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A diffusive predator-prey system with prey refuge is studied analytically and numerically. The Turing bifurcation is analyzed in
detail, which in turn provides a theoretical basis for the numerical simulation. The influence of prey refuge and group defense on
the equilibrium density and patterns of species under the condition of Turing instability is explored by numerical simulations, and
this shows that the prey refuge and group defense have an important effect on the equilibrium density and patterns of species.
Moreover, it can be obtained that the distributions of species are more sensitive to group defense than prey refuge. These results are

expected to be of significance in exploration for the spatiotemporal dynamics of ecosystems.

1. Introduction

Some observations [1-3] indicate that there exists a biological
phenomenon called group defense in predator-prey interac-
tions. Namely, the prey species exhibit group defense whereby
predation is decreased or prevented since the preys could
better defend or disguise themselves when their numbers are
large enough. This biological phenomenon has been widely
incorporated into many predator-prey systems, and it is
shown that the group defense has a significant effect on the
dynamics of these systems [4-6]. During the past decades,
predator-prey system has been relatively well-studied because
the predator-prey interaction is universal throughout nature
[7-10]. Recently, a class of the so-called semi-ratio-dependent
predator-prey systems based on the Leslie-Gower models
have been extensively investigated, an important trait of
which is that the carrying capacity of predator is proportional
to the number of preys [11-14]. However, the Leslie-Gower
model incorporating group defense is rarely investigated. So
a modified Leslie-Gower predator-prey system with group
defense as suggested by Sokol and Howell [15] is introduced,
which can be expressed as follows:
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where H and P correspond to the densities of prey and
predator species at time t.

On the other hand, many studies [16-18] have indicated
that the prey refuge has a positive effect on the dynamics
of predator-prey models. In particular, mite predator-prey
interactions [19] often exhibit spatial refuges that can afford
the prey with some degree of protection from predation and
reduce the likelihood of extinction due to predation. Thus,
system (1) can be extended by including a protective refuge
mH for prey, where m € [0,1) is constant and (1 — m)H
is available to be the predator. More precisely speaking, the
spatial factor should be included into system (1) since all
organisms inhabit the three-dimensional space. Moreover,
a large number of studied models incorporating the spatial
factor have shown very rich and complex dynamics. Accord-
ingly, system (1) can be extended as follows:
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where H(x,t) and P(x, t) correspond to the densities of prey
and predator at time ¢ and position x. A is the Laplacian oper-
ator. AH and AP denote the populations moving randomly
in the environment. d, and d, are diftusivities. r and s are the
intrinsic growth rates of H and P, respectively. a measures the
strength of intraspecific competition among the individual
of prey. b is interpreted as the half-saturation constant. c
stands for the predation rate. d/s measures the ration of prey
to support one predator. e reflects the extent to which the
environment provides protection to prey. All the parameters
of system (2) are considered to be positive.

This paper is arranged as follows. In the next section,
mathematical analysis is given to obtain the critical wave-
number. In Section 3, on the basis of the critical wavenumber,
numerical simulations are performed to explore the effect of
prey refuge and group defense on the distributions of species.
Furthermore, we also analyzed numerically the impact of
prey refuge and group defense on the interior equilibrium
densities of species. Finally, we end with conclusions.

2. Mathematical Analysis

Assume that system (2) satisfies the following initial condi-
tions:

H(0,x) = Hy (x) >0, P(0,x) = Py(x) >0,

_
x €0,
and zero-flux boundary conditions:
@za—Hzo, x € 0Q, t>0. (4)
on  on

Here, QO ¢ R* is bounded, the boundary 0Q is smooth,
and 0/0n denotes the differentiation in the direction of the
outward unit normal vector to 0Q). The zero-flux conditions
imply that there are no fluxes of species through the bound-
ary; that is, system (2) has no input from the outside.

It is interesting to note that the local dynamics of system
(2) are the basis of better understanding pattern formations
under the condition of Turing instability. Thus, without diffu-
sion, the local system of (2) is
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From the biological angle, the steady state E, = (H,, P,)
of system (2) or (5) is most significant, which implies coexis-
tence of both predator and prey, and (H,, P,) = (H,, (s/d)[e+
(1-m)H,]) is the positive solution of ¢(H, P) = 0, ¢(H, P) =
0, where H, is the positive root of

T abd + cs(1 — m)*

~ rbd — ces (1 — m) _o
a ad(1 - m)* ’

H® -
ad(l - m)*

(6)
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Based on the fundamental theorem of Algebra, the cubic
equation (6) has at least one real root. Then the sufficient
conditions are necessary to ensure at least one positive real
root of the cubic equation (6). From the first equation of the
system (5), it is easy to know that 0 < H, < r/a. Assuming
that f(H) = H® - (r/a)H* + ((abd + cs(1 — m)*)/ad(1 -
m)*)H - ((rbd —ces(1-m))/ad(1-m)*), the function f(H) is
continuous in [0, r/a], f(0) = —(rbd — ces(1 —m))/ad(1 -
m)* and f(r/a) = (csr(l —m) + csae)/a*d(1 — m)*. From
the Zero Theorem, there must exist at least one positive real
number H, € (0,r/a) such that f(H,) = 0if f(0) f(r/a) < 0;
that is to say rbd — ces(1 — m) > 0.

On the other hand, the stability behavior of the homo-
geneous state E, with small perturbations is of importance.
Thus, let us linearize system (5) around E,. This yields the
following system:

dx

E - ]X) (7)

where X = (H, P)T and
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Then, the characteristic equation of system (7) is

(8)

M —tr()A+det(J) =0, 9)

where tr(J) = A + Q and det(J) = AQ — BR.

It is obvious that if tr(J) < 0 and det(J) > 0, system (7)
has two distinct eigenvalues with negative real parts. Thus, E,
is locally asymptotically stable for system (5). Assuming that
r=0.6,5s=049,a=028,b=03,¢c=057,d=07,e=0.2,
and m = 0.15, we can get that rbd — ces(1 — m) = 0.0785 > 0,
and thus there exists E, = (0.6167,0.5069). Further, we can
obtain that tr(J) = —0.2540 < 0 and det(J) = 0.0359 > 0.
Therefore, E, is locally asymptotically stable for system (5)
shown in Figure 1.

In order to investigate the temporal stability of the uni-
form state E,, the nonuniform perturbations for any solution
of system (2) are introduced as follows:

H(x,t) = H, + eexp ((kx)i+ At),
10
P(x,t) =P, + Texp ((kx)i+ At), 1
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where ¢, T are small enough, k is the wave number, and A is
the growth rate of fluctuation in time. Substituting (10) into
system (2) and picking up the linear terms, then there is

oY
—— = DAY +JY, 11
o +] (11)

where Y = (H, P)" and D = diag(d,,d,).
Therefore, the characteristic equation of (11) is

A —tn A+ A =0, (12)
where
try = tr (J) - (d, +d,) K, 13)
Ay = det () - K (Ad, + Rd,) + (&) dyd,.  (14)
Thus, the roots of (12) are

trk + 1\ (trk)z - 4Ak (15)

2

Al,z (k) =

The Turing instability implies that the homogeneous state
is stable in the local system and will become unstable due to
diffusion of populations. From (7), the interior equilibrium
point E, of system (5) is stable if tr(J) < 0, det(J) > 0.
According to (13), we can obtain tr, < tr(J) . Thus, the
stability of the interior equilibrium point corresponding to
system (2) is only determined by the sign of A .. From (14), it
is clear to show that A, < 0 for ¥, < k* < x3, where Kiz =

(Ad, + Rd, F \/(Ad2 +Rd,)* - 4d,d,(AR - BQ))/2d,d,.
Furthermore, if x; and x, have positive values, the range of
instability for the steady state E, is limited, which is called
the Turing space.

To well see the Turing space, the dispersion relation corre-
sponding to several values of the biological parameter m is
plotted while the other parameter values are r = 0.6, s = 0.49,
a=028>b=03,¢c=0.57,d=07e¢e=02,d, =0.08 and
d, = 0.12 in Figure 2. It can be seen from Figure 2 that there
exists an interval of m such that when m lies in this interval,
the available modes occur. It should be stressed that when m
is beyond this interval, the Turing instability does not happen
and instead the stable state is excited. It is interesting to note
that the upper and lower bounds of this interval are easy to be
found. From Figure 2, it is clear to show that when m < 0.01
or m > 0.27, the Turing instability is no longer excited.

3. Simulation Analysis

For better understanding the impact of a prey refuge on the
dynamical behavior of system (2), the values of the equilib-
rium density are first plotted as the functions of the prey
refuge factor m. It can be seen from Figure 3 that the prey
refuge has a significant effect on the densities of prey and
predator at the uniform steady state of system (2). It is shown
in Figure 3(a) that when m becomes large, the prey density of
the steady state will be increased. Moreover, it is interesting to
be observed that there exists a quasilinear function between
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FIGURE 1: Phase portrait of system (5) corresponding to different
initial values which shows that E, is locally asymptotically stable.
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FIGURE 2: Variation of dispersion relation of system (2) around the
interior equilibrium point for different m. The red line corresponds
tom = 0.01, the green line corresponds to m = 0.12, and the blue
corresponds to m = 0.27.

the prey density of the steady sate of system (2) and the
parameter m of prey refuge. Figure 3(b) clearly shows that
when m is large enough, the density of predator at steady state
will be declined as increase of m. It is to note from Figure 3(b)
that there is a critical value m, such that when m < m, the
predator density P, will be always increase and when m is
beyond the critical values, P, will be dramatically decreased.
Obviously it is a nonlinear relationship between the predator
density of the equilibrium state and prey refuge parameter.
This implies that the effect of prey refuge on the dynamical
behavior of system (2) is complex and profound.

From Figure 3, it can be only obtained the effect of
prey refuge on the densities of prey and predator at steady
state. However, it does not reflect the spatial information of



1.6

1.4 1

1.2 4

0.8
0.6

0.4

Mathematical Problems in Engineering

0.6 4

0.5 4

0.4 S

0.3 4

0.2 +

0 0.2 0.4 0.6 0.8 1

()

FIGURE 3: (a) The prey density. (b) The predator density. Both are the functions of m at steady state. The other parameter values are r = 0.6,
$=049,a=0.28b=03,c=057,d=07e=0.2,d, =0.08,and d, = 0.12.

species. Thus, to well investigate effect of prey refuge on the
spatiotemporal dynamics of system (2), the spatial distribu-
tions of prey are explored by numerical simulations. For this
purpose, system (2) with zero-flux boundary conditions is
employed on a two-dimensional domain. Furthermore, the
continuous problem determined by system (2) is solved in
this domain with 200 x 200 lattice sites and the step between
each lattice point is w = 0.25. For the time evolution of system
(2), the Euler method is chosen to approximate the value of
density at the next time step on the basis of the density at
the previous time step. Here, the time step is p = 0.01. The
homogeneous distribution H(x, y,0) = H,, P(x, y,0) = P, is
used as the initial condition and a small random perturbation
is added to them. As the random perturbation propagates,
system (2) will be evolved into the steady patterns, which
are stationary in time and oscillatory in space. It should be
pointed out that in our numerical simulations the spatial
distributions of prey and predator are always the same type
with change of m. It is because for system (2) the steady state
predator is equal to its carrying capacity and this carrying
capacity is assumed to be proportional to the number of prey.
It implies that there is no difference between the effect of prey
refuge on the patterns of prey and predator. Hence, spatial
patterns of prey are only explored with change of m.

It should be stressed that the numerical simulations are
run until the stationary states emerge, and in this way some
snapshots shown in Figure 4 have been taken of numeri-
cal simulations when m increases from 0.03 to 0.25. It
is interesting to note from Figure 4 that the range of the
changing densities of prey is given by the enclosed color bar
in each snapshot, in which higher values denote higher prey
densities. According to the dispersion relationship of system
(2) shown in Figure 2, it is clear to know that when m < 0.01
orm > 0.27, system (2) gives rise to the stable state around
the equilibrium point. Thus, the spatial distributions of prey
under the condition of Turing instability are considered. For
m = 0.03, m = 0.12, m = 0.2, and m = 0.25, the stationary

snapshots are picked up to show the spatiotemporal dynamics
of system (2) around the interior equilibrium point. Figure 4
reflects oscillations in space and the stationary state in time.
Comparing the four diagrams shows that system (2) owns
very rich and complex patterns which correspond to different
habitats in real world. When m = 0.03, the distribution of
prey is mainly the irregularly elliptic patches, which exhibit a
higher prey density in the centers of these patches. Moreover,
the distribution of these patches is almost uniform in space.
When m = 0.12, the spatial pattern of prey is some stripes and
a few blocks. It can be observed that on long strips there exist
black dots which result from the congregation of population.
Assuming that the value of m continues to be increased,
it shows that when m = 0.2, the snapshot is obviously
different from Figures 4(a) and 4(b). In the snapshot, there
exist some holes on the long strips in which the prey density
is very low. Furthermore, it can be observed that when m =
0.25, the kind of holes prevails uniformly the whole domain.
From a biological viewpoint, this type of irregularly elliptic
structures shown in Figure 4(a) leads to a higher efficiency
on reducing the pressure of predation by means of group
defence than these structures shown in Figures 4(b)-4(d).
From Figures 4(a)-4(d), the different distributions of one
species denote the optimal section of self-organization in
different habitats which is corresponding to the change of
prey refuge. If the effect of prey refuge is relatively small,
the prey will be evolved into the spatial pattern which can
best reduce the attack rate of predator. Whereas the effect of
prey refuge is so much strong that the prey can easily refuge
from predation, then the population starts diffusion from the
crowded patches to the low and tends to be uniform in spatial
patterns. On the other hand, it is interesting to note from
Figures 4(a)-4(d) that the maximum concentration of color
in these snapshots shows the decreasing states as increase of
m. This changing process also provides some information to
explore the pattern formations. When the maximum density
of prey is relatively high, the distribution of prey tends to be



Mathematical Problems in Engineering

FIGURE 4: Spatial distributions of prey as change of m. (a) m = 0.03, (b) m = 0.12, (c) m = 0.2, and (d) m = 0.25. The other parameter values
arer = 0.6, =0.49,a=0.28,b=0.3,c=0.57,d =0.7,e = 0.2,d, = 0.08, and d, = 0.12.

the irregularly elliptic patches for defending from predation.
But the maximum density of prey is relatively low and the
distribution of prey exhibits some holes in order to reduce
the pressure among the prey individuals. In fact, these results
show that the prey refuge not only determines the densities
of prey and predator at steady state but also is beneficial to be
evolved into adaption for their inhabits. More precisely, these
results derive from the optimal evolution of species.

On the other hand, it is clear to be known from the
definition of a prey refuge that the prey refuge factor incor-
porated in system (2) only denotes the individual behavior
of species. However, according to the assumptions of system
(2), the group defense stands for the cooperative behavior
among the prey individuals. Therefore, it is necessary to
investigate the effect of group defense on the distributions
of prey. As a result, it can be conductive to understand that
the population optimizes the strength of group defense when
the population faces the pressures of both predation and
intraspecific competition. Here, the strength of group defense
is exhibited by means of the predation rate. If the predation

rate is small, it indicates that the strength of group defense
increases. Conversely, if the predation rate becomes large, the
group defense is weak. Thus, the predation rate ¢ is chosen to
report the effect of group defense on distributions of prey.
For further analysis of the effect of group defense on the
dynamical behavior of system (2), it is first to consider the
effect of group defense on the densities of prey and predator
at steady state. Here, the density of prey is only plotted as a
function of ¢ since from the expression of P, it is clear to
be seen that P, as the function of ¢ has the same properties.
According to Figure 5(a), it shows that as ¢ increases, the prey
density at steady state will be decreased. It is also interesting
to note from Figure 5(a) that there exist two inflection points.
Assume that ¢, ¢, correspond to the horizontal values of
two inflection points, respectively. More importantly, from
Figure 5(b) the range of Turing instability lies in the interval
(¢1>¢,). Furthermore, when c is beyond this interval, then
the states of system around the steady state become locally
stable, and when these cases occur, the spatial distributions
of prey will be chaotic [20]. Thus, the spatial distributions
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FIGURE 5: (a) The predator density as a function of ¢ at steady state. (b) Variation of dispersion relation of system (2) around the interior
equilibrium point for different c. The red line corresponds to ¢ = 0.5, the green line corresponds to ¢ = 0.57, and the blue corresponds to
¢ = 0.62. The other parameter values are r = 0.6, s = 0.49,a = 0.28,b =0.3,d = 0.7,e = 0.2, m = 0.12,d, = 0.08, and d, = 0.12.

FIGURE 6: Spatial distributions of prey as change of c. (a) ¢ = 0.51, (b) ¢ = 0.54, (c) ¢ = 0.59, and (d) ¢ = 0.61. The other parameter values are
r=0.6,s=049,a=028,0b=03,d=0.7e=02,m=0.12,d, =0.08,and d, = 0.12.
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of prey under the condition of Turing instability are studied
in detail. In order to improve the understanding of group
defense, the spatiotemporal evolutions of prey corresponding
to several values of ¢ are plotted and the snapshots are taken
as the previous case. When ¢ = 0.51, the distribution of
prey is the same type as Figure 4(d). When ¢ = 0.54, some
irregular connected strips prevail and some small holes are
incorporated into the large strips. When ¢ = 0.59 and ¢ =
0.61, the irregularly elliptic patches are formed. Comparing
with Figure 4, the spatial distributions of prey as shown
Figure 6 tend to be the elliptic patches and such distribution
is helpful to reduce the pressure of predation as increase of
c. In fact, when the predation rate becomes large, the prey
tends to evolve into Figure 6(d) since this mode owns the
higher strength of group defense and as a result it reduces
the probability of extinction of species. Finally, from our
numerical simulations, it shows that system (2) is more
sensitive to the prey group defense than the prey refuge.

From the previous analysis, it is obvious that the prey
refuge and group defense have a significant influence on
pattern formations of prey. Moreover, it is interesting to note
that the distributions of prey are not only determined by the
individual behavior but also result from the cooperation of
prey. These results exhibit that species tend to be the optimal
evolution to adapt to the environment and it is meaningful
to understand the dynamical complexity of ecosystems in the
real world.

4. Conclusions

In summary, a modified Leslie-Gower predator-prey with a
prey refuge and group defense was investigated analytically
and numerically. Initially, we performed the stability of sys-
tem (5) at the interior equilibrium point and further obtained
the range of the wavenumber such that system (2) leaded
to the Turing bifurcation. Under the condition of Turing
instability, the effects of prey refuge and group defense on
the distributions of species were discussed in detail. Finally,
the results of all simulations showed that the prey refuge
and group defense had a highly significant effect on the
spatiotemporal dynamics of system (2). It is expected to
improve our understanding of the spatiotemporal dynamics
of ecosystems in real world.
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