Letter to the Editor

Comment on “An Approximation to Solution of Space and Time Fractional Telegraph Equations by He’s Variational Iteration Method”

Yi-Hong Wang1,2 and Lan-Lan Huang3

1 Department of Computer Science, Shanghai Normal University Tianhua College, Shanghai 201815, China
2 Department of Mathematics, Zhejiang Forestry University, Hangzhou 311300, China
3 College of Mathematics & Information Science, Neijiang Normal University, Neijiang 641112, China

Correspondence should be addressed to Lan-Lan Huang; mathlan@126.com

Received 7 January 2013; Revised 16 February 2013; Accepted 20 February 2013

Sevimlican [1] considered the application of the variational iteration method [2, 3] to find approximate solutions of space and time fractional telegraph equations. The author suggested the following variational iteration formula for (5.1) in [1]

\[u_{n+1} = u_n + \int_0^x \lambda(s, x) \left(\frac{\partial^\alpha u_n(s, t)}{\partial s^\alpha} - \frac{\partial^2 u_n(s, t)}{\partial t^2} - \frac{\partial u_n(s, t)}{\partial t} - u_n(s, t) \right) ds, \quad 1 < \alpha < 2, \]

\[\lambda(s, x) = s - x. \]

However, in this comment, it is pointed out that the identification of the Lagrange multiplier \(\lambda(s, x) = s - x \) from (4.1) to (4.9) can be improved.

According to the technique of determination of the Lagrange multipliers [4, 5], firstly, construct a correctional functional as

\[u_{n+1}(x, t) = u_n(x, t) + \int_0^x \lambda(s, x) \left(\frac{\partial^\alpha u_n(s, t)}{\partial s^\alpha} - \frac{\partial^2 u_n(s, t)}{\partial t^2} - \frac{\partial u_n(s, t)}{\partial t} - u_n(s, t) \right) ds, \quad \alpha > 0. \]

Assuming the Lagrange multiplier \(\lambda(x, s) = \lambda(x - s) \), take the Laplace transform to both sides of (2)

\[\mathcal{L}[u_{n+1}(S, t)] = \mathcal{L}[u_n(S, t)] + L \left[\int_0^x \lambda(s, x) \left(\frac{\partial^\alpha u_n(s, t)}{\partial s^\alpha} - \frac{\partial^2 u_n(s, t)}{\partial t^2} - \frac{\partial u_n(s, t)}{\partial t} - u_n(s, t) \right) ds \right], \]

(3)

where \(\mathcal{L}[u_n(S, t)] \) is the Laplace transform of \(u_n(x, t) \).

Taking the variation \(\delta \) with respect to \(\mathcal{L}[u_n(S, t)] \), one can obtain

\[\delta \mathcal{L}[u_{n+1}(S, t)] = \delta \mathcal{L}[u_n(S, t)] + \mathcal{L}[\int_0^x \lambda(s, x) \left(\frac{\partial^\alpha u_n(s, t)}{\partial s^\alpha} - \frac{\partial^2 u_n(s, t)}{\partial t^2} - \frac{\partial u_n(s, t)}{\partial t} - u_n(s, t) \right) ds], \]

(4)
Then, the Lagrange multiplier can be determined as
\[\lambda(s, x) = \frac{(-1)^\alpha (s - x)^{\alpha - 1}}{\Gamma(\alpha)}. \] (5)

Instead \(\lambda(s, x) = s - x \) (see (4.9) in [1]).

As a result, the variational iteration formula is obtained as
\[u_{n+1} = u_n + \int_0^x \left(-\frac{\partial^\alpha u(s, t)}{\partial s^\alpha} - \frac{\partial^2 u(s, t)}{\partial t^2} - \frac{\partial u(s, t)}{\partial t} - u(s, t) + s^2 \right) ds, \]
\[0 < \alpha. \] (6)

The variational iteration formulae (5.10) and (5.17) are not right which also should be corrected, respectively. Equation (5.10) in [1] should be
\[u_{n+1} = u_n + \int_0^x \left(\frac{\partial^\alpha u(s, t)}{\partial s^\alpha} - \frac{\partial^2 u(s, t)}{\partial t^2} - \frac{\partial u(s, t)}{\partial t} - u(s, t) + s^2 + t - 1 \right) ds, \]
\[0 < \alpha. \] (7)

Equation (5.17) in [1] should be
\[u_{n+1} = u_n + \int_0^t \left(\frac{\partial^\alpha u(x, s)}{\partial s^\alpha} + \lambda \frac{\partial^2 u(x, s)}{\partial s^2} \right) ds, \]
\[0 < \alpha. \] (8)

Conclusions

As is well known, the VIM became an efficient analytical tool in nonlinear science since it was proposed and the method was often used in fractional differential equations. This study illustrates the method in fractional calculus can be improved by the Laplace tranform method with which the Lagrange mutipliers can be identified explicitly.

Recently, there are also other new applications of the variation iteration method to various nonlinear problems, that is, fuzzy equations [6, 7] and \(q \) -fractional differential equations [8]. Readers are referred to the recent review article [9].

Acknowledgment

This work is financially supported by the Zhejiang Natural Science Foundation (Grant no. LQ12A01010).

References
