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This paper is devoted to the average consensus problems in directed networks of agents with unknown control direction. In this
paper, by usingNussbaum function techniques and Laplacianmatrix, novel average consensus protocols are designed formultiagent
systemswith unknown control direction in the cases of directed networkswith fixed and switching topology. In the case of switching
topology, the disagreement vector is utilized. Finally, simulation is provided to demonstrate the effectiveness of our results.

1. Introduction

An important problem that appears frequently in the context
of coordination of multiagent systems is the consensus
problem. It has been studied extensively during the past years.
Vicsek and others put forward a model to portray MAS
in 1995 [1], and since then a lot of consensus problems in
different situations have been posed, such as one- and two-
order MAS [2, 3], MAS with time delay [4], and switching
topology [4–6]. Consensus problems have broad applications
in a lot of fields, like computer science, biological science,
automata theory, and so forth. Average consensus problem is
one of the cases of consensus problems and has been studied
a lot [7]. In this paper we consider the average consensus case.

Generally, adaptive control method is useful to tackle
uncertainties. In [8], an adaptive idea is used to design a
robust neural network controller to deal with multiagent
system with unknown nonlinear dynamics and unknown
disturbances. In [9], two adaptive laws are designed to
adjust the coupling weights and the neural network weights.
The leader-follower synchronization problem of uncertain
dynamical multiagent systems is addressed in [10], where
the accurate model of each agent is not required. Moreover,
in [11], a coordinated distributed adaptive control law is
proposed to estimate the desired orbital velocity. But all works
mentioned above cannot handle the consensus problem of
multiagent systems without control direction.

In fact, control direction may be unknown. Systems with
unknown control direction have been studied first in the
area of adaptive control in 1980s. Many results then are for
linear systems. The first result was given by Nussbaum in
[12], where an adaptive control law utilizing the Nussbaum-
type gain was designed. Later the Nussbaum gain method
was adopted in many linear and nonlinear systems to resist
the lack of a priori knowledge of control direction. In [13],
by Nussbaum gain, a systematic procedure is proposed to
design global adaptive control of a class of nonlinear systems
with unknown control direction. In [14], by incorporating
Nussbaum technique, a partial-state feedback controller with
unknown control direction is obtained.

In this paper consensus problems are considered, but in
a different situation that the control direction is unknown,
we assume that �̇�

𝑖
= 𝑎𝑢

𝑖
, in which the sign of 𝑎 is

unknown. Novel control protocols are designed to reach
average consensus under this consideration.

Notation. Given that 𝑛 ∈ 𝑁, we let 1(0) be the 𝑛 × 1 vector
whose entries are 1(0).

2. Definitions and Preliminaries

At first, we introduce some preliminary knowledge of graph
theory for the following analysis [15, 16].
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Let 𝐺 = (𝑉, 𝐸, 𝐴) be a weighted directed graph (digraph),
consisting of a node (agent) set 𝑉 = {1, 2, . . . , 𝑛}, an edge set
𝐸 ⊆ 𝑉×𝑉, and a weighted adjacency matrix𝐴 = [𝑎

𝑖𝑗
] ∈ R𝑛×𝑛

with nonnegative elements 𝑎
𝑖𝑗
.We assume no self-loops in the

graph, that is 𝑎
𝑖𝑖
= 0 for all 𝑖 ∈ 𝐼. The node indexes belong to

a finite index set 𝐼 = {1, 2, . . . , 𝑛}. An edge of 𝐺 is denoted
by 𝑒
𝑖𝑗
= (V
𝑖
, V
𝑗
). (If 𝐺 is an undirected graph, 𝑒

𝑖𝑗
∈ 𝐸 equals

𝑒

𝑗𝑖
∈ 𝐸.) The adjacency element is positive if the associated

edge exists, that is, 𝑒
𝑗𝑖
∈ 𝐸 ⇔ 𝑎

𝑖𝑗
> 0. The set of neighbors of

node V
𝑖
is denoted by

𝑁

𝑖
= {V
𝑗
∈ 𝑉, (V

𝑗
, V
𝑖
) ∈ 𝐸} . (1)

The indegree and outdegree of node V
𝑖
are, respectively,

defined as follows:

degin (V𝑖) =
𝑛

∑

𝑗=1

𝑎

𝑖𝑗
, degout (V𝑖) =

𝑛

∑

𝑗=1

𝑎

𝑗𝑖
. (2)

A graph is said to be weight-balanced if the outdegree of
each node equals its indegree.

Let Δ = diag(𝐴1) be the degree diagonal matrix of 𝐺. Let
𝐿 = Δ−𝐴 be the Laplacian matrix of 𝐺. We note that 𝐿1 = 0.

An oriented path from V
𝑖
1

to V
𝑖
𝑘

is a sequent list of edges
(V
𝑖
𝑠

, V
𝑖
𝑠+1

) ∈ 𝐸, for 𝑠 = 1, . . . , 𝑘 − 1.
A digraph is called strongly connected if, for any two

distinct nodes V
𝑖
, V
𝑗
, there is a directed path from V

𝑖
to V
𝑗
.

Lemma 1. Let 𝐺 = (𝑉, 𝐸, 𝐴) be a weighted digraph with
Laplacian 𝐿. If 𝐺 is strongly connected, then 𝑟𝑎𝑛𝑘(𝐿) = 𝑛 − 1
[4].

Let 𝑥
𝑖
∈ 𝑅 denote the value of node V

𝑖
. The value of a

node might represent physical qualities including attitude,
position, temperature, and voltage.

We define the Laplacian potential of graph 𝐺 as follows:

𝜙

𝐺 (
𝑥) = 𝑥

𝑇
𝐿𝑥. (3)

For undirected graphs, the Laplacianmatrix is symmetric,
and thus the Laplacian potential can be expressed as a
quadratic form, that is𝜙

𝐺
(𝑥) = 𝑥

𝑇
𝐿𝑥 = (1/2)∑

𝑖,𝑗
𝑎

𝑖𝑗
(𝑥

𝑗
−𝑥

𝑖
)

2,
so it is nonnegative.

But for digraph, when is it still true that 𝜙
𝐺
(𝑥) is

nonnegative? We answer this by the following lemma.

Lemma 2. For weight-balanced digraph 𝐺,

𝜙

𝐺 (
𝑥) =

1

2

∑

𝑖,𝑗

𝑎

𝑖𝑗
(𝑥

𝑗
− 𝑥

𝑖
)

2

≥ 0, (4)

where 𝑎
𝑖𝑗
= (𝑎

𝑖𝑗
+ 𝑎

𝑗𝑖
)/2 ≥ 0.

(The proof of this lemma is available in [4]).

Lemma 3. Digraph 𝐺 = (𝑉, 𝐸, 𝐴) is weight-balanced if and
only if 1𝑇𝐿(𝐺) = 0𝑇.

Definition 4. A smooth function 𝑁(𝜂) is called Nussbaum
function if it is equipped with the following properties:

lim
𝑡→∞

sup 1
𝑡

∫

𝑡

0

𝑁(𝜁) 𝑑𝜁 = +∞,

lim
𝑡→∞

inf 1
𝑡

∫

𝑡

0

𝑁(𝜁) 𝑑𝜁 = −∞.

(5)

Lemma 5. Let 𝑁(𝜂) = 𝑒

𝜂
2

cos((𝜋/2)𝜂); then the following
properties are satisfied.

(i) 𝑁(𝜂) is a Nussbaum function.
(ii) If 𝜂(𝑡) is a continuous, differentiable and nondecreasing

function, and lim
𝑡→∞

𝜂(𝑡) = +∞, then

lim
𝑡→∞

sup 1

𝜂 (𝑡)

∫

𝜂(𝑡)

0

𝜁𝑁 (𝜁) 𝑑𝜁 = +∞,

lim
𝑡→∞

inf 1

𝜂 (𝑡)

∫

𝜂(𝑡)

0

𝜁𝑁 (𝜁) 𝑑𝜁 = −∞.

(6)

Proof. (i) See [12] for the proof.
(ii) If 𝜂(𝑡) is a continuous, differentiable and nondecreas-

ing function, and lim
𝑡→∞

𝜂(𝑡) = +∞, then there exist 𝑡
𝑘
→

+∞ such that 𝜂(𝑡
𝑘
) = 𝑘. Also we have 𝜂(𝑡

4𝑘−1
) = 4𝑘 − 1,

𝜂(𝑡

4𝑘+1
) = 4𝑘 + 1, and 𝜂(𝑡

4𝑘+3
) = 4𝑘 + 3.

Define 𝐼(𝑘) = ∫𝜂(𝑡𝑘)
0

𝜁𝑁(𝜁)𝑑𝜁.
It is clear that 𝑁(𝑡) is positive on intervals of the form

(4𝑘 − 1, 4𝑘 + 1) and negative on intervals (4𝑘 + 1, 4𝑘 + 3), 𝑘 is
a positive integer. From the nondecreasing property of 𝜂(𝑡),
we have that𝑁(𝜂(𝑡)) is nonnegative on intervals of the form
(𝑡

4𝑘−1
, 𝑡

4𝑘+1
) and nonpositive on intervals (𝑡

4𝑘+1
, 𝑡

4𝑘+3
), 𝑘 is a

positive integer.
It suffices to prove that

lim
𝑘→∞

1

𝜂 (𝑡

4𝑘+1
)

𝐼 (4𝑘 + 1) = +∞,

lim
𝑘→∞

1

𝜂 (𝑡

4𝑘+3
)

𝐼 (4𝑘 + 3) = −∞.

(7)

To prove the former, first observe that


















∫

𝜂(𝑡
4𝑘−1
)

0

𝜁𝑁 (𝜁) 𝑑𝜁



















≤ (4𝑘 − 1)

2
𝑒

(4𝑘−1)
2

,

∫

𝜂(𝑡
4𝑘+1
)

𝜂
(
𝑡
4𝑘−1)

𝜁𝑁 (𝜁) 𝑑𝜁 ≥ ∫

𝜂(𝑡
𝑘2
)

𝜂(𝑡
𝑘1
)

𝜁𝑁 (𝜁) 𝑑𝜁

≥

√
2

2

(4𝑘 −

1

2

) 𝑒

(4𝑘−(1/2))
2

,

(8)

where 𝜂(𝑘
1
) = 4𝑘 − 1/2, 𝜂(𝑡

𝑘
2

) = 4𝑘 + 1/2, and 𝑡
𝑘
1

, 𝑡

𝑘
2

∈

(𝑡

4𝑘−1
, 𝑡

4𝑘+1
).

Combining (8) gives

𝐼 (4𝑘 + 1) ≥ 𝑒

(4𝑘−1)
2

[

√
2

2

(4𝑘 −

1

2

) 𝑒

4𝑘−3/4
− (4𝑘 − 1)

2
] .

(9)
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We have

lim
𝑘→∞

1

𝜂 (𝑡

4𝑘+1
)

𝐼 (4𝑘 + 1)

≥ lim
𝑘→∞

1

𝜂 (𝑡

4𝑘+1
)

𝑒

(4𝑘−1)
2

× [

√
2

2

(4𝑘 −

1

2

) 𝑒

4𝑘−3/4
− (4𝑘 − 1)

2
]

≥ lim
𝑘→∞

1

4𝑘 + 1

𝑒

(4𝑘−1)
2

= +∞.

(10)

Similarly, we can prove that lim
𝑘→∞

(1/𝜂(𝑡

4𝑘+3
))𝐼(4𝑘 + 3) =

−∞.
Thus (6) holds.

Definition 6. Let 𝛼 = Ave(𝑥) = 𝑁−11𝑇𝑥, then

𝑥 = 𝛼1 + 𝛿, (11)

where 𝛿 ∈ 𝑅𝑛 satisfies ∑
𝑖
𝛿

𝑖
= 0. We refer to 𝛿 as the (group)

disagreement vector.

Lemma 7 (Barbalat’s lemma [17]). Let 𝜙 : R → R

be a uniformly continuous function on [0,∞). Suppose that
lim
𝑡→∞

∫

𝑡

0
𝜙(𝜏)𝑑𝜏 exists and is finite. Then,

𝜙 (𝑡) → 0 as 𝑡 → ∞. (12)

3. Average Consensus Problem of
MAS with Fixed Topology and Unknown
Control Direction

Consider the case of fixed topology 𝐺. Assume that 𝐺 is
strongly connected and weight balanced. 𝑥

𝑖
∈ R (𝑖 ∈ 𝐼) are

state variables.
Suppose each node of a graph is an agent with dynamics:

�̇�

𝑖
= 𝑎𝑢

𝑖
, (13)

where 𝑎 ∈ R, |𝑎| > 0, and the sign of parameter 𝑎 is unknown.
Moreover, we assume 𝑎 is bounded, that is, |𝑎| ≤ 𝑎max.

We say that a state feedback

𝑢

𝑖
= 𝑘

𝑖
(𝑥

𝑗
1

, . . . 𝑥

𝑗
𝑚𝑖

) (𝐴)

is a protocol with topology 𝐺 if the cluster 𝐽
𝑖
= {V
𝑗
1

, . . . V
𝑗
𝑚𝑖

}

of nodes with indexes 𝑗
1
, 𝑗

2
, . . . , 𝑗

𝑚
𝑖

satisfies the property 𝐽
𝑖
⊆

{V
𝑖
}⋃𝑁

𝑖
.

We say protocol (𝐴) solves the average consensus prob-
lem, if (𝐴) satisfies that for all initial conditions, solution
to (13) satisfies the average consensus condition, that is
lim
𝑡→∞

𝑥(𝑡) = 𝑥ave(0)1, where we let 𝑥ave(𝑡) = 𝑁−11𝑇𝑥(𝑡).
This problem will be solved in the following theorem.

Theorem 8. 𝐺 = (𝑉, 𝐸, 𝐴) is a digraph which is strongly con-
nected and weight-balanced. Consider dynamics (13), when 𝑢
satisfies

𝑢

𝑖
= 𝜂𝑁 (𝜂)

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑥

𝑗
− 𝑥

𝑖
) , 𝑖 = 1, . . . , 𝑛,

̇𝜂 =

1

2∑

𝑖𝑗
𝑎

𝑖𝑗
(𝑥

𝑗
− 𝑥

𝑖
)

2
,

(14)

where 𝑁(𝜂) = 𝑒𝜂
2

cos((𝜋/2)𝜂), is a Nussbaum function and
𝜂 = 𝜂(𝑡) is a differentiable function in R. Then the average
consensus problem is solved.

Proof. Together with (13) and (14), system can also be written
in vector form as

�̇� = 𝑎𝜂𝑁 (𝜂) 𝐿𝑥, (15)

̇𝜂 = 𝑥

𝑇
𝐿𝑥. (16)

Let us consider the positive definite function 𝑉 = (1/2)𝑥𝑇𝑥
whose time derivative along (15) is given by

̇

𝑉 = 𝑥

𝑇
(𝑎𝜂𝑁 (𝜂)) 𝐿𝑥 = 𝑎𝜂𝑁 (𝜂) ̇𝜂. (17)

Integrating from 0 into 𝑡, we arrive at

1

2

‖𝑥 (𝑡)‖

2
−

1

2

‖𝑥 (0)‖

2

= ∫

𝑡

0

𝑎𝜂𝑁 (𝜂) ̇𝜂 𝑑𝑡 = ∫

𝜂(𝑡)

0

𝑎𝜎𝑁 (𝜎) 𝑑𝜎.

(18)

This implies that

∫

𝜂(𝑡)

0

𝑎𝜎𝑁 (𝜎) 𝑑𝜎 ≥ ∫

𝜂(0)

0

𝑎𝜎𝑁 (𝜎) 𝑑𝜎 −

1

2

‖𝑥 (0)‖

2
.

(19)

Then we can conclude that 𝜂(𝑡) is bounded; otherwise if
𝜂(𝑡) is unbounded, observe that ̇𝜂 = 𝑥

𝑇
𝐿𝑥 ≥ 0 (Lemma 2)

implies 𝜂(𝑡) is nondecreasing; it follows lim
𝑡→∞

𝜂(𝑡) = +∞.
Furthermore, inequality (19) implies that

lim
𝑡→∞

inf 1

𝜂 (𝑡)

∫

𝜂(𝑡)

0

𝜁𝑁 (𝜁) 𝑑𝜁

≥ lim
𝑡→∞

1

𝜂 (𝑡)

(∫

𝜂(0)

0

𝑎𝜎𝑁 (𝜎) 𝑑𝜎 −

1

2

‖𝑥 (0)‖

2
) .

(20)

Then from Lemma 5 we can get a contradictory inequality
−∞ ≥ 0. So 𝜂(𝑡) is bounded.

The boundedness of 𝜂(𝑡) together with the nondecreasing
property of 𝜂(𝑡) leads to the existence of the limit of 𝜂(𝑡).

Moreover, from (18) we can conclude the boundedness of
‖𝑥(𝑡)‖

2, and thus ̇𝜂 and �̇� are bounded.
From (𝑥𝑇𝐿𝑥) = �̇�𝑇𝐿𝑥+𝑥𝑇𝐿�̇�, (𝑥𝑇𝐿𝑥) is bounded, which

implies 𝑥𝑇𝐿𝑥 is uniformly continuous.
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From

lim
𝑡→+∞

∫

𝑡

0

(𝑥(𝜏)

𝑇
𝐿𝑥 (𝜏)) 𝑑𝜏 = lim

𝑡→+∞
𝜂 (𝑡) − 𝜂 (0)

(21)

we get that lim
𝑡→+∞

∫

𝑡

0
(𝑥(𝜏)

𝑇
𝐿𝑥(𝜏))𝑑𝜏 exists and is finite. By

Lemma 7 (Babalat’s), we arrive at lim
𝑡→+∞

𝑥

𝑇
𝐿𝑥 = 0.

Owing to Lemma 2, 𝜙
𝐺
(𝑥) = 𝑥

𝑇
𝐿𝑥 = (1/2)∑

𝑖,𝑗
𝑎

𝑖𝑗
(𝑥

𝑗
−

𝑥

𝑖
)

2
≥ 0 and 𝑎

𝑖𝑗
≥ 0, and thus lim

𝑡→+∞
|𝑥

𝑗
−𝑥

𝑖
| = 0 (∀𝑖, 𝑗 ∈ 𝐼).

Moreover, we denote the equilibrium of (15) as 𝑥∗, and then

𝑎𝑁 (𝜂) 𝐿𝑥

∗
= 0 ⇒ 𝑥

∗
= 𝑐1, that is, 𝑥∗

𝑖
= 𝑥

∗

𝑗
(∀𝑖, 𝑗 ∈ 𝐼) .

(22)

Furthermore, let 𝛼(𝑡) = Ave(𝑥(𝑡)) = 𝑁−11𝑇𝑥(𝑡), then

�̇� = 𝑁

−11𝑇�̇� = 𝑁−1𝑎𝜂𝑁 (𝜂) 1𝑇𝐿𝑥 = 0 (23)

(1𝑇𝐿 = 0 by Lemma 3); that is, 𝛼 is a constant, which means
the average of 𝑥(𝑡) is preserved as time varies.

From above, we obtain lim
𝑡→+∞

𝑥(𝑡) = 𝑥

∗ and 𝑥∗
𝑖
=

𝑁

−11𝑇𝑥(0) = 𝛼, (∀𝑖 ∈ 𝐼).

4. Average Consensus Problem of
MAS with Switching Topology and
Unknown Control Direction

Consider a network with mobile agents. When there exists
an obstacle between two agents; the communication links
may fail.Then the opposite situation may arise that new links
between nearby agents are created. Here we are interested to
investigate whether it is still possible to reach a consensus or
not in the case of a network with switching topology.

Consider a switching system with state 𝑥 ∈ 𝑅

𝑛 and
switching graph 𝐺, where 𝐺 belongs to a finite set

Γ

𝑛
= {𝐺 = {𝑉, 𝐸, 𝐴} : rank (𝐿 (𝐺)) = 𝑛 − 1, 1𝑇𝐿 (𝐺) = 0𝑇} .

(24)

In fact the elements of this set are graphs of order 𝑛 that
are strongly connected and weight-balanced.

The switching topology of the network is modeled by
using switching graphs. The switching graph is 𝐺

𝑘
∈ Γ

𝑛
, 𝐺
𝑘
=

(𝑉, 𝐸

𝑘
, 𝐴

𝑘
), 𝑘 = 𝑠(𝑡), where 𝑠(𝑡) : [0,∞) → 𝑁 denotes the

switching signal, which is assumed to be a piecewise constant
function continuous from the right.

The protocol (𝐴) solves the consensus problem in the
way very similar to the case of the fixed topology; the only
difference is that (𝐴) is a protocol of topology 𝐺𝑘.

This problem will be solved in the following theorem.

Theorem 9. 𝐺
𝑘
= (𝑉, 𝐸

𝑘
, 𝐴

𝑘
) ∈ Γ

𝑛
is a switching graph, where

𝑘 = 𝑠(𝑡) is any switching signal. 𝐿
𝑘
= 𝐿(𝐺

𝑘
). Consider (13),

when 𝑢 satisfies

𝑢

𝑖
= 𝜂𝑁 (𝜂)

𝑛

∑

𝑗=1

𝑎

(𝑘)

𝑖𝑗
(𝑥

𝑗
− 𝑥

𝑖
) , 𝑖 = 1, . . . , 𝑛,

̇𝜂 =

1

2∑

𝑖𝑗
𝑎

(𝑘)

𝑖𝑗
(𝑥

𝑗
− 𝑥

𝑖
)

2
,

(25)

where 𝑁(𝜂) is a Nussbaum function and 𝜂 = 𝜂(𝑡) is
a differentiable function in R. Then the average consensus
problem is solved.

Proof. When 𝑢 satisfies (25), (13) becomes

�̇� = 𝑎𝜂𝑁 (𝜂) 𝐿

𝑘
𝑥,

̇𝜂 = 𝑥

𝑇
𝐿

𝑘
𝑥.

(26)

Owing to (11) (𝛿 is the disagreement vector), togetherwith
𝐿

𝑘
1 = 0 and 1𝑇𝐿(𝐺) = 0𝑇, (26) becomes

̇

𝛿 = 𝑎𝜂 𝑁 (𝜂) 𝐿

𝑘
𝛿, (27)

̇𝜂 = 𝛿

𝑇
𝐿

𝑘
𝛿. (28)

Let us consider the positive definite function 𝑉 =

(1/2)𝛿

𝑇
𝛿 whose time derivative along (27) is given by ̇

𝑉 =

𝛿

𝑇
(𝑎𝜂𝑁(𝜂))𝐿

𝑘
𝛿 = 𝑎𝜂𝑁(𝜂) ̇𝜂.

Integrating from 0 to 𝑡, we arrive at

1

2

‖𝛿 (𝑡)‖

2
−

1

2

‖𝛿 (0)‖

2

= ∫

𝑡

0

𝑎𝜂𝑁 (𝜂) ̇𝜂𝑑𝑡 = ∫

𝜂(𝑡)

0

𝑎𝜎𝑁 (𝜎) 𝑑𝜎.

(29)

This implies

∫

𝜂(𝑡)

0

𝑎𝜎𝑁 (𝜎) 𝑑𝜎 ≥ ∫

𝜂(0)

0

𝑎𝜎𝑁 (𝜎) 𝑑𝜎 −

1

2

‖𝛿 (0)‖

2
.

(30)

Very similar to the proof ofTheorem 8,we obtain that 𝜂(𝑡)
is bounded, and thus the limit of 𝜂(𝑡) exists. ( ̇𝜂 = 𝛿𝑇𝐿

𝑘
𝛿 ≥ 0.)

Moreover from (29) we can conclude the boundedness of
‖𝛿(𝑡)‖

2, and thus (27) implies ̇

𝛿 is bounded.
Hence, (𝛿𝑇𝐿

𝑘
𝛿)

 is bounded, which can lead to the fact
that 𝛿𝑇𝐿

𝑘
𝛿 is uniformly continuous.

What’s more, from

lim
𝑡→+∞

∫

𝑡

0

(𝛿(𝜏)

𝑇
𝐿

𝑘
𝛿 (𝜏)) 𝑑𝜏 = lim

𝑡→+∞
𝜂 (𝑡) − 𝜂 (0)

(31)

we get lim
𝑡→+∞

∫

𝑡

0
(𝑥(𝜏)

𝑇
𝐿𝑥(𝜏))𝑑𝜏 exists and is finite;

therefore applying Lemma 7 (Babalat’s) we arrive at
lim
𝑡→+∞

𝛿

𝑇
𝐿

𝑘
𝛿 = 0.

Owing to Lemma 2, 𝜙
𝐺
(𝛿) = 𝛿

𝑇
𝐿

𝑘
𝛿 ≥ 0, and thus

lim
𝑡→+∞

|𝛿

𝑗
− 𝛿

𝑖
| = 0 (∀𝑖, 𝑗 ∈ 𝐼).

Moreover, let 𝛿∗ be the equilibrium of (27); then there
exist an 𝑒 ∈ R such that 𝛿∗ = 𝑒1, that is, 𝛿∗

𝑖
= 𝛿

∗

𝑗
= 𝑒.

Due to the fact that ∑
𝑖
𝛿

𝑖
= 0 is valid for every time, we

can conclude that 𝛿∗
𝑖
= 𝛿

∗

𝑗
= 𝑒 = 0.Therefore, lim

𝑡→+∞
𝛿(𝑡) =

𝛿

∗
= 0, and thus lim

𝑡→+∞
𝑥(𝑡) = 𝛼 = Ave(𝑥(0)).

Consequently, the average consensus problem is solved.

5. Simulation Results

In this part we use the concrete graphs to show the two
results we obtained, respectively. Here the initial condition of



Mathematical Problems in Engineering 5

1 2

3

4

5

(a)

1 2

3

4

5

(b)

1 2

3

4

5

(c)

1 2

3

45

(d)

Figure 1: Four balanced and strongly connected digraphs: (a) 𝐺
𝑎
, (b) 𝐺

𝑏
, (c) 𝐺

𝑐
, (d) 𝐺

𝑑
.
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Figure 2: Trajectories of the node values of 𝐺
𝑎
with 𝑎 = 0.8147 and 𝑎 = −1.5386.

the states is taken as 𝑥(0) = (3, 5, −2, 1, −7), and the Nuss-
baum function as𝑁(𝜂) = 𝑒𝜂

2

cos((𝜋/2)𝜂). Figure 1 shows four
different digraphs each with 𝑛 = 5 nodes. We can observe
that they are all balanced and strongly connected. To illustrate
the effect of unknown control direction, in the simulation we
randomly specify two constants with different signs to stand
for 𝑎, respectively. The trajectories of the node values of 𝐺

𝑎

with the input coefficient 𝑎 that equals 0.8147 and −1.5386
are displayed in Figure 2. We observe that they achieve
consensus after some time, just as our theorem demonstrates.
For the switching topology case, Figure 3(a) gives the model
of switching and Figure 3(b) shows the corresponding trajec-
tories in the cases of 𝑎 = 4.8219 and 𝑎 = −1.3458. This result
coincides with our conclusion of Theorem 9.
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Figure 3: (a)The switchingmodel of four digraphs.The following two graphs are trajectories of the node values for the switching information
flow of (a) with 𝑎 = 4.8219 and 𝑎 = −1.3458.

6. Conclusion

In this paper, we present the convergence analysis of con-
sensus protocols for networks with fixed and switching
topology and unknown control direction. By Nussbaum
function techniques and graph theory, two consensus pro-
tocols are constructed to tackle the difficulty caused by the
unknown control direction. Finally, simulations are provided
to demonstrate the effectiveness of our results.
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