg·°C)
	Geometrical properties	R = 1.5 m	
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The comparisons between the results of the fine and equivalent models are illustrated in Figure 4. The temperature in the fine model is a real value, while the temperature in the equivalent model is and can only be a mean value of the whole pipe domain.
The figure shows that the temperature of the metal cooling pipe is lower than that of a plastic one, and the temperature difference between them reaches 1.5°C on day 15. Thus, the metal pipe takes priority over the plastic one in concrete cooling. Meanwhile, the numerical result shows a great agreement with the analytical solution. The temperatures obtained by these two models are nearly the same, which indicates that the equivalent model can ensure its accuracy when simulating a real engineering problem.
4.1.2. Simulation of a Dam
A hyperbolic arch dam in Southwest China is 285.5 m high. The annual average air temperature in the area is 19.7°C; the highest monthly average air temperature is 27.1°C; the lowest monthly average air temperature is 10.6°C. The annual average ground temperature is 21.4°C.
A simulation for the dam is performed to grasp the real temperature status and thus to develop a measure for preventing cracking. The simulation takes into account the whole process of excavation and pouring of dams and the varieties of influencing factors for dam temperature. The model with its boundary conditions is illustrated in Figure 2.


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
		
		
		
		
		
		
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
		
		
		
		
		
		
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	


	
	
		
	
		
	
	
	
		
	
		
	
		
	
	
		
	
		
	
		
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
	
	

Figure 2: Boundary conditions of a dam.









	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
	



Figure 3: The model of a cylinder water cooling pipe.




	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
		
	
		
	
	
		
	
		
	
		


	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
			
			
				
				
			
		
	

Figure 4: Comparison between the fine and equivalent models.


The simulation results are shown in Figure 5. The temperature of Elevation 357 m is presented in Figure 5(a) while the temperature of Elevation 408 m is presented in Figure 5(b). The comparisons between the numerical results and the measured ones are made, and we know from the figure that these results show a great agreement with each other. Additionally, the results show the real temperature status. These all indicate that the models presented are reasonable and accurate.


	
		
			
				
			
				
			
				
			
				
			
			
				
			
			
			
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
				
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
			
			
				
				
			
		
	


	
		
	
	
		
	
		
	
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	


	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	

(a) 357 m Elevation


	
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
		
		
			
			
		
	








	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
		
	













(b) 408 m Elevation
Figure 5: Comparisons between computational temperatures and measured ones.


4.2. Parallel Computing Examples
4.2.1. Parallel PCG Solver Test on OpenMP
( 1)  Serial Codes Test. A serial codes test is performed on a ThinkCentre M Q45t computer. Its parameters are shown in Table 4. This computer can solve a problem with more than 5 million degrees of freedom.
Table 4: Parameters of ThinkCentre M Q45t.
	

	Computer	ThinkCentre M Q45t
	

	CPU	Intel Core 2
	Compute capability	5 million DOFs
	Clock rate	2.33 GHz
	Processor	Q8200
	Number of cores	4
	Memory	4 G DDR3
	



The result of the test is shown in Figure 6. The PCG solver runs on a single PC very efficiently with little memory, and it can solve big problems. Figure 6 shows the different times solving problems with different DOFs by using the serial SSOR-PCG solver. The result indicates that the sovler takes only 100 seconds when solving a problem with 2 million DOFs and takes 500 seconds when solving a problem with 5 million DOFs. Obviously, it is much faster than many solvers.


	
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
			
			
				
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
		
			
			
		
		
			
		
		
			
		
	

Figure 6: Serial codes test on ThinkCentre M Q45t.


(2)  Parallel Codes Test. A parallel codes test of the PCG solver runs on a Sun Fire 6800 computer. Table 5 shows the test platform, and Table 6 gives the test results. We can easily know from the results that the speedups increase significantly with the number of threads. The acceleration of speedups drops a little, but the speedups themselves are almost over 80%.
Table 5: Test platform.
	

	Sun Fire 6800
	Operation system	Memory	External memory	Processor	Network	Compiler
	

	Solaris9 	16 GB	640 G	Ultra SPARC 1.2 G	Gigaplane	Sun studio 9
	



Table 6: 380000-order general coefficient matrix test results.
	

	Sections	1 (390 time steps)	2 (469 time steps)	4 (483 time steps)	8 (513 time steps)
	

	1 thread	174.33292s	212.14563s	216.148044s	223.7508s
	2 threads	 	114.81871s	 	126.267044s
	4 threads	 	 	61.3276s	66.57s
	8 threads	 	 	 	36.64s
	



4.2.2. Parallel PKS Solver Test on MPI
Test of the parallel PKS solver is performed on platform shown in  Table 7. Methods are shown in  Table 8, and the test results are presented in  Table 9.
Table 7: Test platform.
	

	Shuguang Cluster (single node)
	Operation system	Memory	External memory	Processor	Network	Compiler
	

	RedHat.E.L4.0	8 GB	143 G	XEON3.0 G	Gigaplane	Intel Fortran
	



Table 8: Test schemes.
	

	Solving methods	            Preconditions
	Global	Local
	

	Method 1 (CGS)	Domain decomposition	ILUT
	Method 2 (BiCGSTAB)	Domain decomposition	ILUT
	Method 3 (BiCGSTAB)	SYMGS	—
	



Table 9: 930000-order slightly ill-conditioned matrix test results.
	

	Methods	Time (s)	Iterations	Convergence	Number of threads
	

	Method 1	447.3	297	
	
		
			
				1
				.
				0
				𝐸
				−
				1
				2
			

		
	
	1
	Method 1	220.8	967	
	
		
			
				1
				.
				0
				𝐸
				−
				1
				2
			

		
	
	4
	Method 1	170.2	1103	
	
		
			
				1
				.
				0
				𝐸
				−
				1
				2
			

		
	
	8
	Method 2	150.4	480	
	
		
			
				1
				.
				0
				𝐸
				−
				1
				2
			

		
	
	8
	Method 3	165.4	551	
	
		
			
				1
				.
				0
				𝐸
				−
				1
				2
			

		
	
	8
	Serial codes	656.12	850	
	
		
			
				1
				.
				0
				𝐸
				−
				1
				2
			

		
	
	1
	



We can easily obtain that the speedups are significant and the parallel solver is quite efficient. This parallel solver can run either on a cross-node cluster or on a shared memory system such as the multicore CPU. 
4.2.3. Parallel SE Solver Test on OpenMP
The test platform for parallel SE solver is presented in  Table 10, and the results are shown in Table 11.  For a 930000-order slightly ill-conditioned matrix, the solving time is quite impressive, and it is only 70 seconds when the solver runs on 16 threads. Since a sparse direct method is employed, the time is mainly spent on incomplete LU decomposition. Only about 20G memory is consumed, which is much less than the Gaussian elimination, but more than iterative methods whose memeroy consumption can be only 3-4 G. We can get from the speedups that the parallel sparse equation solver is very efficient and scalable, and it is well suitable for equations of large linear system.
Table 10: Test platform.
	

	Inspur NF5860M2
	Operation system	Memory	External memory	Processor	Network	Compiler
	

	RedHat.E.L6.0	128 GB	2T	XEON3.0 G	Shared memory	Intel Fortran
	



Table 11: 930000-order slightly ill-conditioned matrix test results.
	

	
										Methods	
										Speedup	Time (s)	
										Number of  threads
	Total	Matrix structural analysis	Matrix rearrangement	Symbolic factorization	ILU decomposition	Direct solving	Memory allocation	Other
	

	Parallel SE 	/	655.03	0.55	10.23	5.37	630.26	4.39	0.11	4.12	1
	1.92	340.46	0.47	10.29	3.57	319.21	2.66	0.13	4.13	2
	3.65	179.35	0.47	10.24	2.88	159.99	1.54	0.11	4.12	4
	6.28	104.29	0.47	10.30	2.95	85.19	1.14	0.12	4.12	8
	9.31	70.37	0.48	10.28	3.77	50.57	1.00	0.13	4.14	16
	

	Serial codes	/	656.12	/	/	/	/	/	/	/	1
	



4.2.4. Parallel GPU Solver Test
An engineering test is performed, using the model in Figure 7.



Figure 7: The model used for GPU simulation.


The boundary conditions are similar to the ones shown in Figure 2. The results are shown in Figure 8. 








	
		
			
			
			
			
			
			
			
			
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	




	
		
			
			
			
			
			
			
			
			
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
	

(a) X-displacement








	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
	




	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
		
		
		
		
		
		
	

(b) Y-displacement








	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	




	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	
	
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
	

(c) Z-displacement


	
		
	
	
		
	
	
		
	
	
		
	


	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	

(d) Temperature
Figure 8: The simulation results using the GPU parallel solver.


In this simulation, we test the speedups, which will be shown in  Table 12. 
Table 12: Speedup of GPU580 versus different CPU machines and methods.
	

	CPU machine	32-core CPU	Single-core CPU	Single-core i5 CPU
	

	CPU method	Parallel direct sparse	Serial direct sparse	Dynamic relaxation
	

	GPU speedup	4.2	40.3	445
	



5. Conclusions
First, numerical models adopted by the software are presented including (i)hydration models,(ii)water cooling models,(iii)modulus models,(iv)creep model,(v)autogenous deformation models taking into account the properties of MgO concrete. 
A thermal example for verifying the thermal models is presented. A good agreement is achieved between the numerical results and the analytical ones. A finite element simulation for the whole process of excavation and pouring of dams using these models is made, and the numerical results show a good agreement with the measured ones. 
Then, several parallel solvers are introduced with their parallel strategies, consisting of (1)the preconditioned (i.e., SSOR) conjugate gradient solver, (2)the preconditioned (e.g., CG, CGS, BiCGSTAB, etc.) Krylov subspace solver, (3)the sparse equation solver.
The parallelization procedures for the PCG solver can be summarized as follows:(i)first, the matrix and vector operations are parallelized, including AP and 
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				𝐏
			

		
	
, where the vector P is generated by specific algorithm;(ii)then, the inner product operation is parallelized;(iii)furthermore, the vectors are updated;(iv)finally, the preconditions are calculated (if necessary).
The parallelization procedures for the PKS solver can be summarized as follows:(i)the global FEA equations are assembled;(ii)the “divide and conquer” strategy is employed to divide the FEA domain into sub-domains;(iii)local equations are formed based on sub-domains;(iv)iterative techniques, for example, CG, CGS, BiCGSTAB, GMRES, TFQMR, and so forth, are paralleled and used to solve all the local equations.
The sparse equation solver is parallelized in CSR matrix format, which supports several types of matrices including real/imaginary matrices and symmetric/asymmetric matrices. The parallelization procedures for the sparse equation solver are similar to those for the PCG solver.
Last, a comparative study on these parallel solvers is performed. The results show that(i)the speedups are quite significant;(ii)the serial and parallel solvers are both very efficient;(iii)the serial and parallel solvers can both deal with very large problems with more than 5 million degrees of freedom;(iv)the parallelization makes SAPTIS more powerful and adaptable. 
A GPU-based parallel solver has been developed, and the GPU parallelization has made SAPTIS much more efficient.
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