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Abstract. 
Several segmentation methods are implemented and applied to segment the facial masseter tissue from magnetic resonance images. The common idea for all methods is to take advantage of prior information from different MR images belonging to different individuals in segmentation of a test MR image. Standard atlas-based segmentation methods and probabilistic segmentation methods based on Markov random field use labeled prior information. In this study, a new approach is also proposed where unlabeled prior information from a set of MR images is used to segment masseter tissue in a probabilistic framework. The proposed method uses only a seed point that indicates the target tissue and performs automatic segmentation for the selected tissue without using labeled training set. The segmentation results of all methods are validated and compared where the influences of labeled or unlabeled prior information and initialization are discussed particularly. It is shown that if appropriate modeling is done, there is no need for labeled prior information. The best accuracy is obtained by the proposed approach where unlabeled prior information is used.


1. Introduction
Recent advances in medical imaging have enabled the derivation of useful information about different body parts and tissues. Two major imaging modalities, computed tomography (CT) and magnetic resonance imaging (MRI), are commonly used as sources to extract anatomical structures. Despite the fact that CT is preferred for hard tissues, such as bone, MR images are commonly used for evaluating the presence and extent of the soft tissue volumes such as brain and heart.
Nowadays, doctors and clinical specialists take the advantage of imaging modalities in gathering anatomical information about a patient and are able to use this information in diagnosis and prognosis. The further step is to involve artificial intelligence to automate this diagnosis/prognosis process for segmenting target tissues. 
Currently, most of the automatic soft tissue segmentation methods in the literature consider tissues like brain, heart, and lung as target tissues and there are very few works about facial soft tissue (FST) (e.g., facial muscles) segmentation. Considering the key role of the face in human life and the huge increase in craniofacial surgeries around the world, FST segmentation has become more important in recent days. Planning before a facial surgery by performing the modifications virtually prior to the actual operation [1] is very important to increase the overall success of the actual operation. In addition, for patients seeking surgical treatment, it would be very beneficial to have a means to predict the postsurgical appearance of their face. For this to be done, the first step is to obtain an anatomic model of the patient’s face. Such a complicated computer model should include segmented hard (i.e., skull) and soft tissues (i.e., muscles, skin, and fat). Besides, each FST (e.g., a muscle) should also be segmented from the others when the operation has an effect on such a tissue. 
 Soft tissue segmentation is very complicated due to the fact that soft tissues do not have a constant shape. Moreover, segmentation becomes more complicated when the soft tissues interfere with each other and this is always the case for FSTs. To solve these problems, prior information is commonly used in a different manner to improve the segmentation quality. 
By prior information, we mean the knowledge that we took from a set of individual MRI scans which can be considered as the training set and used to determine prior shapes and locations of the target tissues. This is quite like the method when a specialist doctor extracts the target tissue in a new image based on his/her past experience of viewing thousands of similar images. The standard method is to manually label the training data and construct an atlas from it [2]. Then, the labeled atlas is registered to the test MRI set and the labeling is applied to the test set based on the transformation in the registration process. The atlas can also be used as the prior labeling information in a Markov random field (MRF) statistical model to optimize the segmentation [3]. 
Currently, these methods have been used for soft tissues other than FST in the literature. We implemented representative examples of the methods in the literature and compared them for the purpose of segmentation of masseter muscle. 
Moreover, we proposed a new segmentation approach, which requires very little user interaction. Instead of manually labeled atlases, unlabeled training images are used as hidden atlases for the purpose of evaluating the effect of unlabeled prior information. The main reason in using the unlabeled prior information is that manual labeling of tens of medical image data sets is a very complicated and time consuming task and is prone to error.
In our previous work [4], we introduced a new neighboring model that takes advantage of unlabeled prior information presented as registered training images. We used a modified region growing algorithm to perform the segmentation for masseter tissue. In the current study, we aim to use the same neighborhood idea in a newly proposed probabilistic framework. 
The unlabeled prior knowledge was used in our MRF structure and we tried to optimize the segmentation results iteratively by using expectation maximization (EM) algorithm. Finally, we compared our method using unlabeled prior information with the previously mentioned methods using labeled prior information and evaluate the advantages and disadvantages of all methods.

2. Literature Survey
2.1. Soft Tissue Segmentation
Although there are plenty of methods that perform soft tissue segmentation in the literature, facial soft tissue (FST) segmentation has received relatively little attention. Considering the visualization similarities between FST and other soft tissues like brain, the segmentation process can be the same theoretically. But due to different characteristics of these tissues, such as more complicated and interfered structure of FSTs than other soft tissues, more precise and powerful segmentation methods are needed for FST segmentation. 
Facial soft tissues are usually small and surrounded with other tissues that share the same intensity values [5]. Different but neighboring tissues are interfering with each other in some cases that make tissue detection a hard work even for a specialist doctor. Other than that, unlike other tissues like brain that have a specific shape model, FSTs do not have a specific shape but they may have different shapes in different individuals. All these difficulties make the segmentation process nearly impossible and thus the requirement of additional information is inevitable. In this chapter, we will discuss soft tissue segmentation studies that are related to our work. 
Purely intensity-based segmentation and classification methods assign a label to each pixel in the image and require only the intensity information that is generated by the MR imaging device. However, in medical image segmentation, different anatomical structures may have the same intensity values or intensity distributions that cannot be distinguished from each other. In such cases, extra information should be considered and included in the segmentation process. Spatial information like neighborhood relationships between pixels can be very useful in segmenting individual tissues. In addition to geometrical constraints, relationships between several different but similar data sets can also be considered. The additional data that is used in a segmentation process is called the prior information. Soft tissue segmentation methods usually use prior information in a different manner to improve the segmentation accuracy. The prior information is included mostly in the form of single or multiple atlases. An atlas can be presented as a single manually segmented data (2D image or 3D voxel volume or 2D/3D sequences) or can be formed from multiple manually segmented data [2]. For example, 70 infant brain MRI [6], 275 brain dataset [7], and 14 cardiac image sequences [8] were used to construct atlases. 
As the number of atlases fused increases, the average segmentation accuracy increases [9]. Fusion of a large number of atlases is more likely to create a smooth estimate of the structure. However, construction of multiatlas is very hard because it requires manual segmentation on tens of data. In addition to that, increased computational cost of registering large numbers of atlases to the query image is an immediate practical problem. There are some solutions proposed for this problem in the literature. In [10], adaptive multiatlas is proposed where local atlas-based operations are performed. The proposed algorithm automatically selects the most appropriate atlases for a target image and automatically stops registering atlases when no further improvement is expected. In [11], an appropriate atlas is selected based on the scale resemblance of the atlas and the query data.
Atlases should be registered to the query data before the segmentation process. Segmentations in atlases are transformed to the query data and subsequently fused or combined. One way of atlas-based segmentation is to transform the atlas segments to the test data by using nearest-neighbor interpolation so that each atlas provides a discrete labeling for each voxel. The final label can then be decided by “majority vote” [12]. Nonrigid registration is also used for segmentation purposes in [13], where atlas is used as a guide to perform population segmentation through population deformable registration. The atlas is registered to all of the test sets and the sets are deformed toward the atlas to achieve population segmentation. 
Another method to incorporate the atlas in the segmentation process is to use MRF (Markov random field) or HMRF (hidden Markov random field) models. MRF models are commonly used for unsupervised segmentation of medical data since smoothness constraint can easily be incorporated to the model by neighboring relations among the pixels to be segmented. The first studies of brain segmentation use the basic HMRF formulation where smoothness is defined based on the resemblance of the neighbors [14, 15]. Then iterative methods like ICM (iterated conditional model) are used to find the most probable labeling. In soft tissue segmentation, standard MRF modeling may not be applied directly since the parameters of the model need to be tuned for each new image. To improve standard MRF models, segmentation and registration are joined in [15]. This method aims to improve segmentation and registration accuracy by incorporating registered MRI sets in a combined MRF model and estimating the labels in a registration criterion. It is shown that by using this combination, the computational cost of registration is reduced and there is a sizable improvement in segmentation of human brain and mouse heart. However, this method needs the initial prior models to be set precisely. 
In [16], distributed MRF segmentation is proposed to cope with spatially varying intensity distributions. Three different distribution classes are defined for MRI brain segmentation. The main problem in this approach is to find a partition that only includes these three classes. 
However, the usual way of improving the MRF performance in segmentation is to use parametric model where the parameters are learned from the image usually by EM (expectation maximization) algorithm [17–19]. An HMRF model is developed in [20] to segment brain MR images where the EM algorithm is used to estimate the HMRF model parameters by solving maximum likelihood (ML) problem. Since there is no prior information used in this method, the algorithm is highly sensitive to noise and therefore is not robust. A commonly preferred method to incorporate the prior information to the MRF models is to register the atlas to the test image and to define the initial segment labels of the test image by the transformed atlases. 
In [21], each tissue type is labeled based on the transformed atlas to obtain the probability of each tissue type for each voxel. The initial class labels are assigned by choosing the maximum probability tissue type. Then the classification algorithm is used to locally maximize mutual information by changing the class of each voxel. The mutual information is defined based on model probability density function (PDF). Initial class labels are used as the prior probability of the labels for brain segmentation. 
A manually constructed probabilistic atlas is used in [8] to estimate the initial model parameters which are used as the priori information in the classification process. The segmentation algorithm incorporates spatial and temporal contextual information by using 4D Markov random fields. Finally, the expectation maximization (EM) algorithm is used to perform segmentation on cardiac MR images.
In the literature, using the atlas as the prior probability of the labels is the most commonly chosen method to incorporate the prior information to the segmentation. However, this requires manually segmented atlases to be prepared. In this study, we propose another way for this cooperation where no manually labeled atlas is required. 
2.2. Facial Soft Tissue Segmentation
All methods mentioned above perform segmentation for soft tissues such as brain, lungs, and cardiac. Very few studies considered facial soft tissue (FST) segmentation for MR images. 
In the literature, FST segmentation is mostly done for clinical purposes with manual or other simple segmentation methods where human interaction is required. Manual segmentation can also be combined with the help of segmentation tools as in [22, 23] where finite element model (FEM) of the face is constructed from facial MRI scans. In [24], a clinical study is presented which performs manual segmentation to investigate the differences in facial soft tissues between MuSK-MG patients and healthy people.
Anatomical visualization is another application of FST segmentation. In [25], one observer performs semiautomatic segmentation using the editor module of the 3D Slicer software [26] to segment lip muscles and reconstruct 3D models. 
Other than manual methods, there are some other automatic or semi-automatic methods studied for FST segmentation. The main problem with classification algorithms in FST segmentation is the presence of several tissue types in one MRI slice. These tissue types may be different in the corresponding slices among different individuals. Therefore, the segmentation results may be poor or too many manual interactions may be needed.
Ng et al. [27–29] have tested several methods for FST segmentation using prior knowledge. The process starts with manual segmentation of the training sets. Then registration of the training sets to the test set is applied. The training images are transformed according to the difference between the shape of the head and the target tissue in each image and also tissue surface similarity. A tissue template is defined based on the transformed labeling. The muscle template is employed by the morphological operators to obtain an initial estimate of the muscle boundary. The muscle boundary then serves as the input contour to the gradient vector flow that snake iterates to the final segmentation. An improved method is proposed in [28]; that is,  shape determinative slices are used as a guide in 3D segmentation. A similar method is used in [27] with a new method for determining the dominant slices of three human masticatory muscles (masseter, lateral, and medial pterygoids). In [30, 31], the authors proposed a novel segmentation method based on a 3D statistical model. The statistical model is made by using manual labeling of the masseter tissue. They show that by using prior shape knowledge, clinically acceptable results can be achieved.
All these methods need user interaction in several steps during the segmentation process. Also a manual thresholding method is used to exclude bone and fat that makes the method less automatic.
The complete and automatic segmentation of facial soft tissues still remains as an unsolved problem. In this work, we aim to investigate some of the methods which have been tested in segmentation of other soft tissues and try to modify them to be used in FST segmentation.
3. Methods
3.1. Overview
Our aim in this study is to investigate the role of the labeled or unlabeled prior information in facial soft tissue segmentation. For this purpose, we apply several existing two dimensional (2D) segmentation methods for target facial soft tissues. These methods are chosen because they are the representatives in the previous literature, which use prior information in some way or the other. A comparison between these methods will clarify different aspects of prior knowledge-based segmentation methods. These methods are as follows. Method a: atlas-based segmentation. Method b: MRF-based segmentation where initialization is done by an initial segmentation, which is based on region growing  that started from a seed point. Method c: MRF-based segmentation where initialization is done by an initial segmentation, which is based on region growing using a labeled atlas. Method d: Bayesian-EM based segmentation using labeled atlas. 
Then our newly proposed segmentation approach, MRF-based segmentation using unlabeled prior information (Method e), will be introduced and applied to the same image sets for 2D segmentation. 
Masseter muscle in head is selected as the target tissue in this study. Masseter is a strong and large muscle, responsible for jaw motion. An axial view of both right and left masseter muscles in an MR image is shown in Figure 1. The muscle borders are specified in green.















Figure 1: A sample slice. Target tissue borders are shown in green.


All images used in this work are whole head and neck 3D MRI sets which are obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [32]. All image sets are axial T1 weighted sets with 1.2 mm slice thickness. Each set contains 256 slices with 256 × 217 pixels resolution. Ten different sets are randomly selected as the experimental data. In each experiment, leave-one-out technique is used, that is, each set is selected as the test set and the remaining 9 sets are used as the training set. This process is repeated for all sets. 
A block diagram is given in Figure 2 to explain the methods and their relationships. More details about each block are provided in Section 3.3. 


	
		
			
		
			
		
	


	
		
		
		
		
		
	
	
		
	
	
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	
	
		
		
	
	
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	
	
		
	
	
		
	
	
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
	


	
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	
	
		
	
	
		
		
		
	


	
		
		
		
		
		
	
	
		
	
	
		
		
		
	


	
		
		
		
		
		
	
	
		
		
	
	
		
		
	
	
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	
	
		
	
	
		
	
	
		
		
		
	


	
		
		
		
		
		
	
	
		
	
	
		
		
		
	


	
		
		
		
		
		
	
	
		
		
	
	
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	













	
		
		
			
		
		
			
		
	


	
		
		
			
		
		
			
		
	




	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
		
		
		
		
		
		
		
		
	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	
	
		
	
	
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	















Figure 2: Block diagram of all methods.


3.2. Implemented Methods
Method a. Atlas-based segmentation is one of the popular methods in medical image analysis, especially in brain soft tissue segmentation [2, 16, 33]. We implemented the same method for facial soft tissue segmentation. In this method, an affine registration and histogram equalization are applied to the images and then a transform from each training image to the test image is achieved by using a nonrigid registration. The manual labels are then transformed by the computed transformation and the final segmentation result is achieved by averaging all of the transformed labels. The method includes blocks (i), (ii), (iii), (v), and (viii) as shown in Figure 2. The details for each step are explained in Section 3.3.
Method b. In this method, we try to perform MRF-based segmentation without using any prior information. This will help us to understand the basic MRF segmentation (which is considered as a baseline) and the effect of prior information. The segmentation process is like the method used in [20] that performs segmentation for brain MR images. The performance with this basic MRF approach is poor, because the convergence of the EM algorithm strongly depends on the initial labeling and parameters. Thus, different from [20], we use a region growing algorithm to obtain an initial segmentation starting from a seed point. The results of this algorithm are used as initial labels. Initial parameters are also computed from this initial segmentation. This causes a better performance in the final segmentation as we may expect. This method includes block: (i), (ii), (iv), (vi), and (ix) as shown in Figure 2 and explained in details in Section 3.3.
Method c. This method is similar to Method b except that the region growing algorithm in this section (which is also explained in part (vii) in Section 3.3) is a modified version of the basic form described in part (vi) in Section 3.3. In the basic region growing, only the neighboring relations are considered. However, the modified region growing method also uses unlabeled training data. This modified region growing algorithm is used for the initialization of the segmentation to investigate the effect of the initial estimate in MRF-based segmentation and also to be fair in comparison between MRF-EM method and our proposed approach where we perform MRF-based segmentation with initials obtained from the modified region growing algorithm that takes advantage of the unlabeled prior information. So this method cannot be called a prior-free method. This method includes blocks (i), (ii), (iv), (vii), and  (ix) as shown in Figure 2.
Method d. The importance of using prior information in medical image segmentation is discussed before. In this method, the prior information is in the form of labeled atlases and EM algorithm is used for the estimation of the model parameters. The initial labels are estimated by constructing a probabilistic atlas from the binary outputs of block (iii) in Figure 2. 
The method is similar to [21], in which a probabilistic atlas is used in MRF-EM segmentation and initialization. This method includes block (i), (ii), (iii), and (x) as shown in Figure 2 and explained in details in Section 3.3.
Method e. This method is our proposed approach that takes the advantage of unlabeled prior information. The prior information is used in initialization as described in part (vii) in Section 3.3. We introduce a new formulization to include unlabeled prior information in MRF-EM-based segmentation as explained in part (xi). Instead of just considering to be or not to be neighbors, as was done in the standard MRF approaches, we included color differences of the neighbors. By using this feature, the average difference between the target tissue distribution and the training images is computed. This prior information is then used in the Bayesian framework to find out a posteriori probability. Model parameters and the true labeling are computed iteratively by the EM algorithm. This method includes blocks (i), (ii), (iv), (vii), and (xi) as shown in Figure 2 and explained in details in Section 3.3.
3.3. Explanation of the Blocks
(i) Affine Registration. All data sets are registered three dimensionally by an affine registration method with 9 degrees of freedom (3 for rotation, 3 for shearing, and 3 for translation) so the slices will roughly correspond to each other. Normalized mutual information is used as the similarity measure in the registration process. The registration is performed automatically by using Amira software [34].
(ii) Histogram Equalization. To solve the intensity bias field problem, a simple histogram equalization method is used as explained in [35]. In this method, histogram of all images is calculated and the average histogram is equalized. Then the intensity values of pixels in each slice are remapped to the new intensity value.
(iii) Manual Segmentation. In this step, masseter muscle is segmented manually in the selected slices. The manual segmentation is performed by a professional expert. The time required for labelling is very long and depends on the expert’s ability. The output of this block is a set of binary images that indicate the masseter area in each image.
(iv) Seed Point and Threshold Selection. In this step, a seed point inside the target tissue and a threshold are selected by the user for each image. These values are being used for initial segmentation in the further steps. Since the histogram of the test images is equalized previously, the threshold is kept constant for all test images. Thus, seed point marking and threshold selection are done only once.
(v) Nonrigid Registration. All 9 unlabeled training images are registered nonrigidly to the test set by Demon’s registration method [33]. By applying the nonrigid registration, target tissue in the training set tends to change shape toward the shape of the tissue in the test set. The process is fully automatic but it is highly time consuming.
(vi) Region Growing (RG). The seed point and threshold values from (iv) are used in this step to perform initial labeling. Region growing method is used in this step which uses the initial seed point and threshold to segment the target region in a 2D image based on intensity information only. The result of this step is a binary image that includes target tissue pixels (labeled as 1) and background pixels (labeled as 0).   
(vii) Modified Region Growing (Region Growing with Prior Information). The region growing algorithm in this step is a modified version of the basic region growing method. It is modified to take the advantage of prior information. In this case, region growing is done not only by considering the neighboring pixels on the same slice but by considering the corresponding pixels in the other data sets, that is, training sets, although they are not segmented a priori. Since the training sets are registered, they roughly share the same coordinates and hopefully have the same locations for target structures.
We assume that pixels are connected to each other through the neighboring system as shown in Figure 3. The current pixel is connected to the corresponding pixels in the upper and lower slices and 9 other training images as well as 8 nearest neighbors in the same slice. These 19 neighbor pixels effect the classification of the current pixel. A new criterion 
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Figure 3: Neighboring system. The dark cube is the current pixel and the bright cubes are the neighbors.


 Here 
	
		
			

				𝑑
			

			

				𝑖
			

		
	
 is the current pixel and 
	
		
			

				𝑑
			

			

				𝑗
			

		
	
  is the neighbor pixel from the neighboring set 
	
		
			

				𝑁
			

			

				𝑖
			

		
	
. 
	
		
			
				
			
			

				𝑑
			

		
	
  is the intensity mean of the pixels of the already segmented region in the current step. The term 
	
		
			
				𝑄
				(
				𝑑
			

			

				𝑖
			

			

				)
			

		
	
 involves the comparison of only the intensity value of the current pixel. The term 
	
		
			
				𝑅
				(
				𝑑
			

			

				𝑖
			

			

				)
			

		
	
 represents the influence of the neighboring pixels. Two parameters 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
 control the effect of each term 
	
		
			

				𝑄
			

		
	
 and 
	
		
			

				𝑅
			

		
	
. 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
 are set manually and kept constant throughout the experiments. The algorithm checks not only the pixel’s intensity, but 
	
		
			

				𝑈
			

		
	
 for each pixel to be lower than a preset threshold and proceeds as in the original RG algorithm. If the neighbors of the pixel have similar values as the already segmented tissue mean, this increases the probability for the current pixel to be included to the already segmented region.
(viii) Averaging. To obtain a single segmentation of the test set, an average image is computed from the labels produced in (v) for the training images. By performing majority voting procedure on the average image, we select the pixels that are repeated more than 4 times out of total 9 images. The output of this step is a binary image that is the final segmentation result of Method a.

(ix) MRF-EM with Smoothness Term as the Prior Information. In this part we briefly discuss the mathematical aspects of MRF-EM based method that is implemented in this study. Let 
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				𝑓
			

			

				𝑖
			

			

				)
			

		
	
, and the joint probability is denoted and abbreviated as 
	
		
			
				𝑃
				(
				𝑓
				)
			

		
	
. Random field 
	
		
			

				𝐹
			

		
	
 is said to be MRF on 
	
		
			

				𝑆
			

		
	
 with neighborhood system 
	
		
			

				𝑁
			

		
	
 if and only if
								
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝑓
				(
				1
				)
				𝑃
				(
				𝑓
				)
				>
				0
				,
				∀
				𝑓
				∈
				𝐹
				,
				(
				2
				)
				𝑃
			

			

				𝑖
			

			

				𝑓
			

			
				𝑆
				−
				{
				𝑖
				}
			

			
				
				
				𝑓
				=
				𝑃
			

			

				𝑖
			

			

				𝑓
			

			

				𝑁
			

			

				𝑖
			

			
				
				.
			

		
	

A set of random variables 
	
		
			

				𝐹
			

		
	
 is said to be a Gibbs random field (GRF) with respect to 
	
		
			

				𝑁
			

		
	
 if the distribution takes the following form:
								
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑃
				(
				𝑓
				)
				=
				𝑍
			

			
				−
				1
			

			
				×
				𝑒
			

			
				−
				(
				1
				/
				𝑇
				)
				𝑈
				(
				𝑓
				)
			

			

				,
			

		
	

							where 
	
		
			

				𝑇
			

		
	
 is a constant named temperature, and 
	
		
			
				𝑈
				(
				𝑓
				)
			

		
	
 is the energy function (8). 
	
		
			

				𝑍
			

		
	
 is the normalization term. The energy function of the Gibbs distribution can be expressed as the sum of several terms. Each term is described by the cliques of a certain size as
								
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				𝑈
				(
				𝑓
				)
				=
			

			
				{
				𝑖
				}
				∈
				𝐶
			

			

				1
			

			

				𝑉
			

			

				1
			

			
				
				𝑓
			

			

				𝑖
			

			
				
				+
				
			

			
				{
				𝑖
				,
				𝑖
			

			

				′
			

			
				}
				∈
				𝐶
			

			

				2
			

			

				𝑉
			

			

				2
			

			
				
				𝑓
			

			

				𝑖
			

			
				,
				𝑓
			

			

				𝑖
			

			

				′
			

			
				
				+
				
			

			
				{
				𝑖
				,
				𝑖
			

			

				′
			

			
				,
				𝑖
			

			
				′
				′
			

			
				}
				∈
				𝐶
			

			

				3
			

			

				𝑉
			

			

				3
			

			
				
				𝑓
			

			

				𝑖
			

			
				,
				𝑓
			

			

				𝑖
			

			

				′
			

			
				,
				𝑓
			

			

				𝑖
			

			
				′
				′
			

			
				
				+
				⋯
				.
			

		
	

The Hammersley-Clifford theorem [36] gives necessary and sufficient conditions under which the equivalence of MRF and GRF models can be achieved. 
Then, the conditional probability 
	
		
			
				𝑃
				(
				𝑓
			

			

				𝑖
			

			
				∣
				𝑓
			

			

				𝑁
			

			

				𝑖
			

			

				)
			

		
	
 can be written as follows:
								
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑃
				
				𝑓
			

			

				𝑖
			

			
				∣
				𝑓
			

			

				𝑁
			

			

				𝑖
			

			
				
				=
				𝑒
			

			
				∑
				−
				[
			

			
				𝑖
				′
				𝑖
				∈
				𝑁
			

			

				𝑉
			

			

				2
			

			
				(
				𝑓
			

			

				𝑖
			

			
				,
				𝑓
			

			
				𝑖
				′
			

			
				)
				]
			

			
				
			
			

				∑
			

			

				𝑓
			

			
				𝑖
				∈
				𝐿
			

			

				𝑒
			

			
				∑
				−
				[
			

			
				𝑖
				′
				𝑖
				∈
				𝑁
			

			

				𝑉
			

			

				2
			

			
				(
				𝑓
			

			

				𝑖
			

			
				,
				𝑓
			

			
				𝑖
				′
			

			
				)
				]
			

			

				.
			

		
	

Here, the model includes only pairwise  
	
		
			
				(
				𝑛
				=
				2
				)
			

		
	
 clique potentials. The smoothness term can be defined by pair-wise clique potentials as follows:
								
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑉
			

			
				𝑘
				𝑖
				,
				𝑖
			

			

				′
			

			
				
				𝑓
			

			

				𝑖
			

			
				,
				𝑓
			

			

				𝑖
			

			

				′
			

			
				
				=
				
				𝛽
				s
				i
				t
				e
				s
				o
				n
				t
				h
				e
				c
				l
				i
				q
				u
				e
				h
				a
				v
				e
				t
				h
				e
				s
				a
				m
				e
				l
				a
				b
				e
				l
				−
				𝛽
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	

Here, 
	
		
			

				𝛽
			

		
	
 is the smoothing parameter and 
	
		
			
				𝑘
				∈
				{
				0
				,
				1
				}
			

		
	
 defines the class label (i.e., 1 for the segmented tissue and 0 for the other tissues).
By using Bayes estimation, the posterior probability can be computed from the prior distribution (i.e., smoothness in MRF literature) and the likelihood,
								
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑃
				(
				𝑓
				∣
				𝑑
				)
				=
				𝑃
				(
				𝑑
				∣
				𝑓
				)
				𝑃
				(
				𝑓
				)
			

			
				
			
			
				,
				𝑃
				(
				𝑑
				)
			

		
	

							where 
	
		
			
				𝑃
				(
				𝑑
				∣
				𝑓
				)
			

		
	
 is the conditional pdf of the observations 
	
		
			

				𝑑
			

		
	
 and 
	
		
			
				𝑃
				(
				𝑓
				)
			

		
	
 is the prior probability of labelings 
	
		
			

				𝑓
			

		
	
. In standard MRF modeling, 
	
		
			
				𝑃
				(
				𝑓
				)
			

		
	
 is initialized as random. 
	
		
			
				𝑃
				(
				𝑑
				∣
				𝑓
				)
			

		
	
 for the Gaussian MRF model case is the following intensity distribution function:
								
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝑃
				
				𝑑
			

			

				𝑖
			

			

				𝑓
			

			

				𝑖
			

			
				
				=
				1
				=
				𝑘
			

			
				
			
			

				
			

			
				
			
			
				2
				𝜋
				𝜎
			

			
				2
				𝑘
			

			

				𝑒
			

			
				−
				(
				𝑑
				−
				𝜇
			

			

				𝑘
			

			

				)
			

			

				2
			

			
				/
				2
				𝜎
			

			
				2
				𝑘
			

			

				.
			

		
	

Here, the parameter set is  
	
		
			
				𝜃
				=
				{
				𝜇
			

			

				𝑘
			

			
				,
				𝜎
			

			

				𝑘
			

			

				}
			

		
	
. 
Minimizing the Bayes risk is equal to maximizing the posterior probability. The expectation maximization (EM) algorithm is employed to maximize the posterior probability. In this iterative algorithm, the posterior probability for step 
	
		
			
				𝑡
				+
				1
			

		
	
 is computed in the expectation step by using the model parameters 
	
		
			

				𝜇
			

		
	
 and 
	
		
			

				𝜎
			

		
	
 at iterative step 
	
		
			

				𝑡
			

		
	
 as follows:
								
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑃
			

			
				𝑡
				+
				1
				𝑖
				𝑘
			

			
				=
				𝐺
				
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				𝑘
			

			
				,
				𝜎
			

			

				𝑘
			

			
				
				𝑃
				
				𝑓
			

			

				𝑖
			

			
				=
				𝑘
				∣
				𝑓
			

			

				𝑁
			

			

				𝑖
			

			

				
			

			
				
			
			

				∑
			

			
				𝑀
				𝑧
				=
				1
			

			
				𝐺
				
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				𝑧
			

			
				,
				𝜎
			

			

				𝑧
			

			
				
				𝑃
				
				𝑓
			

			

				𝑖
			

			
				=
				𝑧
				∣
				𝑓
			

			

				𝑁
			

			

				𝑖
			

			
				
				
				𝑓
				=
				𝑃
			

			

				𝑖
			

			
				=
				𝑘
				∣
				𝑑
			

			

				𝑖
			

			
				
				,
			

		
	

							where 
	
		
			
				𝐺
				(
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				𝑘
			

			
				,
				𝜎
			

			

				𝑘
			

			

				)
			

		
	
 is the Gaussian distribution for class label 
	
		
			

				𝑘
			

		
	
 in step 
	
		
			

				𝑡
			

		
	
 (12) and 
	
		
			
				𝑃
				(
				𝑓
			

			

				𝑖
			

			
				=
				𝑘
				∣
				𝑓
			

			

				𝑁
			

			

				𝑖
			

			

				)
			

		
	
 is the prior probability (9) over 
	
		
			

				𝑆
			

		
	
 at step 
	
		
			

				𝑡
			

		
	
.
Then the model parameters are obtained in the maximization step as follows:
								
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝜇
			

			
				𝑘
				(
				𝑡
				+
				1
				)
			

			
				=
				∑
			

			
				𝑖
				∈
				𝑆
			

			

				𝑃
			

			
				(
				𝑡
				)
			

			
				
				𝑘
				∣
				𝑑
			

			

				𝑖
			

			
				
				𝑑
			

			

				𝑖
			

			
				
			
			

				∑
			

			
				𝑖
				∈
				𝑆
			

			

				𝑃
			

			
				(
				𝑡
				)
			

			
				
				𝑘
				∣
				𝑑
			

			

				𝑖
			

			
				
				,
				
				𝜎
			

			
				𝑘
				(
				𝑡
				+
				1
				)
			

			

				
			

			

				2
			

			
				=
				∑
			

			
				𝑖
				∈
				𝑆
			

			

				𝑃
			

			
				(
				𝑡
				)
			

			
				
				𝑘
				∣
				𝑑
			

			

				𝑖
			

			
				𝑑
				
				
			

			

				𝑖
			

			
				−
				𝜇
			

			

				𝑙
			

			

				
			

			

				2
			

			
				
			
			

				∑
			

			
				𝑖
				∈
				𝑆
			

			

				𝑃
			

			
				(
				𝑡
				)
			

			
				
				𝑘
				∣
				𝑑
			

			

				𝑖
			

			
				
				.
			

		
	

This process is repeated until the likelihood difference, that is, 
	
		
			
				|
				𝑃
			

			

				𝑡
			

			
				(
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				1
			

			
				,
				𝜎
			

			

				1
			

			
				)
				−
				𝑃
			

			
				𝑡
				−
				1
			

			
				(
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				1
			

			
				,
				𝜎
			

			

				1
			

			
				)
				|
				/
				𝑃
			

			

				𝑡
			

			
				(
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				1
			

			
				,
				𝜎
			

			

				1
			

			

				)
			

		
	
, becomes less than a threshold. The threshold value is kept as 0.001 in this study. Then the labels are assigned to the pixels according to the posterior probability (13).
(x) Bayesian-EM with Probabilistic Atlas. This part is like (ix) but different in that prior probability is not in the form of the smoothness term, but is introduced as a probabilistic atlas in the expectation step (13) of the EM algorithm as follows:
								
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑃
			

			
				𝑡
				+
				1
				𝑖
				𝑘
			

			
				=
				𝐺
				
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				𝑘
			

			
				,
				𝜎
			

			

				𝑘
			

			
				
				𝑃
				
				𝑓
			

			

				𝑖
			

			
				=
				𝑘
				∣
				𝑃
			

			
				𝑡
				𝑁
			

			

				𝑖
			

			

				
			

			
				
			
			

				∑
			

			
				𝑀
				𝑧
				=
				1
			

			
				𝐺
				
				𝑑
			

			

				𝑖
			

			
				,
				𝜇
			

			

				𝑧
			

			
				,
				𝜎
			

			

				𝑧
			

			
				
				𝑃
				
				𝑓
			

			

				𝑖
			

			
				=
				𝑧
				∣
				𝑃
			

			
				𝑡
				𝑁
			

			

				𝑖
			

			
				
				.
			

		
	

Here, 
	
		
			
				𝑃
				(
				𝑓
			

			

				𝑖
			

			
				=
				𝑘
				∣
				𝑃
			

			
				𝑡
				𝑁
			

			

				𝑖
			

			

				)
			

		
	
 is the prior probability that is equal to the probabilistic atlas as follows:
								
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝑃
				
				𝑓
			

			

				𝑖
			

			
				=
				𝑘
				∣
				𝑃
			

			
				𝑡
				𝑁
			

			

				𝑖
			

			
				
				=
				𝑃
			

			
				a
				t
				l
				a
				s
			

			
				𝑖
				𝑘
			

			

				.
			

		
	


	
		
			

				𝑃
			

			
				a
				t
				l
				a
				s
			

			
				𝑖
				𝑘
			

		
	
 is the probability of the pixel 
	
		
			

				𝑖
			

		
	
 to have label 
	
		
			

				𝑘
			

		
	
. The probability is computed by using manually segmented train images obtained in (iii). This probability is kept constant throughout the segmentation. 
(xi) MRF-EM with Unlabeled Prior Information. In this part, we try to incorporate the prior information to the MRF-EM framework not by using a labeled atlas but by using the original unlabeled images in the training set that can be called the “latent atlas.” A new definition is proposed for the prior probability which uses unlabeled prior information. By doing this, through the EM learning steps, the incorporation of the atlas and the model is updated and learned until convergence. 
Unlike other methods that perform a MAP estimation to estimate the labeling and use it in pair-wise clique potential computation, we define the prior probability 
	
		
			
				𝑃
				(
				𝑓
			

			

				𝑖
			

			
				=
				𝑘
				∣
				𝑃
			

			

				𝑁
			

			

				𝑖
			

			

				)
			

		
	
 without using labels. To take advantage of unlabeled training images, we compute the difference between the mean of each class in the current step 
	
		
			
				(
				𝜇
			

			

				𝑘
			

			

				)
			

		
	
 and the intensity value of the corresponding pixel  
	
		
			

				𝑖
			

		
	
  in the neighboring set 
	
		
			

				𝑁
			

			

				𝑖
			

		
	
. We prefer the pixels with less difference to have higher clique potentials and so we subtract the difference value from 1. The value 1 is the maximum value that the difference result can take. By performing summation over all training images, the overall prior probability for pixel  
	
		
			

				𝑖
			

		
	
  is comp