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Abstract. 
Combined heat and power dynamic economic dispatch (CHPDED) plays a key role in economic operation
of power systems. CHPDED determines the optimal heat and power schedule of committed
generating units by minimizing the fuel cost under ramp rate constraints and other constraints. Due to
complex characteristics, heuristic and evolutionary based optimization approaches have became effective
tools to solve the CHPDED problem. This paper proposes hybrid differential evolution (DE) and sequential
quadratic programming (SQP) to solve the CHPDED problem with nonsmooth and nonconvex cost
function due to valve point effects. DE is used as a global optimizer and SQP is used as a fine tuning to
determine the optimal solution at the final.  The proposed hybrid DE-SQP method has been tested and
compared to demonstrate its effectiveness.


1. Introduction
In the past decades, increasing demand for power and heat resulted in the existence of combined heat and power (CHP) units, known as cogeneration or distributed generation. It produces electricity and useful heat simultaneously. While the efficiency of the normal power generation is between 
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 [1]. Utilization of CHP units besides conventional thermal power generating units and heat-only units to satisfy heat and power load demands in an economical manner emphasizes the need to combined heat and power economic dispatch (CHPED). The objective of the CHPED problem is to determine both power generation and heat production from units by minimizing the fuel cost such that both heat and power demands are met while the combined heat and power units are operated in a bounded heat versus power plane. For most CHP units, the heat production capacities depend on the power generation. This mutual dependency of the CHP units introduce a complication to the problem [2]. In addition, considering valve point effects in the CHPED problem makes the problem nonsmooth with multiple local optimal point which makes finding the global optimal challenging. 
Over the past few years, a number of approaches have been developed for solving the CHPED problem with complex objective functions or constraints such as Lagrangian Relaxation (LR) [3, 4], Semidefinite Programming (SDP) [5], augmented Lagrange combined with Hopfield neural network [6], Harmony Search (HS) algorithm [1, 7], Genetic Algorithm (GA) [8], Ant Colony Search Algorithm (ACSA) [9], Mesh Adaptive Direct Search (MADS) algorithm [10], Self Adaptive Real-Coded Genetic Algorithm (SARGA) [2], Particle Swarm Optimization (PSO) [11, 12], Artificial Immune System (AIS) [13], and Evolutionary Programming (EP) [14]. In [11, 13], the valve point effects and the transmission line losses are incorporated into the CHPED problem.
The main drawbacks of the CHPED is that it may fail to deal with the large variations of the heat and power load demands due to the ramp rate limits of the units; moreover, it does not have the look-ahead capability. To overcome these drawbacks, combined heat and power dynamic economic dispatch (CHPDED) problem is formulated with the objective to determine the optimal heat and power schedule of the committed units so as to meet the predicted heat and power load demands over a time horizon at minimum operating cost under ramp rate constraints and other constraints [15]. CHPDED has a look-ahead capability which is necessary to schedule the load beforehand so that the system can anticipate sudden changes in power and heat demands in the near future. The ramp rate constraint is a dynamic constraint which is important to maintain the life of the generators [16]. Since the ramp rate constraint couples the time intervals, the CHPDED problem is a difficult optimization problem. If the ramp rate constraint is not included in the optimization problem, the CHPDED problem is reduced to a set of uncoupled CHPED problems that can easily be solved. The traditional dynamic economic dispatch (DED) problem which considers only conventional thermal units that provide only electric power has been studied by several authors (see e.g., [17, 18] and the review paper [16]). However, the CHPDED problem has only been considered in [15, 19].
Differential Evolution (DE) algorithm, which was proposed by Storn and Price [20] is a population-based stochastic parallel search technique. DE uses a rather greedy and less stochastic approach to problem solving compared to other evolutionary algorithms. DE has the ability to handle optimization problems with nonsmooth/nonconvex objective functions [20]. Moreover, it has a simple structure and a good convergence property, and it requires a few robust control parameters [20]. DE has been applied to the CHPED problem with nonsmooth and nonconvex cost functions in [21].
The DE shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA) techniques. The system is initialized with a population of random solutions and searches for optima by updating generations. DE has evolution operators such as crossover and mutation. Although DE seems to be a good method to solve the CHPDED problem with nonsmooth and nonconvex cost functions, solutions obtained are just near global optimum with long computation time. Therefore, hybrid methods such as DE-SQP can be effective in solving the CHPDED problem with valve-point effects. Hybrid DE-SQP method has been used for solving the DED problem in [22, 23].
The aim of this paper is to propose a hybrid DE-SQP method for solving the CHPDED problem with nonsmooth and nonconvex objective function. DE is used as a base level search for global exploration and SQP is used as a local search to fine-tune the solution obtained from DE. The effectiveness of the proposed method is shown for test system.
2. Problem Formulation
In this section, we formulate the CHPDED problem. The system under consideration has three types of generating units, conventional thermal units (TU), CHP units, and heat-only units (
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). The power is generated by conventional thermal units and CHP units, while the heat is generated by CHP units and heat-only units. The objective of the CHPDED problem is to minimize the system’s production cost so as to meet the predicted heat and power load demands over a time horizon under ramp rate and other constraints. The following objectives and constraints are taken into account in the formulation of the CHPDED problem.


2.1. Objective Functions
In this section, we introduce the cost function of three types of generating units, conventional thermal units, CHP units, and heat-only units.
Conventional Thermal Units. The cost function curve of a conventional thermal unit can be approximated by a quadratic function [24, 25]. Power plants commonly have multiple valves which are used to control the power output of the unit. When steam admission valves in conventional thermal units are first open, a sudden increase in losses is registered which results in ripples in the cost function [16, 26]. This phenomenon is called as valve-point effects. The generator with valve-point effects has very different input-output curve compared with smooth cost function. Taking the valve-point effects into consideration, the fuel cost is expressed as the sum of a quadratic and sinusoidal functions [17, 19, 27]. Therefore, the fuel cost function of the conventional thermal units is given by
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CHP Units. A CHP unit has a convex cost function in both power and heat. The form of the fuel cost function of CHP units can be given by [5, 19]
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Heat-Only Units. Cost: The cost function of heat-only units can take the following form [5, 19]:
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The CHPDED problem can be mathematically formulated as a nonlinear constrained optimization problem as
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Power production and demand balance:
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Heat production and demand balance:
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Capacity limits of conventional thermal units:
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Capacity limits of CHP units:
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				,
				𝑡
				=
				1
				,
				…
				,
				𝑁
				,
			

		
	

							where 
	
		
			

				𝑃
			

			
				C
				H
				P
			

			
				𝑗
				,
				m
				i
				n
			

			
				(
				𝐻
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
			

			

				)
			

		
	
 and 
	
		
			

				𝑃
			

			
				C
				H
				P
			

			
				𝑗
				,
				m
				a
				x
			

			
				(
				𝐻
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
			

			

				)
			

		
	
 are the minimum and maximum power limits of CHP unit 
	
		
			

				𝑗
			

		
	
, respectively, and they are functions of generated heat 
	
		
			
				(
				𝐻
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
			

			

				)
			

		
	
. 
	
		
			

				𝐻
			

			
				C
				H
				P
			

			
				𝑗
				,
				m
				i
				n
			

			
				(
				𝑃
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
			

			

				)
			

		
	
 and 
	
		
			

				𝐻
			

			
				C
				H
				P
			

			
				𝑗
				,
				m
				a
				x
			

			
				(
				𝑃
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
			

			

				)
			

		
	
 are the heat generation limits of CHP unit 
	
		
			

				𝑗
			

		
	
 which are functions of generated power (
	
		
			

				𝑃
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
			

			

				)
			

		
	
.
Capacity limits of heat-only units:
								
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝐻
			

			
				𝐻
				𝑘
				,
				m
				i
				n
			

			
				≤
				𝐻
			

			
				𝐻
				𝑘
				,
				𝑡
			

			
				≤
				𝐻
			

			
				𝐻
				𝑘
				,
				m
				a
				x
			

			
				,
				𝑘
				=
				1
				,
				…
				,
				𝑁
			

			

				ℎ
			

			
				,
				𝑡
				=
				1
				,
				…
				,
				𝑁
				,
			

		
	

							where 
	
		
			

				𝐻
			

			
				𝐻
				𝑘
				,
				m
				i
				n
			

		
	
 and 
	
		
			

				𝐻
			

			
				𝐻
				𝑘
				,
				m
				a
				x
			

		
	
 are the minimum and maximum heat capacities of heat-only unit 
	
		
			

				𝑘
			

		
	
, respectively.
Upper/down ramp rate limits of conventional thermal units:
								
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				−
				𝐷
				𝑅
			

			
				T
				U
			

			

				𝑖
			

			
				≤
				𝑃
			

			
				T
				U
			

			
				𝑖
				,
				𝑡
				+
				1
			

			
				−
				𝑃
			

			
				T
				U
			

			
				𝑖
				,
				𝑡
			

			
				≤
				𝑈
				𝑅
			

			
				T
				U
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑁
			

			

				𝑝
			

			
				,
				𝑡
				=
				1
				,
				…
				,
				𝑁
				−
				1
				,
			

		
	

							where 
	
		
			
				𝑈
				𝑅
			

			
				T
				U
			

			

				𝑖
			

		
	
 and 
	
		
			
				𝐷
				𝑅
			

			
				T
				U
			

			

				𝑖
			

		
	
 are the maximum ramp up/down rates for conventional thermal unit 
	
		
			

				𝑖
			

		
	
 [16].
Upper/down ramp rate limits of CHP units:
								
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				−
				𝐷
				𝑅
			

			
				C
				H
				P
			

			

				𝑗
			

			
				≤
				𝑃
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
				+
				1
			

			
				−
				𝑃
			

			
				C
				H
				P
			

			
				𝑗
				,
				𝑡
			

			
				≤
				𝑈
				𝑅
			

			
				C
				H
				P
			

			

				𝑗
			

			
				,
				𝑗
				=
				1
				,
				…
				,
				𝑁
			

			

				𝑐
			

			
				,
				𝑡
				=
				1
				,
				…
				,
				𝑁
				−
				1
				,
			

		
	

							where 
	
		
			
				𝑈
				𝑅
			

			
				C
				H
				P
			

			

				𝑗
			

		
	
 and 
	
		
			
				𝐷
				𝑅
			

			
				C
				H
				P
			

			

				𝑗
			

		
	
 are the maximum ramp up/down rates for CHP unit 
	
		
			

				𝑗
			

		
	
 [19].
3. Differential Evolution Method
DE is a simple yet powerful heuristic method for solving nonlinear, nonconvex, and nonsmooth optimization problems. DE algorithm is a population-based algorithm using three operators: mutation, crossover, and selection to evolve from randomly generated initial population to final individual solution [20]. In the initialization, a population of 
	
		
			
				𝑁
				𝑃
			

		
	
 target vectors (parents) 
	
		
			

				𝑋
			

			

				𝑖
			

			
				=
				{
				𝑥
			

			
				1
				𝑖
			

			
				,
				𝑥
			

			
				2
				𝑖
			

			
				,
				…
				,
				𝑥
			

			
				𝐷
				𝑖
			

			

				}
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				𝑃
			

		
	
 is randomly generated within user-defined bounds, where 
	
		
			

				𝐷
			

		
	
is the dimension of the optimization problem. Let 
	
		
			

				𝑋
			

			
				𝐺
				𝑖
			

			
				=
				{
				𝑥
			

			
				𝐺
				1
				𝑖
			

			
				,
				𝑥
			

			
				𝐺
				2
				𝑖
			

			
				,
				…
				,
				𝑥
			

			
				𝐺
				𝐷
				𝑖
			

			

				}
			

		
	
 be the individual 
	
		
			

				𝑖
			

		
	
 at the current generation 
	
		
			

				𝐺
			

		
	
. A mutant vector 
	
		
			

				𝑉
			

			
				𝑖
				𝐺
				+
				1
			

			
				=
				(
				𝑣
			

			
				𝐺
				+
				1
				1
				𝑖
			

			
				,
				𝑣
			

			
				𝐺
				+
				1
				2
				𝑖
			

			
				,
				…
				,
				𝑣
			

			
				𝐺
				+
				1
				𝐷
				𝑖
			

			

				)
			

		
	
 is generated according to 
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				𝑉
			

			
				𝑖
				𝐺
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				=
				𝑋
			

			
				𝐺
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				1
			

			
				
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				𝐺
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				2
			

			
				−
				𝑋
			

			
				𝐺
				𝑟
			

			

				3
			

			
				
				,
				𝑟
			

			

				1
			

			
				≠
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				2
			

			
				≠
				𝑟
			

			

				3
			

			
				≠
				𝑖
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				𝑃
			

		
	

					with randomly chosen integer indexes 
	
		
			

				𝑟
			

			

				1
			

			
				,
				𝑟
			

			

				2
			

			
				,
				𝑟
			

			

				3
			

		
	
 
	
		
			

				∈
			

		
	
 
	
		
			
				{
				1
				,
				2
				,
				…
				,
				𝑁
				𝑃
				}
			

		
	
. Here 
	
		
			

				ℱ
			

		
	
 is the mutation factor.

According to the target vector 
	
		
			

				𝑋
			

			
				𝐺
				𝑖
			

		
	
 and the mutant vector 
	
		
			

				𝑉
			

			
				𝑖
				𝐺
				+
				1
			

		
	
, a new trial vector (offspring) 
	
		
			

				𝑈
			

			
				𝑖
				𝐺
				+
				1
			

			
				=
				{
				𝑢
			

			
				𝐺
				+
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				1
				𝑖
			

			
				,
				𝑢
			

			
				𝐺
				+
				1
				2
				𝑖
			

			
				,
				…
				,
				𝑢
			

			
				𝐺
				+
				1
				𝐷
				𝑖
			

			

				}
			

		
	
 is created with
						
	
 		
 			
				(
				1
				6
				)
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				)
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				r
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				𝑛
				𝑏
				(
				𝑖
				)
			

			
				𝐺
				𝑗
				𝑖
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

		
	

					where 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝐷
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				𝑃
			

		
	
, and 
	
		
			
				r
				a
				n
				d
				(
				𝑗
				)
			

		
	
 is the 
	
		
			
				𝑗
				t
				h
			

		
	
 evaluation of a uniform random number between 
	
		
			
				[
				0
				,
				1
				]
			

		
	
. 
	
		
			
				𝐶
				𝑅
				∈
				[
				0
				,
				1
				]
			

		
	
 is the crossover constant which has to be determined by the user. 
	
		
			
				𝑟
				𝑛
				𝑏
				(
				𝑖
				)
			

		
	
 is a randomly chosen index from 
	
		
			
				1
				,
				2
				,
				…
				,
				𝐷
			

		
	
 which ensures that 
	
		
			

				𝑈
			

			
				𝑖
				𝐺
				+
				1
			

		
	
 gets at least one parameter from 
	
		
			

				𝑉
			

			
				𝑖
				𝐺
				+
				1
			

		
	
 [20].
The selection process determines which of the vectors will be chosen for the next generation by implementing one-to-one competition between the offsprings and their corresponding parents. If 
	
		
			

				𝑓
			

		
	
 denotes the function to be minimized, then
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				𝑖
			

			
				
				𝑋
			

			
				𝐺
				𝑖
			

			
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

		
	

					where 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑁
				𝑃
			

		
	
. The value of 
	
		
			

				𝑓
			

		
	
 of each trial vector 
	
		
			

				𝑈
			

			
				𝑖
				𝐺
				+
				1
			

		
	
 is compared with that of its parent target vector 
	
		
			

				𝑋
			

			
				𝐺
				𝑖
			

		
	
. The above iteration process of reproduction and selection will continue until a user-specified stopping criteria is met.
In this paper, we define the evaluation function for evaluating the fitness of each individual in the population in DE algorithm as follows:
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				,
			

		
	

					where 
	
		
			

				𝜆
			

			

				1
			

		
	
 and 
	
		
			

				𝜆
			

			

				2
			

		
	
 are penalty values. Then the objective is to find 
	
		
			

				𝑓
			

			
				m
				i
				n
			

		
	
, the minimum evaluation value of all the individuals in all iterations. The penalty term reflects the violation of the equality constraints. Once the minimum of 
	
		
			

				𝑓
			

		
	
 is reached, the equality constraints are satisfied.
4. Sequential Quadratic Programming Method
SQP method can be considered as one of the best nonlinear programming method for constrained optimization problems [28]. It outperforms every other nonlinear programming method in terms of efficiency, accuracy, and percentage of successful solutions over a large number of test problems. The method closely resembles Newton's method for constrained optimization, just as is done for unconstrained optimization. At each iteration, an approximation is made of the Hessian of the Lagrangian function using Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton updating method. The result of the approximation is then used to generate a Quadratic Programming (QP) subproblem whose solution is used to form a search direction for a line search procedure. Since the objective function of the CHPDED problem is nonconvex and nonsmooth, SQP ensures a local minimum for an initial solution. In this paper, DE is used as a global search and finally the best solution obtained from DE is given as initial condition for SQP method as a local search to fine-tune the solution. SQP simulations can be computed by the fmincon code of the MATLAB Optimization Toolbox.
5. Simulation Results
In this section, we present an eleven-unit test system. The hybrid DE-SQP method is applied to the CHPDED problem, where three types of generating units, conventional thermal units, CHP units, and heat-only units, are considered. In DE-SQP method, the control parameters are chosen as 
	
		
			
				𝑁
				𝑃
				=
				8
				0
			

		
	
,
	
		
			
				ℱ
				=
				0
				.
				4
				2
				3
			

		
	
, and 
	
		
			
				𝐶
				𝑅
				=
				0
				.
				8
				8
				5
			

		
	
. The maximum number of iterations is selected as 20,000. The results represent the average of 30 runs of the proposed method. All computations are carried out by MATLAB program.
Eleven-Unit System. This system consists of eight conventional thermal units, two CHP units, and one heat-only unit. The CHPDED problem is solved by hybrid DE-SQP method. The technical data of conventional thermal units, the matrix 
	
		
			

				𝐵
			

		
	
, and the power demand are taken from the ten-unit system presented in [27]. The 5th and 8th conventional units in [27] were replaced by two CHP units. The technical data of the two CHP units and the heat-only unit are taken from [19] and are given in Table 1. The heat demand for 24 hours is given in Table 2. The feasible operating regions of the two CHP units are taken from [3] and are given in Figures 1 and 2.
Table 1: Data of the CHP units and heat-only unit of the eleven-unit system.
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Table 2: Heat load demand of the eleven-unit system.
	

	Time (h)	Demand (MWth)
	

	1	390
	2	400
	3	410
	4	420
	5	440
	6	450
	7	450
	8	455
	9	460
	10	460
	11	470
	12	480
	13	470
	14	460
	15	450
	16	450
	17	420
	18	435
	19	445
	20	450
	21	445
	22	435
	23	400
	24	400
	





	
	
	
	


	
		
		
		
	
	
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
		
		
	
	
		
	
	
		
		
		
	
	
		
		
	
	
		
		
		
		
	

Figure 1: Heat-power feasible operating region for CHP unit 1 of the eleven-unit system.




	
	
	
	
		
	
		
	
		
	
		
	
		
	
		


	
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
		
	
	
		
		
	
	
		
		
		
		
	
	
		
		
		
		
	
	
		
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
		
		
		
		
	

Figure 2: Heat-power feasible operating region for CHP unit 2 of the eleven-unit system.


The best solution of the CHPDED problem obtained by DE-SQP algorithm is given in Table 3. The best cost and transmission line losses are also given in Table 3.
Table 3: Hourly heat and power schedule obtained from CHPDED using DE-SQP for eleven-unit system.
	

	H 	
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				T
				U
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				𝑃
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				P
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				C
				H
				P
			

			

				2
			

		
	
	 Loss 	
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				C
				H
				P
			

			

				1
			

		
	
	
	
		
			

				𝐻
			

			
				C
				H
				P
			

			

				2
			

		
	
	
	
		
			

				𝐻
			

			
				𝐻
				1
			

		
	

	

	 1 	 150.0000 	 135.0000 	 74.5372 	 72.0784 	 124.5129 	 124.4302 	 20.0000 	 10.0000 	 236.8041 	 110.1974 	 21.5630 	 57.3450 	 135.5994 	 197.0556
	 2 	 150.0000 	 135.0000 	 98.1135 	 122.0784 	 122.2113 	 101.6179 	 48.2025 	 10.0000 	 236.8011 	 110.1974 	 24.2248 	 57.3614 	 135.5994 	 207.0392
	 3 	 150.0000 	 135.0000 	 178.1135 	 172.0784 	 120.7640 	 98.7468 	 78.2025 	 10.0000 	 235.3275 	 110.1974 	 30.4319 	 65.6496 	 135.5994 	 208.7509
	 4 	 150.0000 	 135.0000 	 188.0106 	 218.5077 	 160.0000 	 126.3142 	 80.0000 	 40.0000 	 235.2182 	 110.1974 	 37.2496 	 66.2643 	 135.5994 	 218.1363
	 5 	 150.0000 	 135.0000 	 268.0106 	 244.7145 	 128.0292 	 129.9179 	 80.0000 	 42.2707 	 233.2313 	 110.1974 	 41.3736 	 77.4390 	 135.5994 	 226.9616
	 6 	 150.0000 	 135.0000 	 334.4706 	 294.7145 	 160.0000 	 130.0000 	 80.0000 	 48.0931 	 235.6609 	 110.1974 	 50.1383 	 63.7746 	 135.5994 	 250.6260
	 7 	 150.0000 	 199.1593 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 49.7990 	 238.0991 	 110.1974 	 55.2549 	 50.0614 	 135.5994 	 264.3392
	 8 	 189.7336 	 229.5497 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 242.2569 	 110.1974 	 60.7377 	 26.6766 	 135.5994 	 292.7240
	 9 	 265.3596 	 309.5497 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 247.0000 	 110.1974 	 73.1068 	 0.0 	 135.5994 	 324.4006
	 10 	 303.6024 	 378.5162 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 246.9410 	 110.1974 	 82.2580 	 0.3317 	 135.5994 	 324.0689
	 11 	 368.8317 	 405.6648 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 247.0000 	 110.1974 	 90.6945 	 0.0 	 135.5994 	 334.4006
	 12 	 367.7179 	 455.4472 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 247.0000 	 110.1974 	 95.3624 	 0.0 	 135.5994 	 344.4006
	 13 	 352.0071 	 385.0034 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 247.0000 	 110.1974 	 87.2079 	 0.0 	 135.5994 	 334.4006
	 14 	 272.0071 	 305.0034 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 244.9090 	 110.1974 	 73.1169 	 11.7604 	 135.5994 	 312.6402
	 15 	 193.6233 	 225.0034 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 242.9121 	 110.1974 	 60.7362 	 22.9917 	 135.5994 	 291.4089
	 16 	 150.0000 	 145.0034 	 296.8330 	 250.8703 	 160.0000 	 129.9573 	 80.0000 	 43.4626 	 233.2660 	 110.1974 	 45.5900 	 77.2439 	 135.5994 	 237.1567
	 17 	 150.0000 	 135.0000 	 260.0109 	 250.0000 	 160.0000 	 100.0000 	 80.0000 	 40.9143 	 235.3888 	 110.1974 	 41.5121 	 65.3046 	 135.5994 	 219.0959
	 18 	 150.0000 	 151.0646 	 319.4485 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 40.0577 	 237.4722 	 110.1974 	 50.2419 	 53.5869 	 135.5994 	 245.8137
	 19 	 229.4141 	 231.0646 	 313.3779 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 46.0360 	 237.0065 	 110.1974 	 61.0988 	 56.2062 	 135.5994 	 253.1943
	 20 	 309.4141 	 311.0646 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 247.0000 	 116.9757 	 77.4552 	 0.0 	 90.7694 	 359.2306
	 21 	 272.4577 	 300.8037 	 340.0000 	 300.0000 	 160.0000 	 130.0000 	 80.0000 	 55.0000 	 247.0000 	 111.8344 	 73.0959 	 0.0 	 124.7723 	 320.2277
	 22 	 192.4577 	 220.8037 	 260.6669 	 250.0000 	 160.0000 	 124.1397 	 80.0000 	 45.9763 	 234.6724 	 110.1974 	 50.9154 	 69.3338 	 135.5994 	 230.0668
	 23 	 150.0000 	 140.8037 	 180.6669 	 200.0000 	 127.6584 	 130.0000 	 50.0000 	 40.0000 	 236.4213 	 110.1974 	 33.7482 	 59.4980 	 135.5994 	 204.9026
	 24 	 150.0000 	 135.0000 	 100.6669 	 177.0362 	 123.2649 	 128.6636 	 42.3316 	 10.0000 	 234.6572 	 109.5624 	 27.1834 	 69.4196 	 135.0513 	 195.5291
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; total loss (MW) 
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.


6. Conclusion
This paper presents a hybrid method combining DE and SQP for solving the CHPDED problem with valve-point effects. In this paper, DE is first applied to find the best solution. This best solution is given to SQP as an initial condition to fine-tune the optimal solution at the final. The feasibility and efficiency of the DE-SQP were illustrated by conducting case study with eleven-unit test system.
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