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Abstract. 
In mathematics, one always tries to get new structures from given ones. This also applies to the realm of graphs, where one can generate many new graphs from a given set of graphs. In this paper we define a class of pyramid graphs and derive simple formulas of the complexity, number of spanning trees, of these graphs, using linear algebra, Chebyshev polynomials, and matrix analysis techniques.


1. Introduction
In this work we deal with simple and finite undirected graphs
	
		
			
				𝐺
				=
				(
				𝑉
				,
				𝐸
				)
			

		
	
, where
	
		
			

				𝑉
			

		
	
is the vertex set and
	
		
			

				𝐸
			

		
	
is the edge set. For a graph
	
		
			

				𝐺
			

		
	
, a spanning tree in
	
		
			

				𝐺
			

		
	
is a tree which has the same vertex set as
	
		
			

				𝐺
			

		
	
. The number of spanning trees of
	
		
			

				𝐺
			

		
	
, also known as the complexity of the graph, is denoted by
	
		
			
				𝜏
				(
				𝐺
				)
			

		
	
; this quantity is a well-studied quantity for long time. A classical result of Kirchhoff [1] can be used to determine the number of spanning trees for a graph
	
		
			

				𝐺
			

		
	
. If 
	
		
			
				𝑉
				=
				{
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			

				𝑛
			

			

				}
			

		
	
, then the Kirchhoff matrix
	
		
			

				𝐻
			

		
	
is defined as
	
		
			
				𝑛
				×
				𝑛
			

		
	
characteristic matrix
	
		
			
				𝐻
				=
				𝐷
				−
				𝐴
			

		
	
, where
	
		
			

				𝐷
			

		
	
is the diagonal matrix of the degrees of
	
		
			

				𝐺
			

		
	
and
	
		
			

				𝐴
			

		
	
is the adjacency matrix of
	
		
			

				𝐺
			

		
	
,
	
		
			
				𝐻
				=
				[
				𝑎
			

			
				𝑖
				𝑗
			

			

				]
			

		
	
defined as follows:(i)
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

			
				=
				−
				1
				,
			

		
	
when
	
		
			

				𝑣
			

			

				𝑖
			

		
	
and
	
		
			

				𝑣
			

			

				𝑗
			

		
	
are adjacent and
	
		
			
				𝑖
				≠
				𝑗
			

		
	
;(ii)
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

		
	
equals the degree of vertex
	
		
			

				𝑣
			

			

				𝑖
			

		
	
if
	
		
			
				𝑖
				=
				𝑗
			

		
	
;(iii)
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

			
				=
				0
			

		
	
otherwise. All of cofactors of
	
		
			

				𝐻
			

		
	
are equal to
	
		
			
				𝜏
				(
				𝐺
				)
			

		
	
. There are other methods for calculating
	
		
			
				𝜏
				(
				𝐺
				)
			

		
	
. Let
	
		
			

				𝜇
			

			

				1
			

			
				≥
				𝜇
			

			

				1
			

			
				≥
				⋯
				≥
				𝜇
			

			

				𝑝
			

		
	
denote the eigenvalues of
	
		
			

				𝐻
			

		
	
matrix of a
	
		
			

				𝑝
			

		
	
point graph. It is easily shown that
	
		
			

				𝜇
			

			

				𝑝
			

			
				=
				0
			

		
	
. Furthermore, Kelmans and Chelnokov [2] have shown that,
	
		
			
				∏
				𝜏
				(
				𝐺
				)
				=
				(
				1
				/
				𝑝
				)
			

			
				𝑝
				−
				1
				𝑘
				=
				1
			

			

				𝜇
			

			

				𝑘
			

		
	
. The formula for the number of spanning trees in a
	
		
			

				𝑑
			

		
	
-regular graph
	
		
			

				𝐺
			

		
	
can be expressed as
	
		
			
				∏
				𝜏
				(
				𝐺
				)
				=
				(
				1
				/
				𝑝
				)
			

			
				𝑝
				−
				1
				𝑘
				=
				1
			

			
				(
				𝑑
				−
				𝜆
			

			

				𝑘
			

			

				)
			

		
	
, where
	
		
			

				𝜆
			

			

				0
			

			
				=
				𝑑
				,
				𝜆
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				,
				…
				,
				𝜆
			

			
				𝑝
				−
				1
			

		
	
are the eigenvalues of the corresponding adjacency matrix of the graph. However, for a few special families of graphs there exist simple formulas that make it much easier to calculate and determine the number of corresponding spanning trees especially when these numbers are very large. One of the first such result is due to Cayley [3] who showed that complete graph on
	
		
			

				𝑛
			

		
	
vertices,
	
		
			

				𝐾
			

			

				𝑛
			

		
	
, has
	
		
			

				𝑛
			

			
				𝑛
				−
				2
			

		
	
spanning trees; that is, he showed that
	
		
			
				𝜏
				(
				𝐾
			

			

				𝑛
			

			
				)
				=
				𝑛
			

			
				𝑛
				−
				2
			

			
				,
				𝑛
				≥
				2
			

		
	
. Another result,
	
		
			
				𝜏
				(
				𝐾
			

			
				𝑝
				,
				𝑞
			

			
				)
				=
				𝑝
			

			
				𝑞
				−
				1
			

			

				𝑞
			

			
				𝑝
				−
				1
			

			
				,
				𝑝
				,
				𝑞
				≥
				1
			

		
	
, where
	
		
			

				𝐾
			

			
				𝑝
				,
				𝑞
			

		
	
is the complete bipartite graph with bipartite sets containing
	
		
			

				𝑝
			

		
	
and
	
		
			

				𝑞
			

		
	
vertices, respectively. It is well known, as in, for example, [4, 5]. Another result is due to Sedláček [6] who derived a formula for the wheel on
	
		
			
				𝑛
				+
				1
			

		
	
vertices,
	
		
			

				𝑊
			

			
				𝑛
				+
				1
			

		
	
; he showed that
	
		
			
				𝜏
				(
				𝑊
			

			
				𝑛
				+
				1
			

			
				√
				)
				=
				(
				(
				3
				+
			

			
				
			
			
				5
				)
				/
				2
				)
			

			

				𝑛
			

			
				√
				+
				(
				(
				3
				−
			

			
				
			
			
				5
				)
				/
				2
				)
			

			

				𝑛
			

			
				−
				2
			

		
	
, for
	
		
			
				𝑛
				≥
				3
			

		
	
. Sedláček [7] also later derived a formula for the number of spanning trees in a Mobius ladder,
	
		
			

				𝑀
			

			

				𝑛
			

		
	
,
	
		
			
				𝜏
				(
				𝑀
			

			

				𝑛
			

			
				√
				)
				=
				(
				𝑛
				/
				2
				)
				[
				(
				2
				+
			

			
				
			
			
				3
				)
			

			

				𝑛
			

			
				√
				+
				(
				2
				−
			

			
				
			
			
				3
				)
			

			

				𝑛
			

			
				+
				2
				]
			

		
	
for
	
		
			
				𝑛
				≥
				2
			

		
	
. Another class of graphs for which an explicit formula has been derived is based on a prism graph. See Boesch, et al. [8, 9].
Now, we introduce the following lemma.
Lemma 1 (see [10]).  Consider
	
		
			
				𝜏
				(
				𝐺
				)
				=
				(
				1
				/
				𝑛
			

			

				2
			

			
				)
				d
				e
				t
				(
				𝑛
				𝐼
				−
			

			
				
			
			
				𝐷
				+
			

			
				
			
			
				𝐴
				)
			

		
	
, where
	
		
			
				
			
			

				𝐴
			

		
	
and
	
		
			
				
			
			

				𝐷
			

		
	
are the adjacency and degree matrices of
	
		
			
				
			
			

				𝐺
			

		
	
, the complement of
	
		
			

				𝐺
			

		
	
, respectively, and
	
		
			

				𝐼
			

		
	
is the
	
		
			
				𝑛
				×
				𝑛
			

		
	
unit matrix.
The advantage of this formula is to express
	
		
			
				𝜏
				(
				𝐺
				)
			

		
	
directly as a determinant rather than in terms of cofactors as in Kirchhoff theorem or eigenvalues as in Kelmans and Chelnokov formula.
2. Chebyshev Polynomial
In this section we introduce some relations concerning Chebyshev polynomials of the first and second kind which we use in our computations.
We begin with their definitions; see Zhang et al. [11].
Let
	
		
			

				𝐴
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
be
	
		
			
				𝑛
				×
				𝑛
			

		
	
matrix such that
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑛
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				(
				𝑥
				)
				=
				2
				𝑥
				−
				1
				0
				⋯
				0
				−
				1
				2
				𝑥
				−
				1
				⋱
				⋮
				0
				⋱
				⋱
				⋱
				0
				⋮
				⋱
				⋱
				⋱
				−
				1
				0
				⋯
				0
				−
				1
				2
				𝑥
			

		
	

					Further, we recall that the Chebyshev polynomials of the first kind are defined by
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑇
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				c
				o
				s
				(
				𝑛
				a
				r
				c
				c
				o
				s
				𝑥
				)
				.
			

		
	

The Chebyshev polynomials of the second kind are defined by
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑈
			

			
				𝑛
				−
				1
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑛
				𝑑
			

			
				
			
			
				𝑇
				𝑑
				𝑥
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				s
				i
				n
				(
				𝑛
				a
				r
				c
				c
				o
				s
				𝑥
				)
			

			
				
			
			
				.
				s
				i
				n
				(
				a
				r
				c
				c
				o
				s
				𝑥
				)
			

		
	

It is easily verified that
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑈
			

			

				𝑛
			

			
				(
				𝑥
				)
				−
				2
				𝑥
				𝑈
			

			
				𝑛
				−
				1
			

			
				(
				𝑥
				)
				+
				𝑈
			

			
				𝑛
				−
				2
			

			
				(
				𝑥
				)
				=
				0
				.
			

		
	

It can then be shown from this recursion that by expanding det
	
		
			

				𝐴
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
one gets
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑈
			

			

				𝑛
			

			
				
				𝐴
				(
				𝑥
				)
				=
				d
				e
				t
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				,
				𝑛
				≥
				1
				.
			

		
	

Furthermore by using standard methods for solving the recursion (4), one obtains the explicit formula
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑈
			

			

				𝑛
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				2
				√
			

			
				
			
			

				𝑥
			

			

				2
			

			
				
				
				√
				−
				1
				𝑥
				+
			

			
				
			
			

				𝑥
			

			

				2
			

			
				
				−
				1
			

			
				𝑛
				+
				1
			

			
				−
				
				√
				𝑥
				−
			

			
				
			
			

				𝑥
			

			

				2
			

			
				
				−
				1
			

			
				𝑛
				+
				1
			

			
				
				,
				𝑛
				≥
				1
				,
			

		
	

					where the identity is true for all complex
	
		
			

				𝑥
			

		
	
(except at
	
		
			
				𝑥
				=
				±
				1
			

		
	
, where the function can be taken as the limit).
The definition of
	
		
			

				𝑈
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
easily yields its zeros and it can therefore be verified that 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑈
			

			
				𝑛
				−
				1
			

			
				(
				𝑥
				)
				=
				2
			

			
				𝑛
				−
				1
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑥
				−
				c
				o
				s
				𝑗
				𝜋
			

			
				
			
			
				𝑛
				
				.
			

		
	

One further notes that 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑈
			

			
				𝑛
				−
				1
			

			
				(
				−
				𝑥
				)
				=
				(
				−
				1
				)
			

			
				𝑛
				−
				1
			

			

				𝑈
			

			
				𝑛
				−
				1
			

			
				(
				𝑥
				)
				.
			

		
	

These two results yield another formula for
	
		
			

				𝑈
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
:
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑈
			

			
				2
				𝑛
				−
				1
			

			
				(
				𝑥
				)
				=
				4
			

			
				𝑛
				−
				1
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑥
			

			

				2
			

			
				−
				c
				o
				s
			

			

				2
			

			
				𝑗
				𝜋
			

			
				
			
			
				𝑛
				
				.
			

		
	

Finally, a simple manipulation of the above formula yields the following formula (10), which is extremely useful to us latter:
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑈
			

			
				2
				𝑛
				−
				1
			

			
				
				
			

			
				
			
			
				𝑥
				+
				2
			

			
				
			
			
				4
				
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑥
				−
				2
				c
				o
				s
				2
				𝑗
				𝜋
			

			
				
			
			
				𝑛
				
				.
			

		
	

Furthermore, one can show that 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑈
			

			
				2
				𝑛
				−
				1
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				2
				
				1
				−
				𝑥
			

			

				2
			

			
				
				
				1
				−
				𝑇
			

			
				2
				𝑛
			

			
				
				=
				1
			

			
				
			
			
				2
				
				1
				−
				𝑥
			

			

				2
			

			
				
				
				1
				−
				𝑇
			

			

				𝑛
			

			
				
				2
				𝑥
			

			

				2
			

			
				.
				−
				1
				
				
			

		
	

And
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑇
			

			

				𝑛
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				2
				√
				
				
				𝑥
				+
			

			
				
			
			

				𝑥
			

			

				2
			

			
				
				−
				1
			

			

				𝑛
			

			
				+
				
				√
				𝑥
				−
			

			
				
			
			

				𝑥
			

			

				2
			

			
				
				−
				1
			

			

				𝑛
			

			
				
				.
			

		
	

					Now we introduce the following important two lemmas.
Lemma 2 (see [10]).  Let
	
		
			

				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
be
	
		
			
				𝑛
				×
				𝑛
			

		
	
circulant matrix such that
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑛
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				(
				𝑥
				)
				=
				𝑥
				0
				1
				⋯
				1
				0
				0
				⋱
				⋱
				⋱
				⋱
				1
				1
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				1
				1
				⋱
				⋱
				⋱
				⋱
				0
				0
				1
				⋯
				1
				0
				𝑥
			

		
	

						Then for
	
		
			
				𝑛
				≥
				3
				,
				𝑥
				≥
				4
			

		
	
, one has
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝐵
				d
				e
				t
			

			

				𝑛
			

			
				
				=
				(
				𝑥
				)
				2
				(
				𝑥
				+
				𝑛
				−
				3
				)
			

			
				
			
			
				
				𝑇
				𝑥
				−
				3
			

			

				𝑛
			

			
				
				𝑥
				−
				1
			

			
				
			
			
				2
				
				
				.
				−
				1
			

		
	

Lemma 3 (see [12]).  If
	
		
			
				𝐴
				∈
				𝐹
			

			
				𝑛
				×
				𝑛
			

		
	
,
	
		
			
				𝐵
				∈
				𝐹
			

			
				𝑛
				×
				𝑚
			

		
	
,
	
		
			
				𝐶
				∈
				𝐹
			

			
				𝑚
				×
				𝑛
			

		
	
, and
	
		
			
				𝐷
				∈
				𝐹
			

			
				𝑚
				×
				𝑚
			

		
	
, assuming that
	
		
			

				𝐴
			

		
	
and
	
		
			

				𝐷
			

		
	
are nonsingular matrices, then
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎠
				
				d
				e
				t
				𝐴
				𝐵
				𝐶
				𝐷
				=
				d
				e
				t
				𝐴
				−
				𝐵
				𝐷
			

			
				−
				1
			

			
				𝐶
				
				
				d
				e
				t
				𝐷
				=
				d
				e
				t
				𝐴
				d
				e
				t
				𝐷
				−
				𝐶
				𝐴
			

			
				−
				1
			

			
				𝐵
				
				.
			

		
	

						This lemma gives a sort of symmetry for some matrices which facilitates one’s calculations of the complexities of some special graphs.
3. Main Results
Definition 4. The pyramid graph
	
		
			

				𝑃
			

			
				𝑛
				(
				𝑚
				)
			

		
	
is the graph formed from the wheel graph
	
		
			

				𝑊
			

			
				𝑚
				+
				1
			

		
	
with vertices
	
		
			
				{
				𝑣
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				,
				𝑣
			

			

				2
			

			
				,
				…
				,
				𝑣
			

			

				𝑚
			

			

				}
			

		
	
and
	
		
			

				𝑚
			

		
	
sets of vertices, say,
	
		
			
				{
				𝑢
			

			
				1
				1
			

			
				,
				𝑢
			

			
				1
				2
			

			
				,
				…
				,
				𝑢
			

			
				1
				𝑛
			

			
				}
				,
				{
				𝑢
			

			
				2
				1
			

			
				,
				𝑢
			

			
				2
				2
			

			
				,
				…
				,
				𝑢
			

			
				2
				𝑛
			

			
				}
				,
				…
				,
				{
				𝑢
			

			
				𝑚
				1
			

			
				,
				𝑢
			

			
				𝑚
				2
			

			
				,
				…
				,
				𝑢
			

			
				𝑚
				𝑛
			

			

				}
			

		
	
, such that for all
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
the vertex
	
		
			

				𝑢
			

			
				𝑗
				𝑖
			

		
	
is adjacent to
	
		
			

				𝑣
			

			

				𝑗
			

		
	
and
	
		
			

				𝑣
			

			
				𝑗
				+
				1
			

		
	
, where
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				−
				1
			

		
	
, and
	
		
			

				𝑢
			

			
				𝑚
				𝑖
			

		
	
is adjacent to
	
		
			

				𝑣
			

			

				1
			

		
	
and
	
		
			

				𝑣
			

			

				𝑚
			

			

				.
			

		
	
See Figures 1(a) and 1(b).
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(b)
Figure 1: (a) The triangular pyramid graph
	
		
			

				𝑃
			

			
				3
				(
				3
				)
			

		
	
. (b) The square pyramid graph
	
		
			

				𝑃
			

			
				4
				(
				4
				)
			

		
	
.


Theorem 5.  For
	
		
			
				𝑛
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				3
				)
			

			
				
				=
				2
			

			
				3
				𝑛
				−
				2
			

			
				×
				(
				3
				𝑛
				+
				8
				)
			

			

				2
			

			

				.
			

		
	

Proof. Applying Lemma 1, we have
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				3
				)
			

			
				
				=
				1
			

			
				
			
			
				(
				3
				𝑛
				+
				4
				)
			

			

				2
			

			
				
				d
				e
				t
				(
				3
				𝑛
				+
				4
				)
				𝐼
				−
			

			
				
			
			
				𝐷
				+
			

			
				
			
			
				𝐴
				
				=
				1
			

			
				
			
			
				(
				3
				𝑛
				+
				4
				)
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				d
				e
				t
				4
				0
				0
				0
				1
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				1
				0
				2
				(
				𝑛
				+
				2
				)
				0
				0
				0
				⋯
				0
				1
				⋯
				1
				0
				⋯
				0
				0
				0
				2
				(
				𝑛
				+
				2
				)
				0
				0
				⋯
				0
				0
				⋯
				0
				1
				⋯
				1
				0
				0
				0
				2
				(
				𝑛
				+
				2
				)
				1
				⋯
				1
				0
				⋯
				0
				0
				⋯
				0
				1
				0
				0
				1
				3
				1
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				1
				⋮
				⋮
				⋮
				⋮
				1
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				0
				0
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				0
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				0
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				0
				1
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				1
				1
				0
				1
				0
				1
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				1
				3
			

		
	
Let
	
		
			
				𝑗
				=
				(
				1
				⋯
				1
				)
			

		
	
be the
	
		
			
				1
				×
				𝑛
			

		
	
matrix with all one and
	
		
			

				𝐽
			

			

				𝑛
			

		
	
the
	
		
			
				𝑛
				×
				𝑛
			

		
	
matrix with all one. Set
	
		
			
				𝑎
				=
				2
				𝑛
				+
				4
			

		
	
and
	
		
			
				𝑏
				=
				3
				𝑛
				+
				4
			

		
	
. Then we have
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				3
				)
			

			
				
				=
				1
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				4
				0
				0
				0
				𝑗
				𝑗
				𝑗
				0
				0
				𝑗
				0
				0
				𝑎
				𝐼
			

			

				3
			

			
				𝑗
				0
				0
				𝑗
				0
				𝑗
				0
				0
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				2
				𝐼
			

			
				3
				𝑛
			

			
				+
				𝐽
			

			
				3
				𝑛
			

			

				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				𝑏
				0
				0
				0
				𝑗
				𝑗
				𝑗
				𝑏
				0
				𝑗
				0
				𝑏
				𝑎
				𝐼
			

			

				3
			

			
				0
				0
				𝑗
				𝑏
				𝑗
				0
				0
				𝑏
				𝑗
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			
				𝑏
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				2
				𝐼
			

			
				3
				𝑛
			

			
				+
				𝐽
			

			
				3
				𝑛
			

			
				𝑏
				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				1
				0
				0
				0
				𝑗
				𝑗
				𝑗
				1
				0
				𝑗
				0
				1
				𝑎
				𝐼
			

			

				3
			

			
				0
				0
				𝑗
				1
				𝑗
				0
				0
				1
				𝑗
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			
				1
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				2
				𝐼
			

			
				3
				𝑛
			

			
				+
				𝐽
			

			
				3
				𝑛
			

			
				1
				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				1
				0
				0
				0
				𝑗
				𝑗
				𝑗
				0
				−
				𝑗
				0
				−
				𝑗
				0
				𝑎
				𝐼
			

			

				3
			

			
				−
				𝑗
				−
				𝑗
				0
				0
				0
				−
				𝑗
				−
				𝑗
				0
				0
				0
				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				0
				0
				2
				𝐼
			

			
				3
				𝑛
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				−
				𝑗
				0
				−
				𝑗
				𝑎
				𝐼
			

			

				3
			

			
				−
				𝑗
				−
				𝑗
				0
				0
				−
				𝑗
				−
				𝑗
				0
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				2
				𝐼
			

			
				3
				𝑛
			

			
				0
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

						Using Lemma 3 yields
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				3
				)
			

			
				
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				𝑎
				𝐼
			

			

				3
			

			
				𝐵
				𝐶
				2
				𝐼
			

			
				3
				𝑛
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				
				d
				e
				t
				𝑎
				𝐼
			

			

				3
			

			
				1
				−
				𝐵
				⋅
			

			
				
			
			
				2
				𝐼
			

			
				3
				𝑛
			

			
				𝐶
				
				⋅
				2
			

			
				3
				𝑛
			

			
				=
				1
			

			
				
			
			
				𝑏
				2
			

			
				3
				𝑛
				−
				3
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				⋅
				2
				𝑏
				d
				e
				t
				1
				𝑛
				𝑛
				1
				2
				𝑎
				𝑛
				1
				𝑛
				2
				𝑎
				=
				2
			

			
				3
				𝑛
				−
				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				d
				e
				t
				1
				𝑛
				𝑛
				0
				2
				𝑎
				−
				𝑛
				0
				0
				0
				2
				𝑎
				−
				𝑛
				=
				2
			

			
				3
				𝑛
				−
				2
			

			
				(
				2
				𝑎
				−
				𝑛
				)
			

			

				2
			

			
				=
				2
			

			
				3
				𝑛
				−
				2
			

			
				(
				3
				𝑛
				+
				8
				)
			

			

				2
			

			

				.
			

		
	

Theorem 6.  For
	
		
			
				𝑛
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				4
				)
			

			
				
				=
				2
			

			
				4
				𝑛
			

			
				×
				(
				𝑛
				+
				3
				)
			

			

				2
			

			
				×
				(
				2
				𝑛
				+
				5
				)
				.
			

		
	

Proof. Applying Lemma 1, we have
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				4
				)
			

			
				
				=
				1
			

			
				
			
			
				(
				4
				𝑛
				+
				5
				)
			

			

				2
			

			
				
				d
				e
				t
				(
				4
				𝑛
				+
				5
				)
				𝐼
				−
			

			
				
			
			
				𝐷
				+
			

			
				
			
			
				𝐴
				
				=
				1
			

			
				
			
			
				(
				4
				𝑛
				+
				5
				)
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				×
				d
				e
				t
			

			
				5
				0
				0
				0
				0
				1
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				1
				0
				2
				(
				𝑛
				+
				2
				)
				0
				1
				0
				0
				⋯
				0
				1
				⋯
				1
				1
				⋯
				1
				0
				⋯
				0
				0
				0
				2
				(
				𝑛
				+
				2
				)
				0
				1
				0
				⋯
				0
				0
				⋯
				0
				1
				⋯
				1
				1
				⋯
				1
				0
				1
				0
				2
				(
				𝑛
				+
				2
				)
				0
				1
				⋯
				1
				0
				⋯
				0
				0
				⋯
				0
				1
				⋯
				1
				0
				0
				1
				0
				2
				(
				𝑛
				+
				2
				)
				1
				⋯
				1
				1
				⋯
				1
				0
				⋯
				0
				0
				⋯
				0
				1
				0
				0
				1
				1
				3
				1
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				1
				⋮
				⋮
				⋮
				⋮
				⋮
				1
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				0
				0
				1
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				0
				0
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				0
				0
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				1
				0
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				1
				0
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				0
				1
				1
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				1
				1
				0
				1
				1
				0
				1
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				1
				3
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

		
	
 Let
	
		
			
				𝑗
				=
				(
				1
				⋯
				1
				)
			

		
	
be the
	
		
			
				1
				×
				𝑛
			

		
	
matrix with all one and
	
		
			

				𝐽
			

			

				𝑛
			

		
	
the
	
		
			
				𝑛
				×
				𝑛
			

		
	
matrix with all one. Set
	
		
			
				𝑎
				=
				2
				𝑛
				+
				4
			

		
	
and
	
		
			
				𝑏
				=
				4
				𝑛
				+
				5
			

		
	
. Then we have
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				3
				)
			

			
				
				=
				1
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑗
				×
				d
				e
				t
				5
				0
				0
				0
				0
				𝑗
				𝑗
				𝑗
				𝑗
				0
				𝑎
				0
				1
				0
				0
				𝑗
				𝑗
				0
				0
				0
				𝑎
				0
				1
				0
				0
				𝑗
				𝑗
				0
				1
				0
				𝑎
				0
				𝑗
				0
				0
				𝑗
				0
				0
				1
				0
				𝑎
				𝑗
				𝑗
				0
				0
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				2
				𝐼
			

			
				4
				𝑛
			

			
				+
				𝐽
			

			
				4
				𝑛
			

			

				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				×
				d
				e
				t
				𝑏
				0
				0
				0
				0
				𝑗
				𝑗
				𝑗
				𝑗
				𝑏
				𝑎
				0
				1
				0
				0
				𝑗
				𝑗
				0
				𝑏
				0
				𝑎
				0
				1
				0
				0
				𝑗
				𝑗
				𝑏
				1
				0
				𝑎
				0
				𝑗
				0
				0
				𝑗
				𝑏
				0
				1
				0
				𝑎
				𝑗
				𝑗
				0
				0
				𝑏
				𝑗
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				𝑏
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			
				𝑏
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				2
				𝐼
			

			
				4
				𝑛
			

			
				+
				𝐽
			

			
				4
				𝑛
			

			
				𝑏
				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
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				d
				e
				t
				1
				0
				0
				0
				0
				𝑗
				𝑗
				𝑗
				𝑗
				1
				𝑎
				0
				1
				0
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				0
				1
				0
				𝑎
				0
				1
				0
				0
				𝑗
				𝑗
				1
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				0
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				𝑡
			

			
				0
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				𝑗
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				𝑗
			

			

				𝑡
			

			
				1
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				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
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				𝑡
			

			
				1
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
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				+
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				𝑡
			

			

				𝑗
			

			

				𝑡
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				⎟
				⎟
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				𝑏
				⎛
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				𝑗
			

			

				𝑡
			

			
				2
				𝐼
			

			
				4
				𝑛
			

			
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				0
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				×
				d
				e
				t
				𝑎
				0
				1
				0
				−
				𝑗
				0
				0
				−
				𝑗
				0
				𝑎
				0
				1
				−
				𝑗
				−
				𝑗
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						Using Lemma 3 yields
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				𝑛
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				𝑏
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				2
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				𝐶
				
				⋅
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				𝑏
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				𝑛
			

			
				⋅
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				.
			

		
	

Theorem 7.  For
	
		
			
				𝑛
				≥
				0
				,
				𝑚
				≥
				3
			

		
	
,
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				
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				𝑚
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				
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				𝑚
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				𝑚
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Proof. Applying Lemma 1, we have 
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				⋱
				⋱
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				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				⋱
				1
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				⋯
				1
				3
			

		
	

						Let
	
		
			
				𝑗
				=
				(
				1
				⋯
				1
				)
			

		
	
be the
	
		
			
				1
				×
				𝑛
			

		
	
matrix with all one and
	
		
			

				𝐽
			

			

				𝑛
			

		
	
the
	
		
			
				𝑛
				×
				𝑛
			

		
	
matrix with all one. Set
	
		
			
				𝑎
				=
				2
				𝑛
				+
				4
			

		
	
and
	
		
			
				𝑏
				=
				𝑚
				𝑛
				+
				𝑚
				+
				1
			

		
	
. Then we have 
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				𝑚
				)
			

			
				
				=
				1
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑗
				d
				e
				t
				𝑚
				+
				1
				0
				⋯
				⋯
				⋯
				⋯
				0
				𝑗
				⋯
				⋯
				⋯
				⋯
				𝑗
				0
				𝑎
				0
				1
				⋯
				1
				0
				0
				𝑗
				⋯
				⋯
				𝑗
				0
				⋮
				0
				𝑎
				0
				1
				⋯
				1
				0
				0
				𝑗
				⋱
				⋱
				𝑗
				⋮
				1
				0
				⋱
				⋱
				⋱
				⋮
				𝑗
				0
				⋱
				⋱
				⋱
				𝑗
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				⋱
				⋱
				⋱
				⋱
				0
				⋮
				⋱
				⋱
				0
				0
				𝑗
				0
				0
				1
				⋯
				1
				0
				𝑎
				𝑗
				⋯
				⋯
				𝑗
				0
				0
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				⋱
				⋱
				𝑗
			

			

				𝑡
			

			
				⋮
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				⋮
				2
				𝐼
			

			
				𝑚
				𝑛
			

			
				+
				𝐽
			

			
				𝑚
				𝑛
			

			
				⋮
				⋮
				⋱
				⋱
				⋱
				0
				𝑗
			

			

				𝑡
			

			
				⋮
				𝑗
			

			

				𝑡
			

			
				𝑗
				⋱
				⋱
				⋱
				0
				0
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				⋯
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			

				𝑏
			

			

				2
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				𝑏
				0
				⋯
				⋯
				⋯
				⋯
				0
				𝑗
				⋯
				⋯
				⋯
				⋯
				𝑗
				𝑏
				𝑎
				0
				1
				⋯
				1
				0
				0
				𝑗
				⋯
				⋯
				𝑗
				0
				⋮
				0
				𝑎
				0
				1
				⋯
				1
				0
				0
				𝑗
				⋱
				⋱
				𝑗
				⋮
				1
				0
				⋱
				⋱
				⋱
				⋮
				𝑗
				0
				⋱
				⋱
				⋱
				𝑗
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				⋱
				⋱
				⋱
				⋱
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				𝑗
				𝑏
				0
				1
				⋯
				1
				0
				𝑎
				𝑗
				⋯
				⋯
				𝑗
				0
				0
				𝑏
				𝑗
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				𝑏
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				⋱
				⋱
				𝑗
			

			

				𝑡
			

			
				⋮
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				⋮
				2
				𝐼
			

			
				𝑚
				𝑛
			

			
				+
				𝐽
			

			
				𝑚
				𝑛
			

			
				⋮
				⋮
				⋱
				⋱
				⋱
				0
				𝑗
			

			

				𝑡
			

			
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				0
				0
				𝑏
				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				⋯
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				1
				0
				⋯
				⋯
				⋯
				⋯
				0
				𝑗
				⋯
				⋯
				⋯
				⋯
				𝑗
				1
				𝑎
				0
				1
				⋯
				1
				0
				0
				𝑗
				⋯
				⋯
				𝑗
				0
				⋮
				0
				𝑎
				0
				1
				⋯
				1
				0
				0
				𝑗
				⋱
				⋱
				𝑗
				⋮
				1
				0
				⋱
				⋱
				⋱
				⋮
				𝑗
				0
				⋱
				⋱
				⋱
				𝑗
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				⋱
				⋱
				⋱
				⋱
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				𝑗
				1
				0
				1
				⋯
				1
				0
				𝑎
				𝑗
				⋯
				⋯
				𝑗
				0
				0
				1
				𝑗
			

			

				𝑡
			

			
				0
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				1
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				⋱
				⋱
				𝑗
			

			

				𝑡
			

			
				⋮
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				⋮
				2
				𝐼
			

			
				𝑚
				𝑛
			

			
				+
				𝐽
			

			
				𝑚
				𝑛
			

			
				⋮
				⋮
				⋱
				⋱
				⋱
				0
				𝑗
			

			

				𝑡
			

			
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				0
				0
				1
				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				⋯
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				1
				0
				⋯
				⋯
				⋯
				⋯
				0
				𝑗
				⋯
				⋯
				⋯
				⋯
				𝑗
				0
				𝑎
				0
				1
				⋯
				1
				0
				−
				𝑗
				0
				⋯
				⋯
				0
				−
				𝑗
				⋮
				0
				𝑎
				0
				1
				⋯
				1
				−
				𝑗
				−
				𝑗
				0
				⋱
				⋱
				0
				⋮
				1
				0
				⋱
				⋱
				⋱
				⋮
				0
				−
				𝑗
				⋱
				⋱
				⋱
				0
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋮
				⋮
				1
				⋱
				⋱
				⋱
				⋱
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				0
				0
				0
				1
				⋯
				1
				0
				𝑎
				0
				⋯
				⋯
				0
				−
				𝑗
				−
				𝑗
				0
				0
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				𝑗
			

			

				𝑡
			

			
				0
				0
				⋱
				⋱
				𝑗
			

			

				𝑡
			

			
				⋮
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				⋮
				2
				𝐼
			

			
				𝑚
				𝑛
			

			
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				𝑗
			

			

				𝑡
			

			
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				⋱
				0
				0
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				⋯
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				𝑎
				0
				1
				⋯
				1
				0
				−
				𝑗
				0
				⋯
				⋯
				0
				−
				𝑗
				0
				𝑎
				0
				1
				⋯
				1
				−
				𝑗
				−
				𝑗
				0
				⋱
				⋱
				0
				1
				0
				⋱
				⋱
				⋱
				⋮
				0
				−
				𝑗
				⋱
				⋱
				⋱
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				1
				⋮
				⋱
				⋱
				⋱
				⋱
				⋮
				1
				⋱
				⋱
				⋱
				⋱
				0
				⋮
				⋱
				⋱
				⋱
				⋱
				0
				0
				1
				⋯
				1
				0
				𝑎
				0
				⋯
				⋯
				0
				−
				𝑗
				−
				𝑗
				0
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				0
				0
				⋱
				⋱
				𝑗
			

			

				𝑡
			

			
				⋮
				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				⋮
				2
				𝐼
			

			
				𝑚
				𝑛
			

			
				⋮
				⋱
				⋱
				⋱
				0
				𝑗
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				⋱
				⋱
				⋱
				0
				0
				0
				𝑗
			

			

				𝑡
			

			
				⋯
				⋯
				𝑗
			

			

				𝑡
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	
Using Lemma 3 yields
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				𝑚
				)
			

			
				
				=
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎜
				⎝
				d
				e
				t
				𝐴
				𝐵
				𝐵
				2
				𝐼
			

			
				𝑚
				𝑛
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				1
			

			
				
			
			
				𝑏
				
				1
				d
				e
				t
				𝐴
				−
				𝐵
				⋅
			

			
				
			
			
				2
				𝐼
			

			
				𝑚
				𝑛
			

			
				𝐶
				
				⋅
				2
			

			
				𝑚
				𝑛
			

			
				=
				1
			

			
				
			
			
				𝑏
				2
			

			
				𝑚
				𝑛
			

			
				⋅
				2
			

			
				−
				𝑚
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				2
				⋮
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				d
				e
				t
				2
				𝑎
				𝑛
				2
				(
				𝑛
				+
				1
				)
				⋯
				2
				(
				𝑛
				+
				1
				)
				𝑛
				𝑛
				2
				𝑎
				𝑛
				2
				(
				𝑛
				+
				1
				)
				⋯
				2
				(
				𝑛
				+
				1
				)
				(
				𝑛
				+
				1
				)
				𝑛
				⋱
				⋱
				⋱
				⋮
				⋱
				⋱
				⋱
				⋱
				2
				(
				𝑛
				+
				1
				)
				2
				(
				𝑛
				+
				1
				)
				⋱
				⋱
				⋱
				⋱
				𝑛
				𝑛
				2
				(
				𝑛
				+
				1
				)
				⋯
				2
				(
				𝑛
				+
				1
				)
				𝑛
				2
				𝑎
			

		
	
By straightforward induction using properties of determinants, we have
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				𝑚
				)
			

			
				
				=
				1
			

			
				
			
			
				𝑏
				2
			

			
				𝑚
				𝑛
				−
				𝑚
			

			
				⋅
				2
				𝑎
				+
				𝑛
				(
				𝑚
				−
				2
				)
				+
				2
				(
				𝑚
				−
				3
				)
			

			
				
			
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				1
				𝑚
				𝑛
				+
				2
				𝑚
				+
				2
				×
				d
				e
				t
				2
				𝑎
				−
				𝑛
				0
				(
				𝑛
				+
				2
				)
				⋯
				(
				𝑛
				+
				2
				)
				0
				0
				2
				𝑎
				−
				𝑛
				0
				(
				𝑛
				+
				2
				)
				⋯
				(
				𝑛
				+
				2
				)
				(
				𝑛
				+
				2
				)
				0
				⋱
				⋱
				⋱
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				(
				𝑛
				+
				2
				)
				(
				𝑛
				+
				2
				)
				⋱
				⋱
				⋱
				⋱
				0
				0
				(
				𝑛
				+
				2
				)
				⋯
				(
				𝑛
				+
				2
				)
				0
				2
				𝑎
				−
				𝑛
			

			
				
			
			
				𝑏
				2
			

			
				𝑚
				𝑛
				−
				𝑚
			

			
				⋅
				2
				𝑏
			

			
				
			
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				𝑚
				𝑛
				+
				2
				𝑚
				+
				2
				×
				d
				e
				t
				2
				𝑎
				−
				𝑛
				0
				(
				𝑛
				+
				2
				)
				⋯
				(
				𝑛
				+
				2
				)
				0
				0
				2
				𝑎
				−
				𝑛
				0
				(
				𝑛
				+
				2
				)
				⋯
				(
				𝑛
				+
				2
				)
				(
				𝑛
				+
				2
				)
				0
				⋱
				⋱
				⋱
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				(
				𝑛
				+
				2
				)
				(
				𝑛
				+
				2
				)
				⋱
				⋱
				⋱
				⋱
				0
				0
				(
				𝑛
				+
				2
				)
				⋯
				(
				𝑛
				+
				2
				)
				0
				2
				𝑎
				−
				𝑛
				=
				2
			

			
				𝑚
				𝑛
				−
				𝑚
				+
				1
			

			
				⋅
				(
				𝑛
				+
				2
				)
			

			

				𝑚
			

			
				
			
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑚
				𝑛
				+
				2
				𝑚
				+
				2
				×
				d
				e
				t
				2
				𝑎
				−
				𝑛
			

			
				
			
			
				0
				𝑛
				+
				2
				0
				1
				⋯
				1
				0
				2
				𝑎
				−
				𝑛
			

			
				
			
			
				𝑛
				+
				2
				0
				⋱
				⋱
				1
				1
				0
				⋱
				⋱
				⋱
				⋮
				⋮
				⋱
				⋱
				⋱
				⋱
				1
				1
				⋱
				⋱
				⋱
				⋱
				0
				0
				1
				⋯
				1
				0
				2
				𝑎
				−
				𝑛
			

			
				
			
			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				𝑛
				+
				2
			

		
	
Using Lemma 2 yields
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				𝑚
				)
			

			
				
				=
				2
			

			
				𝑚
				𝑛
				−
				𝑚
				+
				1
			

			
				⋅
				(
				𝑛
				+
				2
				)
			

			

				𝑚
			

			
				
			
			
				⋅
				𝑚
				𝑛
				+
				2
				𝑚
				+
				2
				2
				(
				(
				2
				𝑎
				−
				𝑛
				)
				/
				(
				𝑛
				+
				2
				)
				+
				𝑚
				−
				3
				)
			

			
				
			
			
				×
				
				𝑇
				(
				2
				𝑎
				−
				𝑛
				)
				/
				(
				𝑛
				+
				2
				)
				−
				3
			

			

				𝑚
			

			
				
				(
				2
				𝑎
				−
				𝑛
				)
				/
				(
				𝑛
				+
				2
				)
				−
				1
			

			
				
			
			
				2
				
				
				−
				1
				=
				2
			

			
				𝑚
				𝑛
				−
				𝑚
				+
				1
			

			
				⋅
				(
				𝑛
				+
				2
				)
			

			

				𝑚
			

			
				
			
			
				×
				
				𝑇
				𝑚
				𝑛
				+
				2
				𝑚
				+
				2
				⋅
				(
				𝑚
				𝑛
				+
				2
				𝑚
				+
				2
				)
			

			

				𝑚
			

			
				
				2
				𝑎
				−
				2
				𝑛
				−
				2
			

			
				
			
			
				
				
				2
				(
				𝑛
				+
				2
				)
				−
				1
				=
				2
			

			
				𝑚
				𝑛
				−
				𝑚
				+
				1
			

			
				⋅
				(
				𝑛
				+
				2
				)
			

			

				𝑚
			

			
				
				𝑇
			

			

				𝑚
			

			
				
				𝑛
				+
				3
			

			
				
			
			
				
				
				.
				𝑛
				+
				2
				−
				1
			

		
	

						Using (12) yields
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝜏
				
				𝑃
			

			
				𝑛
				(
				𝑚
				)
			

			
				
				=
				2
			

			
				𝑚
				𝑛
				−
				𝑚
			

			
				√
				
				
				𝑛
				+
				3
				+
			

			
				
			
			
				
				2
				𝑛
				+
				5
			

			

				𝑚
			

			
				+
				
				√
				𝑛
				+
				3
				−
			

			
				
			
			
				
				2
				𝑛
				+
				5
			

			

				𝑚
			

			
				−
				2
				(
				𝑛
				+
				2
				)
			

			

				𝑚
			

			
				
				.
			

		
	

4. Conclusion
The number of spanning trees
	
		
			
				𝜏
				(
				𝐺
				)
			

		
	
in graphs (networks) is an important invariant. The evaluation of this number is not only interesting from a mathematical (computational) perspective, but also is an important measure of reliability of a network and designing electrical circuits. Some computationally hard problems such as the travelling salesman problem can be solved approximately by using spanning trees. Due to the high dependence of the network design and reliability on the graph theory we introduced the above important theorems and lemmas and their proofs.
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